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Computing the CS and the Generahzed Singular
Value Decompositions*

Charles Van Loan
Department of Computer Science, Cornell University, Ithaca, NY 14853, USA

Summary. If the columns of a matrix are orthonormal and it is partitioned
into a 2:by-1 block matrix, then the singular value decompositions of the
blocks are related. This is the essence of the “CS decomposition”. The com-
putation of these related SVD’s requires some care. Stewart has given an al-
gorithm that uses the LINPACK SVD algorithm together with a Jacobi-
type “clean-up” operation on a cross-product matrix. Our technique is
equally stable and fast but avoids the cross product matrix. The simplicity
of our technique makes it more amenable to parallel computation on sys-
tolic-type computer architectures. These developments are of interest be-
cause a good way to compute the generalized singular value decomposition
of a matrix pair (4, B) is to compute the CS decomposition of a certain or-
thogonal column matrix related to 4 and B.

Subject Classifications: AMS(MOS): 65F30; CR: G1.3,

1. The C-S Decomposition

Suppose the columns of the real matrix

Q= [g:] "onzp

p
are orthonormal, i.e., QfQ1+Q§Q2=Ip. The gist of the CS decomposition
(CSD) is that the singular value decomposition (SVD) of Q, is related to the
singular value decomposition of Q,. In particular, there exist orthogonal mat-
rices U,(n,; x ny), U,(n, x n,), and V(p x p) such that

U'Q,V=_C=diag(cy,...,c,)

*  The research associated with this paper was partially supported by the Office of Naval Re-
search contract N00014-83-K-0640, USA
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and
U Q,V=S=diag(s,.....,s,) g=min{p,n,}.
Since CTC +S8"S =1, it follows that
ci+si=1 i=1,....q
[e)J=1  i=q+1,...,p.

Thus, the singular values of @, and Q, are cosines and sines accounting for the
name of the decomposition. Without loss of generality, we may assume that
the ¢; and s, are ordered as follows:

=..=c¢,=1

e (1.1)
125,2...25,20. '

Ogclg.,.gcqgc

This paper is about a new way to compute the CSD.

The CSD and its role in the analysis of various invariant subspace pertur-
bation problems are discussed in [1, 10, 12, 13].

However, the paper that is most responsible for generating the current in-
terest in the CSD is due to [8]. They give the most general proof and establish
the connection between the CSD and the generalized singular value decompo-
sition (GSVD). In the GSVD, we are given two matrices A(n, X t,n, =t) and
B(n,x 1) and find orthogonal U,(n, x n;), orthogonal Ug(n, x n,), and a non-
singular X (¢ x t) such that

A=UD,X", D,=diag(a,,....a,) (n,x1)
and
B=U,D,X", D,=diag(By,....B) (n,x1)

where r=min {t.n,}. To compute this decomposition we first compute the

\Y
SVD 4

ME[B

] VA (12)

Assume that rank (M)=p, set m=n, +n, —p, and conformably partition Q, X,

and Z as follows;
QZ[Q“ Qu] p Z:[Zp O} p

0,1 0l m 0 0 m
P m p t—=p
Z=[Z, Z,]
p t—p

Note that Q7,0,,+03,0,,=1,. Let Q,,=U,CV" and Q,,=U,SV" be the
CSD of 0, and Q,,. Since

[A]Z_[AZI O]_[Q”Zp O'J_[UICVTZP 0}
BI™ LBz, 0ol l19,,z, ol Lu,sv’z, o
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{A]:[L’l (_)] [C 0" [VTZP O]ZT

B 0O UJLS 0. 0 W

where W is an arbitrary (¢t —p)x(t —p) matrix. If W is nonsingular then the
GSVD follows by setting U, =U,, U,=U,, D, =[C 0], Dy=[S 0], and

we have

T [VTZP O]Z"I

0 W

Note that if 2 ,=diag(a,, wo)and o, = .. =0,>0, then the 2-norm condition
of X satisfies :cz(X)gollap‘ The lower bound can be achieved by setting W
=ol,_,for any o that satisfies 0,50=0,.

The GSVD and, hence, the CSD, are useful for solving various constrained
and generalized least squares problems. However, the CSD is also useful in its
own right. See [12, 13]. [11] devised the first stable CSD algorithm and the
current paper arose by our desire to develop an implementation of his method
suitable for systolic type architectures. These architectures are of interest in
certain real time signal processing applications [3, 4, 97.

