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A Hessenberg—Schur Method for the Problem
AX+ XB=C

G. H. GOLUB, §. NASH, anp C. VAN LOAN

Abstract—One of the most effective methods for solving the matrix
equation AX+ XB=C is the Bartels—Stewart algorithm. Key to this
technique is the orthogonal reduction of A4 and B to triangular form using
the QR algorithm for eigenvalues. A new method is proposed which differs
from the Bartels—Stewart algorithm in that A is only reduced to Hessen-
berg form. The resulting algorithm is between 30 and 70 percent faster
depending upon the dimensions of the matrices 4 and B. The stability of
the new method is demonstrated through a roundoff error analysis and
supported by numerical tests. Finally, it is shown how the techniques
described can be applied and generalized to other matrix equation prob-
lems.

I. INTRODUCTION

Let AER™*™ and B € R"*" be given matrices and define the linear
transformation ¢: R™*"— R™*" by

#(X)=AX+XB. (L1)

This linear transformation is nonsingular if and only if 4 and — B have
no eigenvalues in common which we shall hereafter assume. Linear
equations of the form

&(X)=AX+XB=C (1.2)

arise in many problem areas and numerous algorithms have been pro-
posed [4], [10]. Among them, the Bartels—Stewart algorithm [1] has
enjoyed considerable success [2]. In this paper we discuss a modification
of their technique which is just as accurate and considerably faster.
This new method is called the “Hessenberg—Schur algorithm™ and like
the Bartels—Stewart algorithm is an example of a “transformation
method.” Such methods are based upon the equivalence of the problems

AX+XB=C
and
(U—AUYU~'XV)+ (U XV)(V ~'BV)=U"CV
and generally involve the following four steps.

“simple”™ form via the similarity
'BV.

Step 1: Transform 4 and B into
transformations A,=U ~'4U and B,=V "~

Step 2: Solve UF=CV for F.

Step 3: Solve the transformed system 4, Y+ YB,=F for Y.

Step 4: Solve XV =UY for X.

A brief look at the effect of roundoff error in Steps 2 and 4 serves as a
nice introduction to both the Bartels—Stewart and Hessenberg—Schur
algorithms.

In these steps linear systems are solved which involve the transforma-
tion matrices U and V. Suppose Gaussian elimination with partial
pivoting is used for this purpose and that the computations are done on
a computer whose floating-point numbers have ¢ base f# digits in the
mantissa. Using the standard Wilkinson inverse error analysis [12], [13] it
follows that relative errors of order u[k,(U)+ k,(¥)] can be expected to
contaminate the computed solution X where

u=fg""1
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is the relative machine precision and k,(-) is defined by

K W) =Wl W~

T, T
= max| [PEL ey 22
x0 xTx w0 \ () (W)

When (W) is large with respect to u, then we say that W is “ill-condi-
tioned.”

Unfortunately, several of the possible reductions in Step 1 can lead to
ill-conditioned U and ¥ matrices. For example, 1f A and B are diagona-
lizable, then there exist U and ¥ so that

U~ AU =diag(e;,ay, - -,
V=BV =diag( 8,8, -

a,)=A,
!ﬁm)=B|‘

The matrix ¥'=(y;) in Step 3 is then prescribed by the simple formulas
Yy=fy/(e;+ B;). If we apply this algorithm to the problem

A =| 1234567891 3.515985621
0 1.234078268

[ 03458968425 0
0.6521859685 03450509462

C=| 3748636323  5.095604458
2232161079 1.579129214

and use HP-67 arithmetic (u=10"'°), we find

¥ = | 1003948200  0.999995000
0.999997700  1.000000000

Now in this example, u[ky(U)+ ky(¥)]=10"2 and so we should not be
surprised to learn that to full working precision

Xt[l.oomooooo

1.000000000
1.000000000

1.000000000 |

Conclusion: We should avoid ill-conditioned transformation matrices.
Methods which involve the computation of Jordan or companion forms
in Step 1 do not do this (cf. [6], [9]).

