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ABSTRACT

A method is developed for estimating the accuracy of computed eigenvalues and
eigenvectors that are obtained via certain Erspack subroutines. It does this at a cost of
O(n?) flops per eigenpair, assuming that the eigenpair is known and assuming that
the original matrix has been reduced to Hessenberg form. The heart of the technique
involves estimating the smallest singular value of a certain nearly triangular submatrix.
This is accomplished by some standard “zero chasing” with Givens transformations
and with a 2-norm version of the LiNPACK condition estimator. An E1spack-compatible
code has been developed, and its performance is discussed.

1. INTRODUCTION

Condition numbers play a valuable role in matrix computations insofar as
they enable us to estimate the accuracy of computed results. For example,
suppose that the linear system Ax = b is solved via Gaussian elimination with
partial pivoting. If x is the computed result, then in general we have

lx — =i,

=~ macheps-«k_( A),
ll=ll, ?

where macheps is the machine precision and «,(A)=||A|l,[[A7"]|, is the
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p-norm condition of A with respect to inversion. An efficient O(n®) method
for estimating k,(A) is included in Linpack. The method assumes that the
matrix A has already been factored [7].

In this paper we propose an eigenvalue-eigenvector condition estimator
that can be used in conjunction with the package Eispack. We first review
the necessary mathematics. Suppose A is a distinct eigenvalue of A € C"*"
and that

Ax=Ax, x€C", [xlly=1 (1.1)

If Q=[x,Q,]is unitary, Q, € C"*"~ Y, then it can be shown that

H
"o :[)\ w } 1.2)
Q7AQ 0 B (1.2)
where w € C" ! and Be C~DX0n=D 1t follows that if z € C" ! satisfies

(B=AI)"z2= - w,

and

1 0 1
S
Vit 2z L2
then
y"A=Ny",  yeC", |ylo=1. (1.3)

It turns out that the sensitivity of the eigenvalue A depends upon the angle
between the left eigenvector y and the right eigenvector x. In the worst case
if E=eyx" and & is “small enough,” then A will be perturbed to an
eigenvalue A of A + E that satisfies

1A_;\l= S(—A)‘i‘()(ﬁz), (14)

where

ly"x| 1
lyllallxlls V14 28z

s(A)
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Clearly, the reciprocal of s(A) can be regarded as the condition of the
eigenvalue A; it measures the sensitivity of A to perturbation. See [36] or [15]
for more details. It should be stressed that not all O(e) perturbations of A
induce O(e/s(A)) changes in A. However, “random” perturbations of A due
to roundoff almost always induce the worst case change.

If A is a multiple eigenvalue, then its sensitivity properties are more
complicated. To begin with, if A is normal (A”A = AA"), then X is perfectly
conditioned in that (1.4) holds with s(A) =1 regardless of multiplicity. For
this reason, there is no need for us to consider further eigenvalue sensitivity
questions pertaining to normal matrices.

In the nonnormal case, it is possible for O(e) perturbations in A to induce
O(¢'/7) changes in an eigenvalue associated with a p-dimensional Jordan
block. Unfortunately, deducing Jordan block structure is difficult in practice
[19]. However, in principle the s(A\) can be used to shed light on A’s
nearness to a matrix with multiple eigenvalues. For example, Wilkinson [37)
shows that if s(A) <1, then there exists a matrix E satisfying

I1E1l s(A)
{:
1Al 11-s(A)?

for which A + E has a multiple eigenvalue. Additional results of this flavor
may be found in [38], the definitive work on eigenvalue sensitivity.

Another way to quantify the isolation of the eigenvalue A involves the
matrix B in (1.2). We define the separation of the eigenvalue A by

sep(N) =0, (B—A\I), (1.6)

where o, () denotes the minimum singular value. Although the unitary
matrix Q in (1.2) is not unique, it is easy to show using orthogonality that
sep(A) is well defined. Using widely known properties of singular values (see
[15] for example), it follows that there is a matrix F such that ||F||, = sep(\)
and B — AT+ F is singular. Thus,

0 0 H_ A w'! H
‘HQ[O F]O Q{o B+F}O

has A as a repeated eigenvalue. The function sep and its properties are
surveyed in [34].

