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One way of computing the weighting
matrices in the optimal regulator problem
is to exponentiate a cerfain block upper
triangular matrix. A complete-analysis of
this technique was given in an earlier
paper by the author when diagonal Padé
approximants - are used to estimate the
necessary matrix exponential. A new meth-
od for evaluating matrix polynomials sug-
gests that Taylor approximation may be
preferable for reasons of time and stor-
age,

In {3] we gave a new algorithm for
computing the integrals
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where A , B , and Q. have dimension nxn,
nxp , and nxn respectively and, in
addition, Q.is symmetric positive semi- -
definite. The technigue is based on the
fact that if )
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If t=104/27 (53 0) , then the integrals
H(4), Q(A), M(4) , and W(A) can be ob-
tained through repeated application of the
doubling formulae
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. To formulate an algorithm based upon
these relationships, it is necessary to

estimate e°°t . For this purpose, it is

well known [2] that Padé approximation
works well provided ||Ct ||is small enough.
Here, as elsewhere in this article, we use
the Frobenius norm:
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By "small enough" we mean that 3j » 0 is
chosen such that

leell = ey ayz23 ¢ 1,2

Denoting the (p,q) Padé approximant to e”
by qu(z) where
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we obtain the following

Algorithm 1

1) Let j be the smallest non-negative in-
teger for which

lclla/2 ¢ 12

and set tO =5/ 23 .

2) Choose p and q (see below) and compute
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and for k=0,1,...,j~1 compute
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are then the respective approx-

imations to eAA » H(A) , Q(a) , M(a)

and W(Aa)

The truncation errors associated
with these approximations were bounded in
[3] for the case p=q ; i.e. diagonal Padé
approximation. The key to the analysis
was the following result from [2]:
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under the assumption that || Y | ¢ 1/2 .
This "inverse error analysis™ can be used
in an identical fashion to establish the
following inqualities for tne case when

general Padé approximants are used in the
above algorithm:
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Methods for estimating the factor 8(a) are
given in [3] and the net result is that
the parameters p and q <can be chosen
such that the above error bounds are less
than some prescribed tolerance.

The reason that we only considered
diagonal Padé appraximants in (3] is be-
cause for a fixed amount of work, they
give greater accuracy than the off-diagon-
al approximants. (For the precise meaning
of this statement, see [2].) However, a
new method for evaluating macrix polynom-
ials has led us to conclude that Taylor
dpproximation (i.e, g = 0) is preferable
for the problem at hand.

The matrix polynomial algorithm towhich
we are referring is discussed in detail in
[4] and amounts to a generalization of
Horner's rule. To illustrate the key idea

in a concrete setting, suppose we want to
compute

pf(z) = 7 ¢ z

where 2 is an nxn matrix. This can be

accomplished in 15n° operations and 2n2

storage using Horner's rule;
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Therefore, once g + 27, and 2 are

are known, p(Z) can be computed as fol-
lows:
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Overall, we see that 6n3 operations are 3
required in contrast to the count of 15n
associated with Horner's rule.

In it's general form, this approach
to matrix polynomial evaluation leads to

an algorithm requiring o( Y4 n3

] oper-
ations where d

is the degree of the
pelynomial and n is the dimension of the
matrix. (See [4] for precise workcounts. ]
Obviously, the bigger d 1is, the greater
the improvement over the traditional Horn-
€r approach which requires (d-1)n3 oper-
ations. However, in its raw form, the
generalized Horner scheme requires a lot
of storage. For instance, in the 4 = le
example above,arrays are reguired for

S, A, a2 . A3 , and A{ . In general far
matrix polyromials of degree d , O{fg n<]
Storage is needed - a serious drawback.

Fortunately, there is a way to ar-
range the computation so that this storage
Tequirement is greatly reduced. The idea
is to compute P(2Z) "column-at-a-time"
and once again we resort to the d = 1lg
case for purposes of illustration. Letting
ej denote the j-th column of the identity,

we have
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p(z) = z c, 27 = {fl[le....|fn]

A careful (multiplicative)
reveals that p(Z) reguires

operation count
7n3 operations.

(Products like Zej and Yej are "free".)

only three
for 2, 29 ,

Moreover,
ed

nxn arrays are need-
and p(2)

Now these may seem like small in-
consequential savings. However, in our
problem, 2 = C , a (3n+p)x(3n+p) matrix.
and so reductions in work and storage pre-
dicted by these little shortcuts has a mag-
nified effect. In the remainder of this
paper, we shall discuss the specialization
of Algorithm 2 to the problem of evaluat-
ing qu(CtO) as required in step 2 of Al-

gorithm 1. The specialization exploits the
block structure of € and the fact that

only certain submatrices of qu(CtO) are
needed to compute the integrals we're af-

ter. Moreover, we shall restrict ourselves
to the case p=l6 , g=0, i.e., Taylor ap-
proximation of degree 16. We do this be-
cause (a) the _value of & above is then -
about 10718 ycll which is adeguate for
most purposes and (b) more economies can be
squeezed from Algorithm 2 if we apply it to
Rlsﬁ{CtU)rather than the numerator and de-

nominator matrices of the roughly equival-
ent approximants Rp 16_p{CtO) (lgpgls).

To this end we first realize that for
k
k21 , the matrix {Ct0)2 has the form:
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Since we are

interested in the application
of Algorithm

2 to the matrix golynomial
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Now we continue in Algorithm 2 for the
purpose of computing selected portions

of R16 0{Cto). For example, the last p
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columns of this matrix are given by
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Note that the subvector s is always a
multiple of some column of the pxp ident-
ity. (We mention these things simply to
alert the reader to the kinds of economies
possible in computations,)

Our final task is to compute a sel-
ected portion of columns 2n+l to 3n of the
matrix R )
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In particular, we see that both
Gz(toi
of the integrals JHEG), Qlty) . M(to), *nd

W(to}. Denoting C by
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are required for the compu%atlon
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we see that Algorithm 2 can be put to the

task of computing E3tt0} and Gz(to)‘as
follows
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We call attention to the fact that the

products [6415 have the form
T
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With these computations we have
completed our calculations of the relevant

portions of the matrix R16 O(Cto}

r
Now in many applications, only a subset of
the integrals H(2), Q(2),M(.), and W(2)

are required. When this is the case, the

above algorithm can
For example, if all
is desired, then we
& 7 C o matrix of ‘the
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be further streamlined.
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axample, we would not bother to com- We see from the Table that the new ap-
pute 02 P Ly and Y2 . Similarly, if proach requires less storage and general-

) ; 1y less work. Because Taylor approxima-
only H(A) is wanted we work with tion is easier to program and leads to

_ _ shorter codes, we argue that this new

A B approach is marginally better.
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The figures associated with the "old"
algorithm ,i.e. Algorithm 1 with (p,q) =
(7,7) . were derived by substituting g=7
into Table I in [3]. The work and storage
assessments associated with the "new"
algorithm, i.e. Algorithm 1l with (p,q)=
(16,0) and use of Algorithm 2 in the
evaluation of (Ctol , can be de-

duced by carefui?? going over the above
calculations.