This leads us to consider transformation methods which rely on
orthogonal U and V. (Recall that UTU = I implies k3(U)=1.) In the next
two sections we describe two such techniques: one old and one new. The
first of these is the Bartels-Stewart algorithm. This method involves the
orthogonal reduction of 4 and B to triangular form using the QR
algorithm. The main point of this paper is to show how this algorithm
can be streamlined by only reducing 4 to Hessenberg form. The result-
ing algorithm is described in Section III and its roundoff properties are
shown to be very desirable in Sections IV and V. The superior efficiency
of the new method for a large class of problems is substantiated in
Section VI where we report on several numerical tests. Finally, we
conclude by showing how the techniques developed can be extended to
other matrix problems.

II. THE BARTELS—STEWART ALGORITHM

The crux of the Bartels-Stewart algorithm [1] is to use the QR
algorithm to compute the real Schur decompositions
VIBTY =8

UTAU=R (2.1)

where R and § are upper quasi-triangular and U and V are orthogonal.
(A quasi-triangular matrix is triangular with possible nonzero 2x2
blocks along the diagonal.)

From our remarks in Section I, the reductions (2.1) lead to the
transformed system

RY+YST=F (F=UTCV, Y=UTXV). (2.2)
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Assuming s, ,_ is zero, then it follows that

n
(R+sDye=fi— % S (2.3)
where Y=[y, |y, | -~ | y,Jand F=[f, | 2| --- | f,]. Thus, y; can
be found from y, " * - .y, by solving an upper quasi-triangular system,

a very easy computation requiring m?/2 operations once the right-hand
side is known. If s, ,_, is nonzero, then y, and y,_, are “simulta-
neously” found in an analogous fashion.

If we assume that the Schur decompositions in (2.1) require 10m> and
10n> operations, respectively, then the overall workcount for the
Bartels—Stewart algorithm is given by

Was(m,n)=10m*+10n*+2.5[m’n + mn?].
The technique requires 2m?+2n%+ mn storage assuming the data are
overwritten.

III. THe HESSENBERG—SCHUR ALGORITHM

In this section we describe a new algorithm, called the Hessen-
berg—Schur algorithm, which differs from the Bartels—Stewart method in
that the decompositions (2.1) are replaced by

H=UTAU
S=VTBTY

H upper Hessenberg, U orthogonal G.1)

S quasi-upper triangular, ¥ orthogonal.

A matrix H=(h;) is upper Hessenberg if h;=0 for all i>j+1. The
orthogonal reduction of A to upper Hessenberg form can be accom-
plished with Householder matrices in $m? operations. See [12, p. 347] for
a description of this algorithm. The reductions (3.1) lead to a system of
the form

HY+YST=F (3.2)

which may be solved in a manner similar to what is done in the
Bartels—Stewart algorithm. In particular, assume that y,,,,---,y, have
been computed.

If 5, =0, then y, can be determined by solving the m X m Hessen-
berg system

(H+ s, Dye=fi— § (33)
J=k+

lskjyj.
When Gaussian elimination with partial pivoting is used for this pur-
pose, m? operations are needed once the right-hand side is known.

If 5 ;—, is nonzero, then by equating columns k—1 and k in (3.2) we
find

A+ Dbl %00 0 | =Ll
- > [sc—1 | sl=lg | w]. (34)
J=k+1

This is a 2m-by-2m linear system for y, and y,_,. By suitably ordering
the variables, the matrix of coefficients is upper triangular with two
nonzero subdiagonals. Using Gaussian elimination with partial pivoting,
this system can be solved in 6m? operations once the right-hand side is
formed. Unfortunately, a 2m? workspace is required to carry out the
calculations.

Part of this increase in storage is compensated for by the fact that the
orthogonal matrix U can be stored in factored form below the diagonal
H [12, p. 350]. This implies that we do not need an m X m array for U as
in the Bartels—Stewart algorithm. Summarizing the Hessenberg—Schur
algorithm and the associated work counts we have the follov. ‘ag.