To assess the sensitivity of the eigenvector x, or more correctly, the
sensitivity of the invariant subspace span{x}, we need the concept of
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distance between subspaces. If S; and S, are two subspaces in C" of equal
dimension, then

diSt(Sl’ Sz) = 1Py — Pyll2,

where P, is the orthogonal projection onto S;. Using this measure of distance,
it can be shown that in the “worst case” there exists an E € C"*" that
satisfies ||E||, = & so that A’s eigenspace span{x} is perturbed by an amount
O(e/sep(A)). In other words, the eigenpair {x,A} is perturbed to {#, )\}

with

dist(span{x}, span{£}) = (1.7)

e
sep(N)
Perturbation results of this flavor are detailed in [26, 27].

Equations (1.4) and (1.7) suggest that to estimate the sensitivity of an
eigenpair (A, x) we need to estimate both s(A) and sep(A). The thrust of this
paper is to show how this can be accomplished in O(n?) flops for each
eigenpair of interest, assuming that A is in Hessenberg form, ie., a,;=0

whenever i> j+1. Our approach begins by determmmg a Householder
matrix Q such that

o-[y )

The QR factonzatlon Q\R, = B~ Al is then computed and sep(A) =
~AI)=o0,,(R,) is estimated using a 2-norm condition estimator.

The paper is organized as follows. In Section 2 we show how the QR
decomposition of B—AI can be computed in O(n?) flops. The key is to
recognize that B is a rank two correction of an upper Hessenberg matrix.
The smallest singular value of the resulting triangular form R, is then
estimated in O(n?) flops using a 2norm generalization of the LiNPACK
condition estimator. This procedure is outlined in Section 3. The implementa-
tion of our method is then discussed in Section 4 along with numerical test
results.

We conclude the introduction by mentioning related work. Several authors
have worked on eigenproblem sensitivity estimation. Symm and Wilkinson
[31] and Dongarra, Moler, and Wilkinson [10] have formulated and analyzed
an iterative improvement scheme for an approximate eigenpair (A, £) when A
corresponds to a distinct eigenvalue A. Their technique improves the accu-

B

mm(



CONDITION OF EIGENVALUES AND EIGENVECTORS 719

racy of the computed eigenpair and also returns error estimates. It works by
iterating with a matrix that is obtained by replacing one of A’s columns with
the current approximate eigenvector £. Unfortunately, if this matrix is ill
conditioned, then the convergence is impeded, and this can happen even if A
is well conditioned. A more serious drawback is that the double precision
computation of residuals A% — A% is required, something that complicates the
portability of software.

A perspective on this last statement can be obtained by considering the
corresponding situation in the linear equation problem Ax = b. Tterative
improvement in this context also means the double precision computation of
residuals. As Forsythe and Moler [12] show, it is possible to get a heuristic
estimate of A’s condition number by performing a single step of iterative
improvement. However, because multiple precision arithmetic complicates
the portability of a program, the designers of LiNpack opted for a method of
condition estimation that is reasonably machine-independent. We argue that
a similar philosophy should apply to an “Eispack condition estimator.”

A step in this direction is the eigenvalue condition estimator of Chan,
Feldman, and Parlett [5]. They propose to compute s()) from its definition
(1.5). The required right and left eigenvectors are found by back substitution
after the eigenvalues are computed via orraEs and HOR. Their method is
attractive because no additional storage is required. However, it does not
provide any information about sep.

Ruhe [22] suggests using the Golub-Reinsch SVD algorithm [16] to
calculate separations, but this requires O(n®) flops per eigenpair. Thus, if
condition estimates of all eigenpairs are desired, then O( n*) flops may be
required.

Early work by Varah [32, 33] is concerned with the rigorous bounding of
errors in a computed eigensystem. Although the bounds are rigorous and
computable, they are somewhat complicated, require some mixed precision
computation, and do not directly supply information about the separations.

Another approach to estimating errors in eigenvalues is taken by Yakamoto
[39] and is based on some well-known theorems about nonlinear equations,
Results based on the condition of the eigenvector matrix are discussed in [24].
Golub and Wilkinson [17] and Bavely and Stewart [2] offer comments that
pertain to the condition of higher dimensional invariant subspaces.

2. THE OVERALL ALGORITHM

With appropriate references to Eispack, here is our technique for estimat -
ing s(A) and sep(A).
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AvrcoriTaMm 2.1.

