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BLOCK TENSOR UNFOLDINGS

STEFAN RAGNARSSON∗ AND CHARLES F. VAN LOAN†

Abstract. Within the field of numerical multilinear algebra, block tensors are increasingly
important. Accordingly, it is appropriate to develop an infrastructure that supports reasoning about
block tensor computation. In this paper we establish concise notation that is suitable for the analysis
and development of block tensor algorithms, prove several useful block tensor identities, and make
precise the notion of a block tensor unfolding.
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1. Introduction. The field of matrix computations has matured to the point
that it is not necessary to provide scalar-level verifications of basic block-level opera-
tions. For example, if

[
C11 C12

C21 C22

]
=

[
A11 A12

A21 A22

]T [
B11 B12

B21 B22

]
,

then without “ijk proof” it is understood that C12 = AT11B12 + AT21B22 provided
A and B are partitioned conformally. “Understandings” like this contribute to the
culture of block matrix computations, enabling researchers to think at a high level
when they are developing new algorithms and proofs.

It is our contention that the emerging field of tensor computations needs to de-
velop a similar infrastructure that gracefully supports block tensor operations. By a
block tensor we mean a tensor whose entries are themselves tensors. As with ma-
trices, the act of blocking a tensor is the act of partitioning the index range vectors
associated with each dimension. Thus, if A ∈ IR9×5×8 and

1:9 =
[
1 2 3 4 5 6 7 8 9

]
=

[
1:2 3:5 6:9

]

1:5 =
[
1 2 3 4 5

]
=

[
1:3 4:5

]

1:8 =
[
1 2 3 4 5 6 7 8

]
=

[
1:2 3:4 5:6 7:8

]
,

then we are choosing to regard A as a 3-by-2-by-4 block tensor with block dimensions
that are determined by the indicated partitionings of 1:9, 1:5, and 1:8. The colon
notation can be used to specify the blocks. For example, the (2,1,3) block A213, is
prescribed by A(3:5, 1:3, 5:6).

Block tensors are increasingly important for the same reasons that block matrices
are increasingly important:

1. Structure. Block-level sparsity is a common pattern because of nearest-
neighbor coupling and other reasons [15].

2. Generalization. Block versions of point algorithms frequently have attractive
features [14].

3. Performance. Blocking is the key to minimizing the overhead of communica-
tion [1].
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Fig. 1.1. A vec-ordered, mode-1 unfolding of A ∈ IR9×5×8 with blocking (1.1)
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Fig. 1.2. A “block vec”-ordered, mode-1 unfolding of A ∈ IR9×5×8 with blocking (1.1)

Indeed, there is a very strong coupling between block tensor computations and block
matrix computations. This is because the dominant paradigm for tensor computation
involves the device of unfolding. An unfolded (or flattened) tensor is a matrix obtained
by systematically reorganizing the tensor’s entries into a 2-dimensional array. In this
framework, computations on a tensor A reduce to matrix computations on one or
more of its unfoldings. For example, the higher-order singular value decomposition of
a tensor involves computing the SVD of each modal unfolding [4]. See [13] for a nice
overview of tensor decompositions and unfoldings.

Given all the advantages that result when a matrix computation is organized at
the block level, it makes sense for an unfolding of a block tensor A to have a related
block structure of its own. In particular, A’s blocks should map to contiguous blocks in
the unfolding. This is not the case when a typical “vec-oriented” unfolding is invoked
[13]. Consider the mode-1 unfolding A(1) of a 9-by-5-by-8 tensor A with blocking
(1.1). The unfolding, which is displayed in Fig 1.1, is a 9-by-40 matrix whose i-th
row is vec(A(i, :, :))T . (Recall that vec-of-a-matrix is the vector obtained by stacking
its columns.) Notice that in the unfolding, A’s flattened blocks are not contiguous.
The primary purpose of this paper is to show how to permute the rows and columns
of a vec-oriented unfolding so that its blocks are unfoldings of the tensor blocks. An
example of such an unfolding is displayed in Fig 1.2.

The paper is organized as follows. In §2 we review well-known connections be-
tween vec(·), Kronecker products, transposition, and the perfect shuffle permutation.
A block version of vec(·) is defined in §3 and a related permutation is used to define
the notion of a block unfolding. In §4 we show how to formulate a tensor contraction
as a block matrix multiplication using the tools developed.
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2. Basic Notation and Operations . If A ∈ IRn1×···×nd and i = (i1, . . . , id),
then A(i) denotes component (i1, . . . , id) of tensor A. We use calligraphic characters
to designate tensors and bold lower case characters to denote vectors of integers. For
A(i) to make sense we must have 1 ≤ ik ≤ nk for k = 1:d, i.e., 1 ≤ i ≤ n. In general,
if i and j have equal length, then i ≤ j means that ik ≤ jk for all k.

The Matlab colon notation is used to specify index ranges. If a < b and c > 0,
then a:b is the vector [a, a+1, . . . , b ] and a:c:b is the vector [a, a+c, a+2c, . . . , a+mc ]
where m = ⌊(b− a)/c⌋, i.e. the largest integer that is less than or equal to (b − a)/c.

If A ∈ R
m×n and B ∈ R

p×q, then the Kronecker product A⊗B ∈ R
mp×nq is the

block matrix

A⊗B =




a11B · · · a1nB
...

. . .
...

am1B · · · amnB


 .

The outer product C = A ◦ B of a tensor A ∈ IRj1×···×jd and a tensor B ∈ IRk1×···×ke

is a tensor C ∈ IRj1×···×jd×k1×···×ke defined by

C(i) = A( i(1:d) ) · B( i(d+ 1:d+ e) ) 1 ≤ i ≤ [ j k ].

The order of A ◦ B is the order of A plus the order of B. Note that A⊗B is an
unfolding of the order-4 tensor A ◦ B where A and B are order-2 tensors (matrices)
A and B.