1) Reduce A to upper Hessenberg and BT to quasi-upper triangular:

H=UTAU  (store U in factored form) §m3
S=VTBV (save V) 1043
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2) Update the right-hand side:

F=UTCV m?n+ mn?
3) Back substitute for ¥

HY+YST=F 3m2n+%mn2
4) Obtain solution:

X=UyvT m?n + mn?

wys(m,n)= % m?+10n3 +5Smn + % mn?,
To obtain the operation count associated with the determination of Y,
we assumed that § has n/2 2x2 bumps along its diagonal. (This is the
“worst” case.)

Unlike the work count for the Bartels—Stewart algorithm, wy¢(m,n) is
not symmetric in m and n. Indeed, scrutiny of wyg(m,n) reveals that it
clearly pays to have m > n. This can always be assured, for if m<n, we
merely apply the Hessenberg—Schur algorithm to the transposed prob-
lem

BTXT+XT4T=CT.

Comparing wgg(m,n) and wyg(m,n) we find

wys(m,n) _ 1+3(n/m)+ %(n/m)2+6(n/m)3

wps(m,n) 6+ %(n/m)+ %(ava/m)l-!-6(!"1/1"?‘1)3

(3.5)

which indicates that substantial savings accrue when the Hessen-
berg—Schur method is favored. For example, if m=4n, then wyg(m,n)=
0.30wgg(m,n).

The storage requirements of the new method are a little greater than
those for the Bartels—Stewart algorithm:

A(mxm) for the original A and subsequently H and U
B(nxn) for the original B and subsequently S
V(nxn) for the orthogonal matrix ¥

C(mxn) for the original C and subsequently ¥ and X
W(2m?)

for-handling the possible system (3.4).

IV. A PERTURBATION ANALYSIS

In the next section we shall assess the effect of rounding errors on the
Hessenberg—Schur algorithm. The assessment will largely be in the form
of a bound on the relative error in the computed solution X. To ensure a
correct interpretation of our results, it is first necessary to investigate the
amount of error which we can expect any algorithm to generate given
finite precision arithmetic.

To do this we need to make some observations about the sensitivity of
the underlying problem ¢(X)= C. This system of equations can be
written in the form

Px=c (4.1)
where
P=(I,04)+(B"®1,) (42)
and
xmvec(X )= (X1, X207 * " s K1y X120 X225 " " s Xm2s ™" " 1 X g™ --"m}r
cmvec(C)=(c11,C21" " * s Cm1yC12:€225" " 3Cmas™ =" 5 Cpr” ™ »CM)T-

“Jere, the Kronecker product W®Z of two matrices W and Z is the
ock matrix whose (i,/) block is w; Z.
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Based on our knowledge of linear system sensitivity, we know that if P
is ill-conditioned, then small changes in 4, B, and/or C can induce
relatively large changes in the solution. To relate this to the transforma-
tion ¢, we need to define a norm on the space of linear transformations
from R™*" to R™*" :

WOl

. RmXn_, gmxn =  max
s - LAl o X1 -

€Rmx*n
Here, the Frobenius norm ||-||; is defined by ||W|%=Z, |w,[*. Notice
that for the linear transformation ¢ defined by (1.1) we have

llell=1Pllz< 4]+ Bll2

where P is defined by (4.2). If ¢ is nonsingular, then

I$COI]™" oo

Now consider solving 4X+ XB=C on a computer having machine
precision u. In general, rounding errors of order u||4| s, u| B||z and
u||C||  will normally be present in 4, B, and C, respectively, before any
algorithm even begins execution. Hence, the “best” thing we can say
about a computed solution X is that it satisfies

min
XER”‘X"

e~ il=

(A+E)X+X(B+F)=(C+G) (4.3)
where
NE| F<ulld]lp (4.9)
Fllr<ullB|lp (4.5)
Gl g <ullC|lg- (4.6)

How accurate would such an X be? By applying standard linear system
perturbation analysis [3], it is possible to establish the following result.

Theorem: Assume that AX + XB=C, (A+ E)X+ X(B+ F)=(C+G),
and (4.4), (4.5), and (4.6) hold. If §(Z)=AZ+ ZB is nonsingular, C is
nonzero, and

Wl Al s+ 1Bl e~ <1/2, @)
then
X-X
WX XUr  gugyap o+ 181 A6 @8)
X1

For the 2 X2 example given in Section I, the upper bound in (4.8) has
a value of about 10~?, This indicates that an AX + XB= C problem can
be very well-conditioned even if the eigenvector matrices for 4 and B
are poorly conditioned.