Step 1. Overwrite A with its Hessenberg form H = UYAU, where U is
unitary. If A is real, then the Eispack routine orTHEs could be used. It is easy
to show that both s(\) and sep()) are preserved with this unitary transfor-
mation. Note: Hereafter in the algorithm we assume that A is in Hessenberg
form.

Step 2. Compute the eigenpairs (A;, x;) of interest, where Ax,= A x
i=1,..., p. This can be done using E1sPACK routines. For example, in the real
case, HQR can be used to get the eigenvalues and inviT the desired eigenvec-
tors.

Step 3. For each eigenpair (A, x) whose condition is desired:
(a) Compute a Householder matrix Q = I — 2uu/uu such that

ouo-[} 4]

(b) Compute the decomposition B— AI,_; = Q,R, where Q, is unitary and
R, is upper triangular.

(c) Estimate sep(A)=o0,, (B~ }\In_l)= 0,,i(R,) using the 2-norm condi-
* tion estimator in [6].

(d) Solve

Rfp= — 0!

for v, and compute

s(A) = m

This expression for s(A) follows from the fact that if z =Q,v then y=
(1, z7)QH is a left eigenvector. Since x = Qe, is a right eigenvector, we have

Hy 1 1
s(A) = ly"sl

lxllllwlle Vi+ziz Vit ofo

Note that the if sep(\) = machep]||A||, then A can be regarded as a multiple
eigenvalue and care must be exercised when solving the ill-conditioned
system Rifp = — wf.
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We first turn our attention to the practical computation of the decomposi-
tion (1.2) and to the estimation of 6,,,(B — AI). Assume that A € C"*" is in
Hessenberg form and that we have Ax = Ax with x € C" nonzero. Our plan
is to find a unitary Q such that

ono-[5 4] e

can be formed in O(n?) flops with the added proviso that only O(n?) flops
are required to compute the QR factorization of B — Al

The desire for O(n?) speed rules out some obvious choices for Q. For
example, Businger [3] shows how Q could be determined such that B is
Hessenberg using O(n?) Givens rotations. Thus, the QR factorization of
B — AI could be found in O(n?) flops, but B itself would require O(n?) flops.

A Hessenberg B could in principle be achieved in O(n?) flops by
performing a shifted QL step on A if we assume A has a nonzero subdiago-
nal. To be specific, suppose Givens rotations J,_,..., J; are determined such
that '

(A=N)J,_y--- =R

is upper triangular. Here, each J, has the form

1 ... 0 0 --- 0]
h=I(ke,s)=|0 o C 8 DLk ceR, seC.
o .- 0 () cee 1]
k k+1

where ¢ and s satisfy ¢2+s|2=1.If Q=1J,_, -], then in exact arith-
metic it can be shown that the decomposition (3.1) holds. Unfortunately, the
computed (2,1) element of Q”AQ may not be negligible relative to macheps.

Our approach is to:compute Q as a Householder matrix. If x€C" is
nonzero and

; 2uu
0= uby’
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where u = x +exp[arg(x,)]||x||;¢, and e, is the first column of I, then
QO = — exparg(x,)] |2 5e,.
Since-Q = Q™' = Q¥, it follows from the equation Ax = Ax that
(QHAQ)el =Xe,.

Thus, Ae, is the first column of QHAQ, and so we have (2.1). (Numerically,
this is legitimate to assume so long as || Ax — Ax]|, = macheps-||A||o]|x]]5.)

Note that B will be a full matrix. This appears to be counterproductive,

since our overall plan is to compute the QR factorization of B — AI in O(n?)
flops. However, B is a rank-two departure from Hessenberg form because

uuf\ 7 uu”
QHAQ = I-2—F—| AlI-2-——|=A+qyry + 10,
u'y u'u

where
9=y~ B(u"y)u, (2.2)
fh=1u, ‘ ‘ (2.3)
ty=u, (2.4)
vy =2 — B(uz)u, (2.5)

with

,3=—,1;—, y=—2BAu, and z= —2BAHu.
utly

Thus, B=G + qr¥ + tv¥, where G is the trailing (n — 1)st order principal
submatrix of A and ¢, r, t, and v are composed of the bottom n—1
components of .qy, 7, %y, and v, respectively. By exploiting this fact is it
possible to compute the QR decomposition of B— AI in O(n?) flops. We'll
need the following two algorithms.