2.1. The Vec Operation and Ordering. IfA ∈ IRn1×···×nd andN = n1 · · ·nd,
then vec(A) ∈ IRN is a column vector defined recursively by

vec(A) =




vec(A(1))
...

vec(A(nd))


 (2.1)

where A(k) is the order-(d− 1) tensor

A(k)(i1, . . . , id−1) = A(i1, . . . , id−1, k) 1 ≤ k ≤ nd. (2.2)

It is assumed that 1 ≤ i(1:d − 1) ≤ n(1:d − 1). If d = 1, then A is a column vector
and vec(A) = A. If d = 2, then A is a matrix and vec(A) stacks its columns. Each
entry in tensor A ∈ IRn1×···×nd corresponds to a component of vec(A). This implicitly
defines an index mapping function ivec( · ,n):

ivec(i,n) = i1 + (i2 − 1)n1 + (i3 − 1)n1n2 + · · ·+ (id − 1)n1 · · ·nd−1. (2.3)

It is easy to show that if v = vec(A), then

vivec(i,n) = A(i) (2.4)

for all i that satisfy 1 ≤ i ≤ n.

It should be noted that the “tensor vec” operation given by (2.1)-(2.4) reverts to
the standard vec operation when A is a matrix [7].
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2.2. Transposition, Vec, Kronecker Products, and Permutation. There
is an important connection between matrix transposition and perfect shuffle permu-
tations [7, 8, 17, 18]. In particular, if A ∈ IRq×r and s = qr, then

vec(AT ) = ΠTq,rvec(A) (2.5)

where Πq,r ∈ IRs×s is the (q, r) perfect shuffle permutation defined by

Πq,rz =




z(1:r:s)
z(2:r:s)

...
z(r:r:s)


 z ∈ IRs. (2.6)

See [17]. If Z ∈ IRr×q and Y = ZT , then vec(Y ) = Πq,rvec(Z). It is easy to verify
that ΠTq,r = Πr,q.

If f ∈ IRq and g ∈ IRr, then g ⊗ f is a perfect shuffle of f ⊗ g:

Πq,r (f ⊗ g) = g ⊗ f. (2.7)

An important consequence of this result applies to the case when g is a block vector:

diag(Πρ1,q, . . . ,Πρµ,q) ·Πq,r ·


f ⊗




g1
...
gµ





 =




f ⊗ g1
...

f ⊗ gµ


 . (2.8)

Here, gi ∈ IRρi and r = ρ1 + · · ·+ ρµ.
Tensor transposition can also be characterized in terms of vec(·) and perfect

shuffles. If A ∈ IRn1×···×nd and p is a permutation of 1:d, then A<p> ∈ IRnp1×···×npd

denotes the p-transpose of A and is defined by

A<p>(ip1 , . . . , ipd) = A(i1, . . . , id) 1 ≤ i ≤ n, (2.9)

i.e., A<p>(i(p)) = A(i). The following lemma can be regarded as a generalization of
(2.5):

Lemma 2.1. If A ∈ IRN1×N2×N3×N4 and B = A<[ 1 3 2 4]>, then

vec(B) = (IN4
⊗ΠN3,N2

⊗ IN1
)vec(A).

Proof. The proof follows from well-known facts that relate Kronecker products,
vec(·), and the perfect shuffle. See [7, 8, 17].

Although Lemma 2.1 addresses an order-4 transposition, the result can be applied to
tensors of arbitrary order simply by “fusing” adjacent modes. For example, suppose
C ∈ IRn1×···×n7 and set N1 = n1n2, N2 = n3, N3 = n4n5, and N4 = n6n7. Define
A ∈ IRN1×N2×N3×N4 by

A(j1, j2, j3, j4) = C(i) where





j1 = ivec(i(1:2),n(1:2))

j2 = ivec(i(3:3),n(3:3))

j3 = ivec(i(4:5),n(4:5))

j4 = ivec(i(6:7),n(6:7))

.
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Observe that vec(A) = vec(C) and

(IN4
⊗ΠN3,N2

⊗ IN1
)vec(C) = (IN4

⊗ΠN3,N2
⊗ IN1

)vec(A)

= vec(A<[ 1 3 2 4 ]>) = vec(C<[ 1 2 4 5 3 6 7 ]>).

Two special applications of Lemma 2.1 are worth noting. Assume A ∈ IRn1×···×nd.
If p = [ 1:k−1 , k+1 , k , k+2:d ], then

vec(A<p>) = (IN4
⊗Πnk+1,nk ⊗ IN1

)vec(A) (2.10)

where N1 = n1 · · ·nk−1 and N4 = nk+2 · · ·nd. This transposition swaps two adjacent
modes, e.g.,

B = A< [1 2 4 3 5 ]> ⇒ A(i1, i2, i3, i4, i5) = B(i1, i2, i4, i3, i5).

On the other hand, if p = [ k , 1:k − 1 , k + 1:d ], then

vec(A<p>) = (IN4
⊗ΠN2,nk)vec(A) (2.11)

where N2 = n1 · · ·nk−1 and N4 = nk+1 · · ·nd. This transposition “moves” a desig-
nated mode “to the front,” e.g.,

B = A< [ 3 1 2 4 5 ]> ⇒ A(i1, i2, i3, i4, i5) = B(i3, i1, i2, i4, i5).

2.3. Unfolding a Tensor. Converting a tensor to a matrix is an important oper-
ation in tensor computations [9, 10, 11, 13]. In order to unfold a tensorA ∈ IRn1×···×nd

into a matrix, it is necessary to choose (a) an integer e that satisfies 1≤e<d and (b)
a permutation p of 1:d. If

r = p(1:e) (2.12)

c = p(e + 1:d) (2.13)

then the r× c unfolding of A is the matrix Ar×c whose (α, β) entry is given by

Ar×c(α, β) = A<p>(i1, . . . , ie, j1, . . . , jd−e) (2.14)

where

α = ivec(i,n(r)) 1 ≤ i ≤ n(r) (2.15)

β = ivec(j,n(c)) 1 ≤ j ≤ n(c). (2.16)