As we have shown, it is possible to reduce the problem of computing the
GSVD to the problem of computing the CSD. In §2 we describe several CSD
algorithms each of which is flawed because of numerical problems that are as-
sociated with the orthonormalization of nearly orthogonal bases. In §3 two re-
sults are established that indicate when these problems can be circumvented.
Our main algorithm is then presented in §4 while some aspects associated with
its implementation are discussed in § 5.

2. Some Obvious CSD Algorithms and Their Shortcomings

At first glance it appears that the CSD should be a rather casy decomposition
to compute. After all, it just involves a pair of SVD’s for which there are sever-
al efficient, stable methods. See [2, 5]. In this section we show by example why
the stable computation of the CSD is not straightforward.

Before we proceed, however, it is appropriate to state what we mean by a
“stable” CSD algorithm. Let & denote the machine precision and suppose an
algorithm for computing the CSD generates U, U,,V,C, and S, computed ver-
sions of Uy, U,, V, C, and S respectively. Assume that

010,+030,—1,,~¢, (2.1)

I Q ‘j] ]
L

are orthonormal to within roundoff error. We say that a CSD algorithm is sta-
ble if the following conditions hold:
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1010, ~ 1,1 ,~e (22)

1070, -1, |l,~¢ (2.3)

VTV —1,],~¢ (2.4)
C=diag(¢,,....¢,)=UNQ,+E)V. |E|,~¢lQ,l, (2.5)
S=diag(s,,....5) =UJ(Q,+E)V,  |E,|,~¢&]0,],. (2.6)

These assertions say that to within roundoff error, U,, U,, and V' are orthogo-
nal and UFQ,V and UFQ,V are diagonal. Using standard SVD perturbation
Theory [6, p.285ff] one can also conclude from (2.2)-(2.6) that the ¢; and §; are
the exact singular values of matrices that are relatively close to @, and Q, re-
spectively.

Having in mind the goal of a stable CSD algorithm, let us examine the
numerical properties of two obvious CSD algorithms. For the sake of clarity
we assume in our examples that both Q, and Q, are square and that Q, is
nonsingular,

Algorithm 2.1. (p=n, =n,)

1. Use the LINPACK SVD algorithm [2] to compute USQ,V=S
=diag(s;....,s,). Note: the s; are ordered from large to small.

2. Set X =0, V.

3. Set C=diag(c;,...,c,) where ¢; is the 2-norm of X’s k-th column.

4. Set U, =XC~".

The rationale behind this algorithm is as follows. Since X" X =diag(1 —s/), the

columns of X are mutually orthogonal and the 2-norm of the i-th column

equals 1/1—s?. By assumption, X =Q,V is nonsingular. Thus, the matrix C

=diag()/1-s3,...,)/1 —s7) is mnonsingular, U;=XC~' is orthogonal, and
uro,v==c.

The dangers of Algorithm 2.1 are highlighted in [11]. To see what they are,
consider the example

0.220508860423  —0.114095899416 0.001410518052 0.309131888087
0.075149984350 0.552192330457 0.309420137864 0.519525649668
171 0346099513974 —0.465523358094  —0.147474170901  —0.284504924779
~0.200314808251 0.015869922033 0.063768831702 0.364621650530

—0.149903307775 0.456869095895 —0.814555019070 0.205461483909
—0.132593956233 0.403919514293 0.374067025998 —0.294979263882
2" 0.631588073183 0.226164206817 0.132173742848 0.047014825861
—0.588949720476 —0.205112923304 0.239887841318 0.537774110108

0, and Q, satisfy (2.1) with ¢=10~"%. Moreover,
¢, =0.899999999985
¢, =0.799999999989
¢4 = 0.000020000000
¢, =0.000009999999,
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Using [7] with an effective machine precision £¢=10"'2 we found that criteria
(2.3)-(2.6) were each satisfied. Unfortunately (2.2) fails to hold because

0.99999999999 0.00671196274  —0.00000000083  —0.00000006623
0.00671196274 1.00000000000  —0.00000019837 0.00000004765

"1 —0.00000000083 0.00000019837 1.00000000000  —0.00000000000
—0.00000006623 0.00000004765  —0.00000000000 0.99999999999

iT

)t
h

The trouble stems from the fact that the first two columns in the computed X
have norm O(1077). Consequently, errors of order 10°¢ are introduced when
the columns of X are normalized to produce U,.

A way to avoid this loss of orthogonality is to orthonormalize X by stably
computing its QR factorization, say by using Householder matrices. This is thc
approach taken in our next algorithm.