t

Arcoritem 2.2. Given an upper Hessenberg matrix G € C™*™, the
following algorithm overwrites G with R=],_,... ;G where R is upper
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triangular and J, = J(k, ¢, s3) for k=1,2;. -1

For k=1,....m—1
Determine c¢; and s; (¢ + |s;|?>=1) such that

[ allefe =15
Sk Ck||8k+1,k 0

G:= J(k, ¢, $)G
end k

ArcoriteM 2.3. Given d € C™, the following algorithm computes J, =
Ik, cp, 8) for k=m—1,...,1 such that J,...J,_,d is a multiple of e, =
(1,0,...,0%:

Fork=m-1,...,1
Determine ¢, and s; (¢ +|s;/*=1) such that

B el

With these two standard Givens routines at our digposal we can specify
our method for computing the QR factorization of B — AL

d = ](ka Cp» sk)d
end k

Arcoritam 2.4. Let G to be the trailing (n—1)st order principal
submatrix of the upper Hessenberg matrix A, and let A be a scalar. Let g, 7,
t, and v be composed of the bottom n — 1 components of the vectors g, 7,
t, and v, that are defined in (2.2)—(2.5). This algorithm overwrites G with
the upper triangular matrix R,, where Q,R, =G — Al + gr® + w! is the
OR factorization:

Step 1. G =G — Al (an upper Hessenberg matrix).
Step 2. Apply Algorithm 2.2 to G, and apply the Givens rotations to
both g and #:

q =Jn—2”']1q! L= ]n—2'“]1t‘

Step 3. Apply Algonthm 2.3 to g, and apply the Givens rotations to
both G and i:

G:=Jl"']n—2c’ t:=]1'°']n—2t'
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Step 4. G :=G + gr! (an upper Hessenberg matrix).
Step 5. Apply Algorithm 2.2 to G, and apply the Givens rotations to t:

t=J,_o - Jit.
Step 6. Apply Algorithm 2.3 to ¢, and apply the Givens rotations to G:
G = ]1 . ]n—’2G'

Step 7. G :=G + to” (an upper Hessenberg matrix).
Step 8. Apply Algorithm 2.2 to G. (At this stage G is upper triangular.)

3. ESTIMATING THE MINIMUM SINGULAR VALUE

The smallest singular value of an upper triangular matrix R € C™*™ can
be estimated by. using a technique described in [6]. A simpler derivation of
that method has since been given and is presented in this section.

Suppose R € C™*™ is a nonsingular upper triangular matrix and that we
have chosen a unit vector d € C™ such that the solution to Ry = d is large in
norm. It follows that

A

1 1
O in = P — = Onin>
gl T RGN,

where o, is the smallest singular value of R. Clearly, the larger the value of
llylls, the better 6, approximates o,,,. Note that if u_, and v, are left
and right singular vectors associated with o,,,, and if d=u,,, then y=
Omin/ Omin a0d 6., = 0,... The idea behind our “o,,, estimator” is to make d
look like u_, by exploiting the back-substitution process that relates the
solution y = R~'d to the right hand side d: ‘

p,=0(i=1,...,m)
For k=m,...,1
dk"pk
Tk
pi=pit g (i=1..,k-1)

Y=

end k

Usually, d is known in advance when back-substitution is applied. In our
setting, however, we determine d,,,...,d, dynamically and in such a way
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that the y, tend to be large. This is the approach of the Linpack condition
estimator, and we refer the reader to [7] for details. See also [8] and [21].

The dynamic determination of the d; proceeds as follows. Assume scalars
diipseeerd,, and yp ..., y,, are known such that

Tev k41 Thvik+2 °°° Tesim || Yr+1 dysq
0 Tkr2,k+2 """ Tkiom [{ Yk+e dy.o
0 0 < Tonm Y d,,

and
dol®+ - +ldyy )2 =1,
Assume also that the running sums
m
pi= X ny;  i=l.k '

j=k+1

are known. We proceed to the next step by considering the expanded system

) + +
Tek  Th,k+1 T Te,m Yk di ¢
+ + : .
U T . e | B 7R dis1 _ sdyy
. . . . - . = . Py
+ +
0 0 Tonm Yo d; sd,,

where ¢ and s satisfy |c|? + |s|2=1 and are to be determined. Note that
ldol?+ - +1diP=1,
y =sy, (i=k+1,...,m),