‘We conclude this section with the remark that the bound in (4.8) can
roughly be attained. Setting

12 -1 0 3+8 6
A= B= .
[D 1] [ 1 3] ¢ [H»S 4:[
it is easy to verify that x(¢)=||¢||ll¢ ~"||=0(1/8) and
1 1
bt [1 1].
(Think of § as a small positive constant.) Now if
-~ - _ u 0
AX+XB C+[u 0]

it is easy to show

)E-X+[“/B 0}.
0 0

Thus, if ||¢ ~!|| is large, then small changes in 4, B, or C can induce
relatively large changes in X.

In general, given the random nature of roundoff error, we conclude
from the analysis in this section that errors of order u|¢ ~'|| can be
expected to contaminate the computed solution no matter what algo-
rithm we employ to solve AX + XB= C. An estimate of ||¢ ~!| is there-
fore something to be valued in practice. An expensive though reliable
method for doing this would be to compute the singular value decom-
position of P=(I,®@A4)+(BT®1I,) using EISPACK [11]. A far cheaper
alternative and one which we are currently investigating involves the
condition estimator developed in [14].

V. ROUNDOFF ERROR ANALYSIS OF THE HESSENBERG—SCHUR
ALGORITHM

We now take a detailed look at the roundoff errors associated with the
Hessenberg—Schur algorithm. This amounts to applying some standard
results from Wilkinson [12]. His inverse error analysis pertaining to
orthogonal matrices can be applied to the computations H=UTAU,
S=VTBTY, F=UTCV, and X = UYV T while his well-known analysis of
Gaussian elimination and back-substitution can used in connection with
the determination of Y. (Y is essentially obtained by using Gaussian
elimination and back substitution to solve the system [([, @ H)+(S®
I)vec(Y)=vec(F).) Denoting computed quantities with the “hat™ nota-
tion, we can account for the rounding errors in the Hessenberg-Schur
algorithm in the following way:

U=U,+E, ' UIU,=I |E,|r<e (5.1)
V=V, +E, VIV,=I, ||E|r<e (5.2)
H=UT(A+E)U;,  |E|<elAlf (53)
S=VI(B+E)V, |Elr<elBl, (5.4)
F=UJ(C+E)V, IEsll F<ellCllr (5.5
(T+E)5=f  ||Ed;<elTl; (5.6)
X=U(Y+E)VT  |Esllr<el¥lls (57
where
T=(I,@H)+(S®]I,) (5.8)
¥ =vec(T) (5.9)
f=vec(F) (5.10)

and € is a small multiple of the machine precision u. (We have used the
2-norm for convenience. A straightforward error analysis shows that if

llo ™ lle@+ )l Al +11Bl2] < 1/2, (.11)
then
x-X
: ||X||FHF < Oe+2e) o [l 4]l + 1Bl £]- (5.12)

Inequality (5.12) indicates that errors no worse in magnitude than
0(||¢ ~'||¢) will contaminate the computed X. Since e is a small multiple
of the machine precision u, we see that (5.12) is essentially the same
result as (4.8) which was established under the *ideal” assumptions
(4.3)-(4.6). Likewise, assumption (5.11) corresponds to assumption (4.7).
Conclusion: the roundoff properties of the Hessenberg—Schur algorithm
are as good as can be expected from any algorithm designed to solve
AX+XB=C,

We finish this section with two remarks. First, the entire analysis is
applicable to the Bartels—Stewart algorithm. We simply replace (5.3)
with

R=UJ(A+E)U,

1Bl <ell 4l £ (5.3)

where R is now quasi-triangular instead of Hessenberg.
. Our second remark concerns another standard by which the quality of
X can be judged. In some applications, one may be more interested in
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the norm of the residual j|A)E+)EB— C||r than the relative error. An
analysis similar to that above reveals that if (5.1)—(5.11) hold, then

IAX + XB—C|[ < (10e+3)([ Al s + | B DI X || - (5.13)

Notice that the bound does not involve ||¢ ~!||.