Algorithm 2.2. (p=n,=n,)
1. Use the LINPACK SVD algorithm to compute U Q, V=S =diag(s,, ..., s,)-
2 Set X=0, V.
- Use the LINPACK QR factorization algorithm to compute X = U,R where
Uy 1s orthogonal and R is upper triangular with positive diagonal entries.
4. SLt C=diag(ryy,...,1,,).
In exact arithmetic we should have R=diag(r,,,..., r,,) because a nonsingular
upper triangular matrix whose columns are lTlthlell\« orthogonal must be diag-
onal. It follows that C=UTX =UQ, V.
Let us apply Algorithm 2.2 to the example (2.7) above. Again using MAT-
LAB with an effective machine precision of e=10"'2 we find that the quan-
tities produced by Algorithm 2.2 satisfy (2.2)-(2.6) with the exception of (2. 5):

10, CVT—Q,,~10" "~V/e.
This is because the computed version of the matrix R is not diagonal as the
theory predicts:

0.000010000300  0.000000134238  —0.000000000665 —0.000000059614
e 0.000000000000  0.000019999399  —0.000000158697 0.000000043290
0.000000000000  0.000000000000 0.799999999991  —0.000000000006
0.000000000000  0.000000000000 0.000000000000 0.899999999989

Thus, it appears that Algorithm 2.2 is an improvement over Algorithm 2.1 in
that it renders a suitably orthogonal U,. Unfortunately, the price paid for this
orthogonality is the violation of (2.5).

In Stewart’s CSD algorithm a Jacobi-like “clean-up™ operation rec-
tifies these problems. It entails working with the matrix X7X. Our procedure
is similar but it circumvents the cross-product matrix by exploiting some rath-
er simple theorems that we present in the next section.
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3. Safe Diagonalization

Suppose X (m x k) has rank k and let

X =[Xp o %,] (3.1)
be a column partitioning. Assume that
XTX=D*+E (3.2)
where
D=diag(||xl||2,--A,||xk'||g], (3.3)

Let ¢ be the machine precision. The flawed algorithms of the previous section
prompt us to ask the following two questions:

When does X =(XD~!)D represent a stable QR factorization? That is, what
conditions on D and E ensure that U=XD~" satisfies | UTU —I, | ,x&?

If X =UR is the QR factorization of X, then what conditions ensure that R
is safely diagonal? By “safely diagonal” we mean that for all i4j we have
|rfj!t‘5' [RIl,.

The following theorem answers the first of these two questions.
Theorem 3.1. If X (m x k) satisfies (3.1)~(3.3) and if U=XD~" then

IEI, __ IEl

UT -1 < -
| ” 2= min “xilll %

X)

mm(
where o, (-) denotes the minimum singular value.

Proof
UTU=D"YX"X)D-'=D-'(D*+E)D~!
and so
|UTU —1,],= D~ *ED~ [, [ D~ "I El, = || E|l/min [ x;]3.

The proof is completed with the observation that [ x;l|; 2 0,,,(X) foralli. [

This result essentially shows that QR via column normalization, ie., Algo-
rithm 2.1, is stable so long as (a) the matrix X has no small columns and (b)
the off-diagonal elements of XTX are small compared to the machine pre-
cision. Let us relate these comments to Algorithm 2.1. Since

X"X=1,-S*+E |El,=¢

where the “hats” designate computed quantities, we see that [j' will be orthog-
onal to within roundoff error provided none of the Q, slngular values are nuar
1. (The roundoff error analysis details associated with the computation of U
have been supressed as they are straightforward.)

We now focus on the second question posed above.

Theorem 3.2. Assume that (3.1)~(3.3) hold and that X =QR where Q(m xm) is or-
thogonal and R(m x k) is upper triangular. If
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Xi:[xla"v,x;] f-:l.,‘..,k
then for all i and j satisfying j>1 we have
Il S min {5, Il /0,0 (X )]

Proof. Let G=X"X and let R; be the leading ixi principal submatrix of R.
From the equation R"R =G it follows that

!'“-
RI| P [=XTx;,  j=i+1,..,k.
Tij
Thus, .
I SO+ 1) 2 < IRET)L X T,
Since 6,,,(R)) = 0,,,(X;) and | X x|, <[ E|, we have
I S IEN /0 min(X).-