R
Y = H
Tk

and that once we settle on ¢ and s, the running sums p,,..., p;_, become

+

p =spi+ryy (i=1,...,k—1).
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Summarizing all this, we obtain

p=0(i=1,..,m)

For k=m,...,1
Determine ¢ and s such that |c|? + |s|?=1.
dk =c

d;=sd; (i=k+1,...,m)
y=sy, (i=k+1,....,m)
Yy = (C = spg)/Tix
P = 5‘p;+1}kyk (1::1’"'9;{ - ]-)
end k

There are three factors to keep in mind when choosing ¢ and s:

(1) We'd like y,” = (¢ — spy) /7y to be large.

(2) Since y," = sy, (i=k+1,...,m), ¢ should not be too large.

(3) Growth should be encouraged in p;" = sp; + r,,yf (i=1,...,k—1),
since the size of subsequent y; will depend on these running sums.

This suggests that ¢ and s be chosen to maximize

m

k—1
fle.s)= X lspi+rays P+ 1lyd P+ X syl
i=1 P=kt1

This functional, which depends on k, can be simplified by defining the
vectors

Tk P Y
r= o p=| | y=1| - (3.1)

Teo1k Pr—1 Yo

and using the definition y, = (¢ — sp;) /75, Indeed, it can be shown that

2
0 Ty
c
fless) = —pe|l5]
Rk LYY 2 B

Thus, the maximizing ¢ and s that we are trying to compute define the right
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singular vector associated with the largest singular value of the m-by-2 matrix

0 Tl '
T TP — Pi?

This results in the following alg'orithn’l.‘

ArLGoriTHM 3.1. Given a nonsingular upper triangular R € C™*™, this
algorithm computes 6, an approximation to the smallest singular value
of R:

p,=0(i=1,...,m)
For k=m,...,1
Ifk=m
then
ci=1; §:=0
else ’
‘Compute the SVD of the matrix W, defined by (3 1)—(3.2) and let
‘[, 51" be the right singular vector associated with 1ts largest
singular value. - :
endif
di=c .
Y =(c—spp)/Tx ,
di=sd, (i=k+1,...,m)
y=sy, (i=k+1...,m)
P; = Sp; + Yx (i =1,..., k- 1)
end k
Gin=1/11yll2

The implementation of this procedure and its behavior in practice are
described in the next section. Note that it involves O(n?) flops.

4. IMPLEMENTATION DETAILS AND EXAMPLES

Real versions of Algorithms 2.4 and 3.1 have been implemented in
FORTRAN. Let R be an upper triangular matrix stored in an array having row
dimension rdim. The subroutine

sieMaN( R, rdim, istart, istop, sigma, u, v)
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computes the triple (0., U, Unin) associated with the submatrix
R(istart:istop, istart:istop). The numerical properties of this routine are docu-
mented in [6]. Of interest to us in the current application is the fact that
sIGMAN always returns an estimate of o, that is correct to within an order of
magnitude. Indeed, on all but extremely well-conditioned examples the
computed g, ;, is usually correct to several significant digits. One should bear
in mind that a condition estimator such as sieman is really just an algorithm
for obtaining a good starting vector for inverse iteration as applied to A’A.
Depending upon how crucial it is to get an accurate o, , one can always
follow sicman with a few inverse iteration steps.
The subroutine

connev(H, hdim, n, lambda, x, s, sep, A, adim , work )

computes s(A) and sep(\), where H is a real upper Hessenberg matrix and
(A, x) is a real eigenpair. Two workspaces are involved. The array A is
two-dimensional and must be large enough to store an n-by-n matrix, while
work is a linear array having dimension at least 4n. If one does not care
about destroying H, then A may be set to H in the calling sequence.

We tested conpev (which calls sicmMan) on numerous eigenpairs obtained
via the Eispack path oRTHEs-HQR-INVIT. For example, we computed s(A;)
and sep(A;) for all the eigenvalues of the 12-by-12 Frank matrix F,,. (F, is
an upper Hessenberg matrix whose upper triangular entries are given by
fij= 13 — j and whose subdiagonal entries are given by f;,, ;=12 — j.) The
results are given in Table 1. The computed s(A;) agree with those reported
in [18, p. 94]. The calculations were done on a VAX 780 with macheps =
10717, Consider A,,. The true value as reported in [35, p. 152] is given by

A5 = 0.031028060644010.

