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AN ANALYSIS OF THE TOTAL LEAST SQUARES PROBLEM*
GENE H. GOLUB* anp CHARLES F. VAN LOAN:Z
Dedicated to Professor Garrett Birkhoff on the accasion of his seventieth birthday

Abstract. Total Least Squares (TLS) is a method of fitting that is appropriate when there are errors in
both the observation vector b (m x 1iand in the data matrix A (m = n ). The technique has been discussed by
several authors, and amounts to fitting a “best” subspace to the points (a;, b,), i = 1. - - . m, where ais the
ith row of A, In this paper a singular value decomposition analysis of the TLS problem is presented. The
sensitivity of the TLS problem as well as its relationship to ordinary least squares regression is explored. An
algorithm for solving the TLS problem is proposed that utilizes the singular value decomposition and which
provides a measure of the underlying problem’s sensitivity.

1. Introduction. In the least squares (LS) problem we are given an m x n “data
matrix” A, a “vector of observations” b having m components, and a nonsingular
diagonal matrix D =diag (d,, - - -, d,,.), and are asked to find a vector x such that

(1.1) | D(b—Ax)|, =min.

Here || - [l; denotes Euclidean length. It is well known that any solution to the LS
problem satisfies the following system of “*normal equations:™

(1.2) A'D*Ax=ATD?%.

The solution is unique if rank (A) = n. However, regardless of the rank of A there is
always a unique minimal 2-norm solution to the LS problem given by

[1.3_] .I'LSZ{_DA)_Db,

where (DA} denotes the Moore-Penrose pseudo-inverse of DA,

In the (classical) LS problem there is an underlying assumption that all the errors
are confined to the observation vector . Unfortunately, this assumption is frequently
unrealistic; sampling errors, human errors, modeling errors, and instrument errors may
preclude the possibility of knowing the data matrix A exactly. Methods for estimating
the effect of such errors on x5 are given in Hodges and Moore [11] and Stewart [19].
The representation of data errors in a statistically meaningful way is a difficult task that
can be appreciated by reading the survey article by Cochrane [2].

In this paper we analyze the method of total least squares (TLS), which is one of
several fitting techniques that have been devised to compensate for data errors. A good
way to motivate the method is to recast the ordinary LS problem as follows:

minimize || Dr|

subject to b +r< Range (A)

If | Dr{l,=min and b + r = Ax, then x solves the LS problem (1.1). Thus the LS problem
amounts to perturbing the observation # by a minimum amount r so the b +r can be
“predicted” by the columns of A.
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Now simply put, the idea behind total least squares is to consider perturbations of
both b and A. More precisely, given the nonsingular weighting matrices

D =diag(d,, " ,dn), d=0,i=1,---,m,
T =diag(r, "+, w1, >0,i=1,---,n+1,
we seek to
minimize | D[E |r]1T||¢
E.r
(1.4)
subject to b +re Range (A + E).
Here, | [¢ denotes the Frobenius norm, viz. IB|3=X.%,/b;!*. Once a minimizing
[E |7]is found, then any x satisfying

(A+E)x=b+7

is said to solve the TLS problem (1.4). Thus, the TLS problem is equivalent to the
problem of solving a nearest compatible LS problem min|/(A +E)x — (b +7) |, where
“nearness’” is measured by the weighted Frobenius norm above.

Total least squares is not a new method of fitting; the n =1 case has been
scrutinized since the turn of the century. More recently, the method has been discussed
in the context of the subset selection problem, see [9], [10], and [20]. In Deming[3] and
Gerhold [4] the following more general problem is analyzed:

m n
A . 2 2
minimize ¥ {Asi+ ¥ wf;f-’s;}
. =

E.r i=1
(1.5)
subject to b +r e Range (A + E),
where E = (e;;), 7" =(r1,**, 'm), and the A; and w;; are given positive weights.

The TLS approach to fitting has also attracted interest outside of statistics. For
example, many algorithms for nonlinearly constrained minimization require estimates
of the vector of Lagrange multipliers. This typically involves the solution of an LS
problem where the matrix is the Jacobian of the “active constraints.” Because of
uncertainties in this matrix, Gill and Murray [5] have suggested using total least
squares. Similar in spirit is the work of Barrera and Dennis [1], who have developed a
“fuzzy Broyden” method for systems of nonlinear equations.