Note that Ar×c has np1 · · ·npe rows and npe+1 · · ·npd columns. Each row and
column of Ar×c is the vec of a reduced-order subtensor. In particular, for all i and j

that satisfy 1 ≤ i ≤ n(r) and 1 ≤ j ≤ n(c), we have

Ar×c( ivec(i,n(r)), : ) = vec(R(i))T (2.17)

Ar×c( : , ivec(j,n(c)) ) = vec( C(j)) (2.18)

where the tensors R(i) and C(j) are defined by

R(i)(j) = A<p>(i1, . . . , ie, j1, . . . , jd−e) (2.19)

C(j)(i) = A<p>(i1, . . . , ie, j1, . . . , jd−e). (2.20)

Especially important are the modal unfoldings. If p = [k 1:k−1 k+1:d ], then Ar×c is
a mode-k unfolding of A. The columns of this matrix are referred to as mode-e fibers

of A. Special conventions are required if A is to be unfolded to either a column or
row vector. If e = d, then c = ∅ and Ar×c = vec(A). Likewise, if e = 0, then r = ∅
and Ar×c = vec(A)T .
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2.4. Special Cases. The preceding results take on a special form when A is a
rank-1 tensor. Suppose A = a(1) ◦ · · · ◦ a(d) where a(k) ∈ IRnk for k = 1, . . . , d, i.e.,

A(i1, . . . , id) = a(1)(i1) · · · a
(d)(id) 1 ≤ i ≤ n.

It follows from (2.1)-(2.4) that if

v = vec(a(1) ◦ · · · ◦ a(d)),

then

v = a(d) ⊗ · · · ⊗ a(1) (2.21)
and

vivec(i,n) = a(1)(i1) · · · a
(d)(id) 1 ≤ i ≤ n. (2.22)

If p is a permutation of 1:d, then from the definition of the p-transpose in (2.9) and
the definition of Ar×c in (2.12)-(2.16) we have

A<p> = a(p1) ◦ · · · ◦ a(pd) (2.23)

and

Ar×c = vec(a(r1) ◦ · · · ◦ a(re)) · vec(a(c1) ◦ · · · ◦ a(cd−e))T . (2.24)

In other words, the unfolding of a rank-1 tensor is a rank-1 matrix. These rank-1
facts simplify some of the proofs that follow in the next section.

We consider another special case that relates to the multilinear product, see §4.2.
Suppose B = B(1) ◦ · · · ◦B(d ) where B(k) ∈ IRqk×nk for k = 1, . . . , d, i.e.,

B(i1, j1, . . . , id, jd ) = B(1)(i1, j1) · · ·B
(d )(id, jd).

Note that B is an order-2d tensor. If r = 1:2:2d, c = 2:2:2d, and p = [ r c ], then
for all i and j that satisfy 1 ≤ i ≤ q and 1 ≤ j ≤ n we have

Br×c(α, β) = B(1)(i1, j1) · · ·B
(d)(id, jd)

where α = ivec(i,q) and β = ivec(j,n). However, this is precisely the (α, β) entry of
the matrix B(d ) ⊗ · · · ⊗B(1). Thus,

(
B(1) ◦ · · · ◦B(d )

)
[ 1:2:2d ]×[ 2:2:2d ]

= B(d ) ⊗ · · · ⊗B(1). (2.25)

3. Block Notation and Operations. In this section we formalize the notion
of a block tensor [15], develop a block version of vec(·), and explain how to permute
Ar×c into a block matrix whose blocks are unfoldings of A’s blocks. The presentation
is simplified if we make use of multi-indexed subscripts. Suppose

1 ≤ i ≤ s = [s1, . . . , se] S = s1 · · · se

1 ≤ j ≤ t = [t1, . . . , tf ] T = t1 · · · tf

To say that vi is the i-th component of vector v ∈ IRS is to say that vi = vivec(i,s).
Similarly, if D1, . . . , DS are square matrices and D = diag(. . . , Di, . . .), then D is a
block diagonal matrix whose i-th diagonal block is Divec(i,s). Finally, if C = (Cij) is
an S-by-T block matrix, then Ci,j is its (i, j)-th block, i.e., Ci,j = Civec(i,s),ivec(j,t).
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3.1. Tensor Blockings. We say that

M = {m(1), . . . ,m(d)} (3.1)

is a blocking for A ∈ IRn1×···×nd if

m(k) =
[
m

(k)
1 , . . . ,m

(k)
bk

]
(3.2)

is a vector of positive integers that sums to nk for k = 1, . . . , d. If 1 ≤ i ≤ b, then

block i is the m
(1)
i1
× · · · ×m

(d)
id

tensor defined by

Ai = A( ℓ
(1)
i1

:u
(1)
i1

, . . . , ℓ
(d)
id

:u
(d)
id

) (3.3)

where the lower and upper bound vectors ℓ(1), . . . , ℓ(d) and u(1), . . . ,u(d) are defined
by

ℓ
(k)
j = m

(k)
1 + · · ·+m

(k)
j−1 + 1 (3.4)

u
(k)
j = m

(k)
1 + · · ·+m

(k)
j−1 + m

(k)
j (3.5)

for k = 1, . . . , d. The blocking M identifies A as a b1× b2× · · ·× bd block tensor. The
number of elements in each tensor block Ai turns out to be a quantity of importance
and to that end we define the “volume function” volM(·) by

volM(i) = m
(1)
i1
· · ·m

(d)
id

1 ≤ i ≤ b. (3.6)

3.2. The VecM(·) Operation. If M is a blocking of A ∈ IRn1×···×nd given by
(3.1)-(3.5), then vecM(A) is the block vector

vecM(A) =




v1
...
vb


 vi = vec(Ai) (3.7)

where 1 ≤ i ≤ b. In other words, vecM(A) stacks the vec’s of A’s blocks where the
blocks are taken in the vec-order.