If we apply (1.4) with &= macheps-||F,,|, we find

~ &
A=A =10 0= ,
| 12 ]2| S(Am)

as expected.
Concerning the computed eigenvector £, we find that it agrees with the
exact x,, to the extent predicted by (1.8): see Table 2. In particular,

E
dist(span{£,), span{x;,)) =10 0= ———
( < lZ) < 1>) Sep(h.m)



-812276585015030E — 01
.495074302114390E — 01
-310280601739661& — 01

375295290160827e — 07
-257906338088545 — 07
.54694249662337 1 — 07

CONDITION OF EIGENVALUES AND EIGENVECTORS
TABLE 1
A s( A ) sep( A )
-322288915015722e+02  .304240831905392E 4+ 00  .94956846595721 7 - 01
-201989886458771E+02 .200790337133467Te+00 .3742557934806508 + 01
-123110774008685E+02  .318225993866148E+00 .286518367995158E + 01
696153308556712e+01  .584473553642124k + 00 .348436016372236E + 01
.351185594858076E+ 01  .144467040367517x + 00 .226586002038572E + 00
.155398870913211e +01  .462655936357393E — 02 .515747433899713€ — 02
.643505319005355 + 00 .691238637430018E — 04 .568776334060446E — 04
-284749720539282e + 00 .178472584657993k — 05 147158317974797e — 05
-143646519970700e + 00 .149222013377351e — 06 .127653526 144051 — 06

.328077935376545 — 07
-228193201193118€ — 07
487484292832814k — 07

729

TABLE 2
i Tz
— 0.00000000059765 — 0.00000000059765
0.00000001866394 0.00000001866384
= 0.00000037097679 — 0.00000037097681
0.00000557001105 0.00000557001123
— 0.00006633973347 — 0.00006633973492
0.00063559408254 0.00063559409179
— 0.00488250613549 — 0.00488250618149
0.02956829800842 0.02956829817932
— (0.13659636790797 — (.13659636834907
0.45393927999813 0.45393927930764
— 0.96897193982603 — 0.96897193935599
1.00000000000000 1.00000000000000

The Frank matrix example is interesting, but it does not dramatize the
need for computing both s(\) and sep()), since these two quantities have
the same order of magnitude for F 13- To this end we applied conpev to
compute the largest eigenpair (A, x,) of the matrix

9 1 -2
Hp)=|p -2 4
0 1 -2

For small p, H(p) has three well-conditioned real eigenvalues A=Ay =0>
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A;. Indeed, s(A;)=O(1) as p approaches zero. However, sep(A,) = O(p).
Thus, we can explore the deterioration of the eigenvector x, as p gets small.
For example, if p =27 then

Ay =p— 244450+ p2 = 0.20954757928848267 X 10 4,

while its exact unit 2-norm eigenvector (to working precision) is prescribed

by

0.21566554640950429

[ 0.97049495884276928 }
=
0.10783277309177166

The absolute error in the computed A, is correctly predicted by (1.4). In this
case s(A;)=0.847. On the other hand sep(X,) =107, which explains why
the computed unit 2-norm eigenvector

0.21566554127283362

[0.97049496026962221
X, =
0.10783277052343633

is correct to only seven places.

We mention that our software only handles real eigenpairs. Of course, one
will want to be able to process complex conjugate eigenpairs as well if
CONDEYV is to be a full partner to the Erspack codes aor and invit. Our codes
could certainly be extended to handle the complex conjugate case. Unfor-
tunately, conpev would then require an additional n-by-n workspace. How-
ever, for the case of complex conjugate eigenvalues one may be more
interested in estimating the accuracy of the two dimensional invariant
subspace associated with the real and imaginary parts of the corresponding
eigenvectors. Indeed, an interesting topic for further research would be to
investigate how to estimate the accuracy of computed invariant subspaces.

I would like to thank Mr. Mare Cohen for producing early versions of the
software described in Section 4. The referees helped me a great deal with both
the exposition and the technical content of the paper. Finally, I am indebted
to Jim Wilkinson for originally kindling my interest in eigenproblem sensitiv-
ity.
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