The theorem follows since

|rijl g(rl?'j—i_ ‘H'?J' M= ”xj”z‘ O
The theorem helps to explain why the matrices produced by Algorithm 2.2
may fail to satisfy (2.5). Let X =[x ,,...,X,] be the computed version of the ma-

trix X =[x,,...,x,]. A straightforward error analysis shows that
X"X =diag(1 —§2,...,1 —$%) + E

where |E[l,~¢ and the §; are the computed singular values of Q,. Moreover,
the computed upper triangular matrix R turns out to satisfy

Uf(X+F)=R

where U, is exactly orthogonal and ||F||2xs|i)f||2. By invoking the theorem
and ignoring second order terms in ¢ we find fori=1,...,p

- . € - . JE . ..
—&; i

Thus if we have ff,.x(?j::]/s for some j>i, then we can expect trouble when
trying to diagonalize Q .

On the positive side, the theorem does indicate that if a well-conditioned
matrix has nearly orthogonal columns, then it can be safely diagonalized by
OR. Our algorithm for computing the CSD exploits this property.

4. A Stable Algorithm for the CSD

The new method for computing the CSD that we are about to describe re-
quires a criteria for distinguishing between large and small singular values.
This is because we will be invoking Algorithms 2.1 and 2.2 on certain well-con-
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ditioned subproblems. To this end we define a number ¢ to be large if 6> 1,.-"]/2
and to be tiny il c =1, "1/’j The rationale for choosing I,.-"']/'f2 as the dividing line
between large and small numbers will be given later.

It is helpful to illustrate our method on a small cxamp e. Suppose Q, and
0, are cach 4 x 4 and that Q, has two large and two tiny singular values.

Step 1. Compute the SVD of Q, ordering the singular values from small to
large. Apply the right transformation to Q,. This gives

T & & &
T ¢ ¢
Qz“_—Uzrng:
¢ ¢ L &
¢ ¢ & L
X X % ® ]
X% X X
Q=0 V=
e * X .
e X x %]

Our notation is as follows. We use ¢ to indicate which matrix entries are of or-
der machine precision. “T” stands for a tiny singular value, “L” stands for a
large singular value, and “x” denotes an arbitrary non-negligible entry. The
reason for the “reverse” ordering of the singular values is that we want the re-
sulting column norms in the updated Q, to range from large to small. This has
the effect of introducing more negligible matrix entries in Q, in the next step.

Step 2. Compute the OR factorization of Q:

L & ¢ £

. ¢ L & £
0,:=U/Q,=

£ & T3y Tag

L& & & Faq

Bear in mind that we always have Q7Q,+030,=1, after every update of Q,
and Q,. Thus, the (1,1) and (2,2) entries of Q, are large since the norms of the
first two columns of @, are tiny. In view of Theorem 3.2, the superdiagonal en-
tries in rows 1 and 2 are negligible. However, we cannot assert this for [ry,]
since |ry4| and |r,,| are each tiny.

Step 3. Compute the SVD of the lower 2 x 2 principal submatrix in @, and ap-
ply lhe right transformation to Q,:

ol 2Ll 9

]
m Mmoo
M o~ ™M o
~ o
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Q> Qz[oyg]

Sm

£
T
€
£

X X ™ &
X X & o™

Note that the trailing 2 x 2 submatrix of Q, has lost its diagonal form.

Step 4. The trailing 2 x 2 principal submatrix of Q, is well-conditioned since its

smallest singular value is greater than 1/]/5. In view of Theorem3.1 it can
therefore be safely diagonalized by column normalization:

T

I, 017 &
0= Uz] 0=
Le

™ o, = o,

M~ o o o

£
£
L
£

At this stage, both @, and Q, are diagonal.

Step 5. The orthogonal matrices generated in the above computations could, of
course, be accumulated. If the ordering (1.1) is desired then it would be neces-
sary to reverse the order of the columns in the accumulated U,, U,, and V as
well as the order of the ¢; and s,.

It is clear from the above that this method of computing the CSD' satisfies
(2.2)~(2.6). This is because we only invoke Algorithms 2.1 and 2.2 on well-con-
ditioned submatrices thereby avoiding the pitfalls of § 2.

We're now set to specify our method in detail. The notation gets a little
cumbersome because we are allowing for rectangular Q, and Q,.

Algorithm 3.1. Given Q,(n, X p,n; 2p) and Q,(n, x p) satisfying Q7 Q2 +0,=

this algorlthm overwrites Q,; and Q, with diagonal matrices C=U"Q,V and S
=U; Q,V respectively where U,, U,, and V are each orthogonal. The diagonal
entries of C and S are ordered according to (1.1).