To illustrate this notation in the familiar matrix case, if

M = {m(1),m(2)} = { [m
(1)
1 m

(1)
2 ] , [m

(2)
1 m

(2)
2 m

(2)
3 ] }

is a blocking for A ∈ IRn1×n2, then we are choosing to regard A as a 2-by-3 block
matrix

A =

[
A11 A12 A13

A21 A22 A23

]
m

(1)
1

m
(1)
2

. (3.8)

m
(2)
1 m

(2)
2 m

(2)
3

In this case, vecM(·) and volM(·) are given by

vecM(A) =




v[1,1]

v[2,1]

v[1,2]

v[2,2]

v[1,3]

v[2,3]




=




vec(A11)

vec(A21)

vec(A12)

vec(A22)

vec(A13)

vec(A23)




volM(i) =





m
(1)
1 m

(2)
1 if i = [1, 1]

m
(1)
2 m

(2)
1 if i = [2, 1]

m
(1)
1 m

(2)
2 if i = [1, 2]

m
(1)
2 m

(2)
2 if i = [2, 2]

m
(1)
1 m

(2)
3 if i = [1, 3]

m
(1)
2 m

(2)
3 if i = [2, 3]

.
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As we mentioned in the introduction, our goal is to permute the rows and columns
of the unfolding Ar×c so that its blocks are unfoldings of A’s blocks. To be more
precise, if A = (Ai) is a block tensor our goal is to determine permutation matrices
PR and PC so that

AR×C = PRAr×cP
T
C

(3.9)

is a block matrix whose blocks are the matrices (Ak)r×c. It turns out that the
permutations PR and PC map “vec-of-a-tensor” to “vecM-of-a-tensor.” This is not
surprising since the rows and columns of Ar×c are vec’s of reduced order block tensors,
see (2.17)-(2.20).

Theorem 3.1. Suppose M = {m(1), . . . ,m(d)} is a blocking of A ∈ IRn1×···×nd

with

m(k) = [m
(1)
1 , . . . ,m

(k)
bk

] k = 1, . . . , d.

For k = 1, . . . , d set

Nk = n1 · · ·nk,

Mk = {m(1), . . . ,m(k)},

and define

Qk =

{
INd if k = 1

INd/Nk ⊗ Γ(k) if 1 < k ≤ d
(3.10)

where Nd/Nk = nk+1nk+2 · · ·nd,

Γ(k) = diag(Γ
(k)
1 , . . . ,Γ

(k)
bk

) (3.11)

and

Γ
(k)
j = diag(. . . ,ΠvolMk−1

(i),m
(k)
j

, . . .) · Π
m

(k)
j ,Nk−1

1 ≤ i ≤ b(1:k − 1). (3.12)

The permutation matrix PM defined by

PM = Qd · · ·Q2Q1

has the property that

vecM(A) = PMvec(A).

Proof. Since both vec(·) and vecM(·) are linear operators and any tensor is the
sum of rank-1 tensors, it suffices to prove the theorem for the case

A = a(1) ◦ · · · ◦ a(d)

where each a(k) ∈ IRnk is blocked as follows:

a(k) =




a
(k)
1
...

a
(k)
bk



}m

(k)
1

}m
(k)
bk

.
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We proceed by induction noting that the theorem is true if d = 1 because in that
case, vecM(A) = vec(A). Assume that the theorem holds for block tensors with order
d− 1 or less with d > 1. Define

Â = a(1) ◦ · · · ◦ a(d−1)

M̂ = Md−1

b̂ = b(1:d− 1).

and observe that M̂ is a blocking for Â, an order-(d−1) tensor. It follows by induction
that

vecM̂(Â ) = PM̂ vec(Â ). (3.13)

From the definition of vecM(·) in (3.7), we have

vecM̂(Â ) =




v1
...
v
b̂


 vi = a

(d−1)
id−1

⊗ · · · ⊗ a
(1)
i1

(3.14)

for all i that satisfy 1 ≤ i ≤ b̂. Equation (2.21) says that

vec(A) = a(d) ⊗ (a(d−1) ⊗ · · · ⊗ a(1)) = a(d) ⊗ vec(Â ),

and so

(Ind ⊗ PM̂)vec(A) = a(d) ⊗ v =




a
(d)
1
...

a
(d)
bd


 ⊗ v =




a
(d)
1
⊗ v
...

a
(d)
bd
⊗ v


 . (3.15)

Using (2.8) we have for j = 1, . . . , bd that

Γ
(d)
j

(
a
(d)
j
⊗ v

)
=




a
(d)
j
⊗ v1
...

a
(d)
j
⊗ v

b̂




where

Γ
(d)
j = diag

(
Π

vol
M̂

(1),m
(d)
j
, . . . ,Π

vol
M̂

(b(1:d−1)),m
(d)
j

)
·Π

m
(d)
j ,N/nd

.

Thus, if Γ(d) = diag(Γ
(d)
1 , . . . ,Γ

(d)
bd

), then

Γ(d)




a
(d)
1
⊗ v

...

a
(d)
bd
⊗ v


 =




a
(d)
1
⊗ v1
...

a
(d)
1
⊗ v

b̂

...

a
(d)
bd
⊗ v1
...

a
(d)
bd
⊗ v

b̂




= vecM(A). (3.16)
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Combining this equation with (3.15) we have

Γ(d)(Ind ⊗ PM̂)vec(A) = vecM(A)

and so PM = Γ(d)(Ind ⊗ PM̂). But by induction

PM̂ = Q̂d−1 · · · Q̂2 Q̂1

where

Q̂k =

{
INd−1

if k = 1

INd−1/Nk
⊗ Γ(k) if 1 < k ≤ d− 1

.

It follows that

PM = Γ(d)(Ind ⊗ PM̂)

= Γ(d)(Ind ⊗ Q̂d−1) · · · (Ind ⊗ Q̂2)(Ind ⊗ Q̂1)

= (INd/Nd ⊗ Γ(d))(INd/Nd−1
⊗ Γ(d−1)) · · · (INd/N2

⊗ Γ(2))(INd)

= Qd Qd−1 · · ·Q2 Q1

completing the proof.

The permutation PM has a particularly simple form if the blocking is uniform in each
dimension.