VI. THe FORTRAN CODES AND THEIR PERFORMANCE

A collection of Fortran subroutines have been written which imple-
ment the Hessenberg—Schur algorithm. Here is a summary of what the
chief routines in the package do.

AXXBC—This is the main calling subroutine and the only one which
the user “sees.” It assumes m >n.

ORTHES—This subroutine reduces a matrix to upper Hessenberg
form using Householder matrices. All the information pertaining to the
reduction is stored below the main diagonal of the reduced matrix.

ORTRAN—This subroutine is used to explicitly form the orthogonal
matrix obtained by ORTHES.

HQR2—This subroutine reduces an upper Hessenberg matrix to up-
per quasi-triangular form using the QR algorithm. (It is an adaptation of
the EISPACK routine having the same name [11].)

TRANSF—This subroutine computes products of the form UTCV
and UYVT where U and V are orthogonal.

NSOLVE, HESOLV, BACKSB—These routines combine to solve
upper Hessenberg systems using Gaussian elimination with partial pivot-
ing.

N2SOLV, H2SOLV, BACKSB—These routines combine to solve the
2m-by-2m block Hessenberg systems encountered whenever S has a
2-by-2 bump.

The above codes are designed to handle double precision 4, B, and C
and require about 23 000 bytes of storage. This amount of memory is put
into perspective with the remark that when a 2525 problem is solved,
the program itself accounts for one-half of the total storage.

To assess the effectiveness of our subroutines we ran two sets of tests,
In the first set we compared the execution times for our method and the
Bartels—Stewart algorithm. For a given value of n/m, approximately 20
randomly generated examples were run ranging in dimension from 10 to
50. The timing ratios were then averaged. Table I summarizes what we
found. Although the predicted savings (second column) are a little
greater than those actually obtained (third column), the results certainly
confirm the superior efficiency of the Hessenberg-Schur algorithm.

‘We also compared the accuracy of the two methods on the same class
of examples and found them indistinguishable. This is to be expected
because the favorable error analysis in the previous section applies to
both algorithms.

The second class of test problems was designed to examine the
behavior of the algorithm on ill-conditioned 4X + XB= C examples.
This was accomplished by letting 4 and B have the form

A=diag(1,2,3,---,m)+ N,
B=2"',—diag(n,n—1,---, 1)+ N[

where
0
1o O
Ne= 1 kX k.
| PN 1 0

Notice that there is a coalescence among the eigenvalues of 4 and — B
as ¢ gets large. This enables us to control the sensitivity of the transfor-
mation ¢(X)=AX+ XB. (In particular, it is easy to show that [l¢ ~!|| >
2'.) To facilitate the checking of errors, C is chosen so that the solution X
is the matrix whose entries are each one. Using the same computer and
compiler as above (u=16"'%), we obtained the results for an m=10,
n=4 problem, as shown in Table II.
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TABLE I
TiIMINGS
Wyg (M, n) HS Execution Time
n/m D — (Average)
Yoo (m,n) BS Execution Time
1.00 .76 .84
.75 .63 .70
.50 .46 .54
.25 .30 .35

All computations were performed using long arithmetic on the IBM 370/ 168 with the
Fortran H compiler, OPT =2.

TABLE 11
ERROR AND RESIDUALS
: el % - Rl l| A% + &8 - c ||,
hx i, X UG Ul A I 115 1]
1 2.3 % 160 | 2.1 x 10714 8.2 x 10746
10 8.3 x 10° | s.0 x 10712 6.7 x 10718
15 2.7 x 10° | 1.4 x 10710 8.5 x 10716
20 8.3 x 107 | 9.3 x 1079 9.3 x 10716
25 2.8 x 10% | 1.6 x 1077 6.1 x 107 %6
30 9.0 x 107 | 8.6 x 1076 8.1 x 10746

The quantity ||¢ ~'|| is the reciprocal of the smallest singular value of
the matrix P=(/,®@A)+ (BT ®1I,,) and for this modestly sized problem
was found using the subroutine SVD in EISPACK [11].