Step 1. Compute orthogonal U,(n, x n,) and V. (p x p) such that
U;Q,V=[ 0 A] g=min {n,,p}.
P—q q
where
A=diag(dy,...,d,).

Assume that the ¢, are in ascending order and that the index k is defined by

0=,

A
lIA

O

IIA

1
—=<0p,15...56
1/5 k+1="+-=Ygq

Q2‘=U2TQ2V
0,:=0,V

Update:
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Step 2. Compute an orthogonal U, (n, x n,) such that

oo [

where R(p x p) is upper triangular with positive diagonal entries. Since

R"R=diag(l,...,1,1-5%,...,1-5?)
P=q

it follows from Theorem 3.2 and the remarks thereafter that
[rjl=ellRll, i=1,....p—q+k, j=i+1,....p.

Thus, after we perform the update

0,:=U/Q,
we find that 0, has the form
I 0 0 pP—q
0 diag(y,....) O k
Q,= |0 0 R, q—k
0 0 0 Hy—p
P—q k q—k

where y,=1/1-67 fori=1,...,k.

Step 3. Compute orthogonal U, and V such that

UIR,V=diag(y., 1, 7,)
and update: -
U,:=U, diag(I,_,,,. U1
Vi=Vdiag(I,_,. V)

Q1==diag(1rp_q+ka ﬁlT,Im—p)Ql diag[fp_“k, f'})
0,:=0, diag(fp_“k, f])

Note that at this stage,

nl—p)

0 diag(s,,...,5,) O k
Q,=10 0 W g—k
0 0 n,—q

P—q k q—k

where W=diag (s, , ,...,6,) V.

q

Step 4. Since
erwzld—k_diag(?f+ 1 '--’}'j)

and

Omin W) =801 21/)/2
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it follows that W can be safely diagonalized via column normalization. Thus,
we compute an orthogonal U, such that U] W is upper triangular and update:

Q,:=diag(l,, 62; Jm—fl)gz
L:rz t= brz dlag (Ika G’Z ¥ I

nz—qJ‘

Step 5. At this stage Q; and Q, have been overwritten by U Q,V and UJQ,V.
Using the conventions in (1.1), these matrices have the form

le

Q,=

¢, 0
0 ¢y
L0
0 ... 0: S,

I
0..0,0 .5
0 | 0

p—q q

Thus, if the ordering (1.1) is desired, then it is necessary to reverse the order of
the columns in U, U,, and V. The ¢, and s, are then the diagonal elements of
the suitably permuted Q, and Q.

Our choice of 1;’]/2 as the dividing line between large and tiny singular val-
ues has the effect of minimizing the error bounds in (2.2)-(2.6). One may wish
to play with this constant under certain circumstances since the overall amount
of work depends on the size of the index k in the first step. For example, if
=001 is the definition of a large singular value, then smaller subproblems
will result in Steps 2, 3, and 4 of the algorithm. This reduces the amount of
work, but increases the errors by a factor of about a hundred.

If we apply Algorithm 4.1 to the matrices in (2.7) we find

[—0.687726557625
0.335002082175
0.554780323465
| —0.327146113464

" —0.937875930622
- 0.274903644962
0.207841469770
| —0.040232426925

[ 0.259105212443
—0.262189089896

0.884603850438
| —0.285652582355

o
b
Il

o
Il

0.545665008317
0.201264772176
0.077373737916
—0.809787314577

0.180798315164
0.091872622366
0.535652344879
—0.819724317017

0.781804019979
0.408991746550
—0.238746378084
—0.405596341874

—0.409531855282

0.243430456100
—0.828391230010
—0.294606928957

0.216282039353
0938148480642
—0.269374120814
—0.023175218383

—0.522164425396
0.702633018050
0.222655254207

—0.429040548850

0.2481240418057]
0.887697983245
0.000259642028
0.387848788835

0.2022938146167]
0.189380134924
0.772862259327
0.570873282926_

0.2213397299937]
0.519893714448
0.333017766051
0.754863177726 |
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cation of the SVD array proposed in [3]. This important convenience would
not be possible if one had to form the cross-product matrix that is required by
Stewart’s CSD algorithm. Details will be reported elsewhere. .

Acknowledgement. The author appreciates the many stimulating conversations that he had with Ira
Kaplan and Frank Luk during the preparation of this paper.

During the period when this paper was refereed, a new way for computing the GSVD was
proposed by Chris Paige of McGill University. This new algorithm does not require the compu-
tation of the CSD.
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