Corollary 3.2. Suppose M is defined by (3.1)-(3.5). If

m
(k)
1 = · · · = m

(k)
bk

= µk

Nk = n1 · · ·nk

Bk = b1 · · · bk

Dk = µ1 · · ·µk

for k = 1, . . . , d, then PM = Qd · · ·Q2Q1 where

Qk =

{
INd if k = 1

IbkNd/Nk ⊗Πµk,Bk−1
⊗ IDk−1

if 1 < k ≤ d

Proof. Observe that volMk−1
(i) = µ1 · · ·µk−1. It follows from the definition of

Γ
(k)
j in (3.12) that

Γ
(k)
j =

(
IBk−1

⊗ΠDk−1,µk

)
Πµk,Nk−1

.

Using the well-known Kronecker product identity

(Is ⊗Πr,q)Πq,rs = Πq,s ⊗ Ir,

it follows that

Γ
(k)
j = Πµk,Bk−1

⊗ IDk−1
.
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See [17]. From (3.10) we have

Γ(k) = Ibk ⊗Πµk,Bk−1
⊗ IDk−1

and so

Qk = INd/Nk ⊗ Γ(k) = INdbk/Nk ⊗Πµk,Bk−1
⊗ IDk−1

.

This completes the proof.

It is interesting to note that the transition from vec(A) to vecM(A) via the se-
quence

Q2 ·vec(A) → Q3 ·(Q2 ·vec(A)) → · · · → Qd ·(Qd−1 · · ·Q2 · vec(A))

is actually a sequence of transpositions. To illustrate, assume A ∈ IRn1×n2×n3×n4 and
define the order-8 tensor A(1) by

A(i1, i2, i3, i4) = A(1)(δ1, β1, δ2, β2, δ3, β3, δ4, β4)

where 1 ≤ i ≤ n and the δk and βk are uniquely defined by

ik = δk + (βk − 1)bk 1 ≤ δk ≤ µk.

This says that A(1) ∈ IRµ1×b1×µ2×b2×µ3×b3×µ4×b4 . In the d = 4 case, the Q-matrices
in Corollary 3.2 are given by

Q2 = Ib2n3n4
⊗Πµ2,b1 ⊗ Iµ1

Q3 = Ib3n4
⊗Πµ3,b1b2 ⊗ Iµ1µ2

Q4 = Ib4 ⊗Πµ4,b1b2b3 ⊗ Iµ1µ2µ3 .

Note from Lemma 2.1 that these permutations correspond to transpositions. Indeed,
if we define the tensors A(2), A(3) A(4) by

A(2)(δ1, δ2, β1, β2, δ3, β3, δ4, β4)

A(3)(δ1, δ2, δ3, β1, β2, β3, δ4, β4)

A(4)(δ1, δ2, δ3, δ4, β1, β2, β3, β4)





= A(1)(δ1, β1, δ2, β2, δ3, β3, δ4, β4)

then it can be shown via Lemma 2.1 that

vec(A(1)) = Q1vec(A) = vec(A)

vec(A(2)) = Q2vec(A
(1))

vec(A(3)) = Q3vec(A
(2))

vecM(A) = vec(A(4)) = Q4vec(A
(3)).

Thus, the order-8 tensor A(4) has the property that vec(A(4)) = vecM(A). Moreover,
A(i) = Aβ(δ) showing that entry i is entry δ of block β.
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3.3. Block Unfoldings. We now specify the permutation matrices PR and PC

in (3.9) that turn Ar×c into a block matrix with block entries that are r×c unfoldings
of A’s blocks.

Theorem 3.3. Suppose M = {m(1), . . . ,m(d)} is a blocking of A ∈ IRn1×···×nd

with

m(k) = [m
(k)
1 , . . . ,m

(k)
bk

] k = 1, . . . , d.

Let e be an integer that satisfies 1 ≤ e < d and assume that p is a permutation of 1:d.
Define

r = p(1:e) R = {m(r1), . . . ,m(re)} Brows = br1 · · · bre

c = p(e + 1:d) C = {m(c1), . . . ,m(cd−e)} Bcols = bc1 · · · bcd−e.

The matrix

AR×C = PRAr×cP
T
C

is a Brows-by-Bcols block matrix whose block entries are specified by

(AR×C)k(r),k(c) = (Ak)r×c 1 ≤ k ≤ b. (3.17)

That is to say, if µ = ivec(k(r),b(r)) and τ = ivec(k(c),b(c)), then the (µ, τ) block

of AR×C is the r× c unfolding of the k-th block of A.

Proof. By linearity there is no loss of generality in assuming that

A = a(1) ◦ · · · ◦ a(d)

where each a(k) ∈ IRnk is blocked as follows:

a(k) =




a
(k)
1
...

a
(k)
bk



}m

(k)
1

}m
(k)
bk

.

From (2.24) we know that

Ar×c = vec( a(r1) ◦ · · · ◦ a(re) ) · vec( a(c1) ◦ · · · ◦ a(cd−e) )T .

Since R is a blocking for a(r1) ◦ · · · ◦ a(re) and C is a blocking for a(c1) ◦ · · · ◦ a(cd−e),
it follows from Theorem 3.1 that

PRAr×cP
T
C

= yzT

where y = vecR(a
(r1) ◦ · · · ◦ a(re)) and z = vecC(a

(c1) ◦ · · · ◦ a(cd−e)). These block
vectors are specified by

y =




y1
...

yb(r)


 yi = vec(a

(r1)
i1
◦ · · · ◦ a

(re)
ie

) 1 ≤ i ≤ b(r) (3.18)

z =




z1
...

zb(c)


 zj = vec(a

(c1)
j1
◦ · · · ◦ a

(cd−e)
jd−e

) 1 ≤ j ≤ b(c) (3.19)
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and so the (i, j)-th block of AR×C is given by

(AR×C)i,j = yi z
T
j . (3.20)

On the other hand, from (3.17)

(Ak)r×c =
(
a
(1)
k1
◦ · · · ◦ a

(d)
kd

)
r×c

= vec
(
a
(r1)
kr1
◦ · · · ◦ a

(re)
kre

)
· vec

(
a
(c1)
kc1
◦ · · · ◦ a

(cd−e)
kcd−e

)T
.