The results of Table II affirm the key results (5.12) and (5.13). In
particular, we see that small residuals are obtained regardless of the
norm of ¢~'. In contrast, the accuracy of X deteriorates as [¢ ||
becomes large.

We conclude this section with the remark that the Hessenberg—Schur
algorithm offers no advantage over the Bartels—Stewart method for the
important case when B=AT, ie., the Lyapunov problem. This is be-
cause the latter algorithm requires only one Schur decomposition to
solve AX+XAT=C.

VII. Extensions To OTHER MATRIX EQUATION PROBLEMS

In this final section we indicate how the Hessenberg—Schur “idea” can
be applied to two other matrix equation problems. Consider first the
problem

AXM+X=C (1.1)
where AER™™ ™, M eR™™ ", CER™ ", and X e R™™". If
UTAU=H U'U=1I,  H upper Hessenberg
and
VIMTV=S VTV=1I S quasi-upper triangular
and F= UTCV, then (7.1) transforms to
HYST+Y=F (7.2)

where Y= UTXV. As in the Hessenberg—Schur algorithm, once
Yk+1" " Y, are known, y; can be found by solving a Hessenberg system.
(Recall y; is the kth column of Y.) To see how, assume s; , ;=0 and
equate kth columns in (7.2):

H ( _Ek -‘kj)ﬂr) + = fi-
=
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Hence, y, can be found by solving

{-’uH"'I)J’k‘—'[fx_H >

J=k+1

The presence of 22 bumps on the diagonal of T can be handled in a
fashion similar to what is done in the Hessenberg-Schur method.

This algorithm which we have sketched should be 30-70 percent faster
than the Bartels-Stewart type technique in which both 4 and M are
reduced to triangular form via the QR algorithm. (See [5].)

The second matrix equation problem we wish to consider involves
finding X € R™*" such that

AXM+ LXB=C (73)

where A,LER™™™ M ,BER" " and C € R™*". For a discussion of
these and more general problems, see [7] and [13]. If M and L are
nonsingular, then (7.3) can be put into “standard” AX + XB=C form,

(L7'A)X+X(BM ~Y)=L"'CM ™",

If M and/or L is poorly conditioned, it may make more numerical sense
to apply the QZ algorithm of Moler and Stewart [8] to effect a stable
transformation of (7.3). In particular, their techniques allow us to com-
pute orthogonal U, ¥, @, and Z such that

QTAU=P  (quasi-upper triangular)

QTLU=R  (upper triangular)
Z™BTV=S  (quasi-upper triangular)
ZT™™TV=T  (upper triangular).

If Y=UTXV and F=Q7CZ, then (7.3) transforms to

PYTT+ RYST=F.

Comparing kth columns and assuming s; , =T} ,_, =0 we find

n n
P2 L+ R 2 s =Jx
i=k J=k

and so
n n
P+ suR=fi—P 2 ty,—R 2 sy (7.4)
J=k+1 J=k+1

This quasi-triangular system can then be solved for y, once the right-
hand side is known and under the assumption that the matrix (f, P+
s R) is nonsingular. (Note that 7, P, S, and R can all be singular
without #, P+ 5., R being singular.)

Now, as in the Hessenberg—Schur algorithm, significant economies
can be made if A4 is only reduced to Hessenberg form. This is easily
accomplished for when applied to the matrix pair (4, L), the QZ algo-
rithm first computes orthogonal Q and U such that Q7AU= H is upper
Hessenberg and Q TLU = R is upper triangular. The systems in (7.4) are
now Hessenberg form and can consequently be solved very quickly.
Again, we leave it to the reader to verify that the presence of 22 bumps
on the diagonal of § pose no serious difficulties.

VIII. CoNCLUSIONS

We have presented a new algorithm for solving the matrix equation
AX + XB= C. The technique relies upon orthogonal matrix transforma-
tions and is not only extremely stable, but considerably faster than its
nearest competitor, the Bartels—Stewart algorithm. We have included
perturbation and roundoff analyses for the purpose of justifying the
favorable performance of our method. Although these analyses are quite
tedious, they are critical to the development of reliable software for this
important computational problem.
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