It follows from (3.18)-(3.20) that if i = k(r) and j = k(c), then

(Ak)r×c = yi z
T
j = (AR×C)i,j

which completes the proof.

To illustrate the theorem, suppose A is 2-by-4-by-3-by-2 block tensor. If r = [1 3]
and c = [2 4], then

AR×C =




Ã1111 Ã1211 Ã1311 Ã1411 Ã1112 Ã1212 Ã1312 Ã1412

Ã2111 Ã2211 Ã2311 Ã2411 Ã2112 Ã2212 Ã2312 Ã2412

Ã1121 Ã1221 Ã1321 Ã1421 Ã1122 Ã1222 Ã1322 Ã1422

Ã2121 Ã2221 Ã2321 Ã2421 Ã2122 Ã2222 Ã2322 Ã2422

Ã1131 Ã1231 Ã1331 Ã1431 Ã1132 Ã1232 Ã1332 Ã1432

Ã2131 Ã2231 Ã2331 Ã2431 Ã2132 Ã2232 Ã2332 Ã2432




(1,1)

(2,1)

(1,2)

(2,2)

(1,3)

(2,3)

(1,1) (2,1) (3,1) (4,1) (1,2) (2,2) (3,2) (4,2)

where Ãαβγδ = (Aαβγδ)r×c. Note the multi-indexing of the block rows and columns.

3.4. A Special Case. Returning to the second example in §2.4, suppose

B = B(1) ◦ · · · ◦B(d )

where

B(ℓ) ∈ IRqℓ×nℓ

for ℓ = 1, . . . , d. Assume that [u(ℓ),v(ℓ)] is a blocking for B(ℓ) and note that

M =
{
u(1),v(1), . . . ,u(d ),v(d )

}
(3.21)

is a blocking for B. Let B
(ℓ)
µ,τ denote block (µ, τ) of B(ℓ). If

k = [ i1, j1, . . . , id, jd ]

then the k-th block of B is given by

Bk = B
(1)
i1,j1
◦ · · · ◦B

(d )
id,jd

.
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If

r = 1:2:2d

c = 2:2:2d

R =
{
u(1), . . . ,u(d )

}
(3.22)

C =
{
v(1), . . . ,v(d )

}
, (3.23)

then by applying (3.17) and (2.25) we see that

(BR×C)i,j =
(
B

(1)
i1,j1
◦ · · · ◦B

(d )
id,jd

)
r×c

= B
(d )
id,jd
⊗ · · · ⊗B

(1)
i1,j1

. (3.24)

Here, the notation (BR×C)i,j denotes block (ivec(i,q), ivec(j,n)). This result is key
to the development of a block-level multilinear product which we pursue in §4.2.

4. Blocked Contractions. We next apply our block tensor “technology” to the
problem of computing a contraction between two tensors. A multi-index summation
notation will be used to describe the summations. If n is a length-d index vector,
then

n∑

i=1

≡
n1∑

i1=1

· · ·
nd∑

id=1

.

4.1. The General Case. It is instructive to work through a small, motivating
example before we present the main results. Suppose we are given F ∈ IRα1×···×α4

and G ∈ IRβ1×···×β5 and wish to compute the order-5 tensor H ∈ IRα3×α4×β3×β4×β5

defined by

H(i1, i2, j1, j2, j3) =

α3∑

k1=1

α4∑

k2=1

F(i1, i2, k1, k2) · G(k1, k2, j1, j2, j3). (4.1)

Of course, for this to make sense, we must have α3 = β1 and α4 = β2. It is well known
that a tensor contraction such as this can be “reshaped” into a single matrix-matrix
multiplication. To see this we rewrite (4.1) using multi-index notation,

H(i, j) =

α(3:4)∑

k=1

F(i,k) · G(k, j). (4.2)

Define the index vectors

r = [ 1 2 ] λ = [ 3 4 ] ψ = [ 1 2 ] c = [ 3 4 5 ]

and note that 1 ≤ i ≤ α(r) and 1 ≤ j ≤ β(c) in (4.2). Recall from (2.17)-(2.20) that
the rows and columns of a tensor unfolding are vecs of reduced-order subtensors. In
particular

Fr×λ(i, :) = vec(F (i))T

Gψ×c(:, j) = vec(G(j))
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where F (i) ∈ IRα3×α4 and G(j) ∈ IRβ1×β2 are defined by

F (i)(k1, k2) = F(i1, i2, k1, k2) i = [ i1 i2 ]

G(j)(k1, k2) = G(k1, k2, j1, j2, j3) j = [ j1 j2 j3 ].

It follows from (4.2) that

H(i, j) =

α1∑

k1=1

α2∑

k2=1

F (i)(k1, k2) · G
(j)(k1, k2) = Fr×λ(i, :)· Gψ×c(:, j)

and thus

H[1 2]×[3 4 5] = Fr×λ· Gψ×c.

In this example, the summation is over the last two modes of F and the first two
modes of G. These are convenient locations for the summation indices because the
contraction H is then easily seen to be “isomorphic” to a matrix-matrix product of
simple tensor unfoldings.

If the summation modes are arbitrarily positioned, then they can be moved to
these friendly locations through transposition. This result is widely known and ex-
ploited, e.g., [2, 11]. Nevertheless, in keeping with the spirit of this paper we think
that it is useful to include a formal verification of this important maneuver.

Theorem 4.1. Suppose F ∈ IRα1×···×αf+ℓ , G ∈ IRβ1×···×βg+ℓ, and that p and q

are permutations of 1:f+ℓ and 1:g+ℓ respectively. Define

r = p(1:f) λ = p((f+1):(f+ℓ))

ψ = q(1: ℓ) c = q(( ℓ+1):(ℓ+g))

and assume α(λ) = β(ψ). If H ∈ IRαr1×···×αrf×βc1×···×βcg is defined by

H(i, j) =

α(λ)∑

k=1

F<p>(i,k) G<q>(k, j) 1 ≤ i ≤ α(r), 1 ≤ j ≤ β(c), (4.3)

then

H[1:f ]×[f+1:f+g] = Fr×λ· Gψ×c. (4.4)

Proof. The assumption α(λ) = β(ψ) ensures that the summations in (4.3) are
well defined. Using (2.17)-(2.20) we have

Fr×λ(i, :) = vec(F (i))T

Gψ×c(:, j) = vec(G(j))

where F (i) ∈ IRαλ1×···×αλℓ and G(j) ∈ IRβψ1
×···×βψℓ are defined by

F (i)(k) = F<p>(i1, . . . , if , k1, . . . , kℓ)

G(j)(k) = G<q>(k1, . . . , kℓ, j1, . . . , jg).
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It follows that for all i and j that satisfy 1 ≤ i ≤ α(r) and 1 ≤ j ≤ β(c) we have

H(i, j) =

α(λ)∑

k=1

F<p>(i,k) · G<q>(k, j)

=

α(λ)∑

k=1

F (i)(k) · G(j)(k) = Fr×λ(i, :)· Gψ×c(:, j)

which, using (2.14)-(2.18), implies (4.4).

It is instructive to illustrate what the theorem “says” when c = ∅. Suppose
F ∈ R

α1×···×α5 and G ∈ R
β1×β2 with α2 = β2, α3 = β1. If the tensor H ∈ R

α5×α1×α4

is defined by the contraction

H(i1, i2, i3) =

α(2:3)∑

k=1

F(i2, k1, k2, i3, i1)G(k2, k1),

then in the notation of the theorem we have f = 3, ℓ = 2, g = 0, p = [ 5 1 4 2 3 ], and
q = [ 2 1 ]. It follows that r = [ 5 1 4 ], c = ∅, λ = [ 2 3 ], and ψ = [ 2 1 ]. Thus,
we may conclude from (4.4) that

H[1:3]×∅ = vec(H) = F[5 1 4]×[2 3] · G[2 1]×∅ = F[5 1 4]×[2 3] · vec(G
T ),

a matrix-vector product.

If the tensors F and G are “blocked conformally”, then (4.3) can be reformulated
as a product of two block matrices.

Corollary 4.2. Assume that the notation and conditions of Theorem 4.1 hold.

Let

S = {s(1), . . . , s(f+ℓ)} (4.5)

be a blocking for F and set

R = {s(r1), . . . , s(rf )} Λ = {s(λ1), . . . , s(λℓ)}.

Likewise, let

T = {t(1), . . . , t(g+ℓ)} (4.6)

be a blocking for G and set

Ψ = {t(ψ1), . . . , t(ψℓ)} C = {t(c1), . . . , t(cg)}.

If

s(λk) = t(ψk) k = 1, . . . , ℓ (4.7)

then with respect to the tensor H, R is a blocking for modes 1 through f , C is a

blocking for modes f + 1 through f + g, and

HR×C = FR×Λ · GΨ×C. (4.8)
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Proof. From Theorem 3.3 we have

FR×Λ = PRFr×λP
T
Λ

GΨ×C = PΨGψ×cP
T
C
.

Since {s(r1), . . . , s(rf), t(c1), . . . , t(cg)} is a blocking for H we also have

HR×C = PR · H[1 : f ]×[f+1 : f+g] · P
T
C
.

The conformability condition (4.7) implies PΛ = PΨ and so it follows from (4.4) that

HR×C = PR(Fr×λ · Gψ×c)P
T
C

= (PRFr×λP
T
Λ
)(PΨGψ×cP

T
C
) = FR×Λ · GΨ×C

completing the proof.

Thus, the tensor H in (4.3) can be computed as either a matrix product (4.4) or as a
block matrix product (4.8). For the latter case, we develop recipes for the blocks of

HR×C. Let b
(S)
j be the length of the blocking vector s(j) in (4.5) and let b

(T)
j be the

length of the blocking vector t(j) in (4.6). Note that if

b
(F)
rows = b

(S)
r1 · · · b

(S)
rf b

(F)
cols = b

(S)
λ1
· · · b

(S)
λℓ

b
(G)
rows = b

(T)
ψ1
· · · b

(T)
ψℓ

b
(G)
cols = b

(T)
c1 · · · b

(T)
cg

then (4.7) implies b
(F)
cols = b

(G)
rows and we observe that





FR×Λ

GΛ×C

HR×C





is a





b
(F)
rows-by-b

(F)
cols

b
(G)
rows-by-b

(G)
cols

b
(F)
rows-by-b

(G)
cols





block matrix.

If 1 ≤ µ ≤ b(S)(r) and 1 ≤ τ ≤ b(T)(c), µ = ivec(µ,b(S)(r)) and τ = ivec(τ ,b(T)(c)),
then block (µ, τ) of HR×C is given by

(HR×C)µ,τ =

b(S)(λ)∑

q=1

(FR×Λ)µ,q (GΨ×C)q,τ .

Using (3.17) this can be rewritten in terms of subtensor unfoldings. Indeed, if index
vectors k, i(q), and j(q) are defined by

k(r) = µ k(c) = τ

i(q)(r) = k(r) i(q)(λ) = q

j(q)(ψ) = q j(q)(c) = k(c)

then

(Hk)[1:f ]×[f+1:f+g] =

b(S)(λ)∑

q=1

(Fi(q))r×λ
(
Gj(q)

)
ψ×c

. (4.9)
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4.2. Blocked Multilinear Products. As an example of how the preceding
results can be adapted to handle structured contractions, we briefly consider the
multilinear product since we have developed the supporting formulae in §2.4 and
§3.4. Suppose A ∈ IRn1×···×nd and that

B(k) ∈ IRqk×nk k = 1, . . . , d.

The tensor C ∈ IRq1×···×qd specified by

C(i) =

n∑

k=1

A(k)B(1)(i1, k1) · · ·B
(d )(id, kd) (4.10)

is the multilinear product of A with B(1), . . . , B(d ) and is denoted [6] by

C = (B(1), . . . , B(d ))·A.

If the order-(2d) tensor B is defined by

B = B(1) ◦ · · · ◦B(d),

then we see that C is a contraction of the form

C(i) =

n∑

k=1

A(k)B(i1, k1, . . . , id, kd).

We apply Theorem 4.1 with F = B, f = d, ℓ = d, G = A, g = 0, r = 1:2:2d, λ =
2:2:2d, ψ = 1:d, and c = ∅. It follows that Aψ×c = vec(A) and C[1:ℓ]×[ℓ+1:ℓ] = vec(C)
and so from Theorem 4.1 and (2.25) we have

vec(C) =
(
B(d) ⊗ · · · ⊗B(1)

)
vec(A). (4.11)

If the B matrices are blocked according to (3.21) and R and C are defined by (3.22)-
(3.23), then R is a blocking for C, C is a blocking for A, and

PRvec(C) =
(
PR

(
B(d) ⊗ · · · ⊗B(1)

)
PT

C

)
PCvec(A). (4.12)

From (3.24) we see that the matrix

BR×C = PR

(
B(d) ⊗ · · · ⊗B(1)

)
PT

C
(4.13)

is a block matrix whose entries are Kronecker products. Indeed, BR×C is essentially
the Tracy-Singh product of the B-matrices, see [16]. Thus, from (4.11)-(4.13) we have
the following block specification for C:

vecR(C) = BR×CvecC(A). (4.14)

4.3. Visualization. As in block matrix computations, it is sometimes important
to view a given blocked tensor contraction from different viewpoints. A small example
builds an appreciation for this point.

Suppose F is a 3× 4× 2 block tensor and G is a 2× 3× 5 block tensor such that
the blockings in mode 3 in F and mode 1 in G conform. Let H be the 3 × 4 × 3 × 5
block tensor whose elements are given by

H(i1, i2, j1, j2) =
∑

k

F(i1, i2, k) · G(k, j1, j2).
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(1) The tensor contraction H = F ⋆ G of two

order-3 tensors viewed graphically as a contrac-

tion of conformally blocked tensors.
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(2) Block Habcd = H(α1:α2, β1:β2, γ1:γ2, δ1:δ2)

is a ⋆-contraction of two “block fibers”, one

from F and one from G, i.e. Habcd =

F(α1:α2, β1:β2, :) ⋆ G(:, γ1:γ2, δ1:δ2).
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(3) The ⋆-contraction of the two block fibers

is a sum of ⋆-contractions of fiber blocks,

i.e. Habcd = Fab1 ⋆ G1cd + Fab2 ⋆ G2cd.

Fig. 4.1. Three Levels of a Blocked Contraction

For convenience, denote the operation of contracting two order-3 tensors T1 and T2 in
this way as T1 ⋆ T2, e.g., H = F ⋆ G. Fig 4.1 shows how this blocked contraction can
be visualized at three different levels. At the lowest level, block [a, b, c, d] in H can be
computed via the matrix equation

(Habcd)[1 2]×[3 4] = (Fab1)[1 2]×[3] · (G1cd)[1]×[2 3] + (Fab2)[1 2]×[3] · (G2cd)[1]×[2 3].

This follows from (4.9) and is depicted in part (3) of Fig 4.1.

5. Concluding Remarks. Given the nature of this paper, it is important to
be reminded in this closing section that there is a big difference between a cryptic
mathematical formula and its utilization in practice. A case in point is the permu-
tation matrix PM that is characterized in Theorem 3.1. Obviously, an integer vector
should be used to represent a permutation matrix like PM; it should never be com-
puted as a two-dimensional array. We offer a few details based on the convention that
if P = In(:,v) where v is permutation of 1:n, then v represents P . We capture this
connection with the notation Pv. Note that if y = Pvx, then y = x(v) while y(v) = x
implies y = PTv x. Letting 1n denote the n-vector of ones, here are some basic facts
that concern this style of representation:

1. If q and r are positive integers and w = [1:r:qr 2:2:qr · · · r:r:qr], then
Pw = Πq,r, the (q, r) perfect shuffle.

2. If u and v are permutations of 1:n and w = v(u), then Pw = PuPv.
3. If u is a permutation of 1:n and v is a permutation of 1:m, then Pw = Pu ⊗ Pv

where w = 1n ⊗ v + m · (u− 1n)⊗ 1m.
4. If u is a permutation of 1:n and v is a permutation of 1:m, then Pw =

diag(Pu, Pv) where w = [u (n·1n + v)]
The vector representation of the matrix PM, since it is defined by perfect shuffles,
Kronecker products, and direct sums, can be efficiently assembled using these facts.
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Another illustration of the gap between formula and implementation concerns
equation (4.11). The calculation of a multilinear product C = (B(1), . . . , B(d)) · A
would not explicitly use this formula. Instead it would proceed as follows:

for i = 1, . . . , d

A ← (In1 , . . . , B
(i), . . . , Ind)·A

end

The i-th update is referred to as the i-mode product, see [4, 13]. By using Theorem
4.1 we see that this is equivalent to the matrix-matrix multiplication

A(i) ← B(i)A(i)

where A(i) ≡ A[i]×[1:i−1 i+1:d] is the mode-i unfolding of A mentioned in §2.3.
Similarly, in a block-based implementation of the multilinear product, one would

not directly use (4.14). Instead, the block-matrix multiplications

AJ×C ← B(i)AI×C

would be carried out sequentially for modes i = 1, . . . , d. Here, I is the original
blocking for mode i, J is the new blocking of mode i inherited from the row blocking
of B(i), and C is a blocking for modes [1:i−1 i+1:d] of A.

Overall, it is reasonable to conclude from the above that block tensors behave
in much the same way as block matrices. Although the precise formulas are more
involved, the basic intuition that “all operations can be done at the block level” is
correct. By making precise the notion of a block unfolding and developing a framework
for reasoning about block tensor computation, we hope that we have laid a modest
foundation for further research. Our own agenda includes looking at block versions
of the tensor contraction engine [2], developing recursive tensor data structures that
extend the clever ideas in [3], expanding the functionality of the Tensor Toolbox
[11, 12] so that it supports block tensor computation, and analyzing block versions
of various tensor iterations such as [5]. Throughout all this it will be important to
chip away at the “notational divide” that currently besets the tensor computation
community, see [9].
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