In the present paper we analyze the TLS problem by making heavy use of the
singular value decomposition (SVD). As is pointed out in Golub and Reinsch [7] and
more fully in Golub [6], this decomposition can be used to solve the TLS problem. We
indicate how this can be accomplished in § 2. An interesting aspect of the TLS problem
is that it may fail to have a solution. For example, if

10 1
A= = =T=1I
[0 o]’ & [1] b B

then for every ¢ >0, beRange (A+E,) where E, =diag(0, ¢). Thus, there is no
“smallest” ||[E | r]|l# for which b +r € Range (A + E) since b Range (A). This kind of
pathological situation raises several important questions. Under what set of circum-
stances does the TLS problem lack a solution? More generally, what constitutes an
ill-conditioned TLS problem? Answers to these and other related theoretical questions
of practical importance are offered in § 3 and § 4. In § 5 some algorithmic considera-
tions are briefly mentioned.
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2. The TLS problem and the singular value decomposition. If » = r is in the range
of A+ E, then there is a vector v € R" such that

(A+Eix=p+r;

ie.,

(2.1) {D[A:b}T+D[Egr]T}T'“1L_';] = 0.

This equation shows that the TLS problem involves finding a perturbation matrix
AeR™""" having minimal norm such that C + A is rank deficient, where

(2.2) C=D[A|b]T.

The singular value decomposition can be used for this purpose. Let

U'cv =diagioy, -, on-1),
{2<3) U“:{Hl,"'nun:]. 1/:[1.'1_."’,{.',,.1}, MEERM’ L‘KER"-—l’

v

Ty O PO T = O,

be the SVD of C with U'U =1I,, and V'V = I,. A discussion of this decomposition and
its elementary properties may be found in Stewart [17]. In particular, it can be shown
that

(2.4) Ty = min lAllg
1

rank: C=A1=Tn~

Moreover, the minimum is attained by setting A = —Cve ', where ¢ is any unit vector in
the subspace Se defined by

'2';} S(-ZSDGH{L‘:\_].'“,L‘,,_l}.

Suppose we can find a vector v in S¢ having the following form:

L‘=["\‘], veR", a#0.
a

If
-1

Oty iy

(2.6) x= Ty, Ty=diag (¢;, 1),

and we define E and 7 by
D[E|FIT = -Cvo",

then
(DLA[BIT + DIEIATIT_*] = - wo-v/at,. =0
In light of the remarks made after (2.1), it follows that x solves the TLS problem.
Ife,.i=(0,---,0,1)7is orthogonal to S¢, then the TLS problem has no solution.

On the other hand, if .., is a repeated singular value of C, then the TLS problem may
lack a unique solution. However, whenever this is the case it is possible to single out a
unique “minimum norm” TLS solution which we denote by xtis. In particular, let Q be
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an orthogonal matrix of order n —k + 1 with the property that

Woovln—
(2.7) [bgar, - - ‘,Unn]O:[O ;Er; ;‘c.

n—k 1
If we set xp s=—T,y/(at,.,), and if we define the 7-norm by
(2.8) Iwl.=ITi'wl, weR",

then it is easy to show that || x5, <||x||. for all other solutions x to the TLS problem
(1.4).

3. A geometric interpretation of the TLS problem. If the SVD of C = D[A/b]T is given
by (2.3), then it is easy to verify that

IDIA|6]To ] _

:..-O'n+1, U#O,
el

and that equality holds for nonzero v if and only if v is in the subspace S defined by

(2.5). Combining this fact with (2.6), we see that the TLS problem amounts to finding an
x e R" (if possible) such that :

|paterr )

I3,

The geometry of the TLS problem comes to light when we write

=0yt

2

(3.1) ”D[Agb]ﬂ"“[ "} . ,
~1 3k E e la;x —b;|
"T—l[ x] : RN S R
_1 5
where a:-’r= (a;i, " -+, a;), the ith row of A. The quantity
lalx-b[°

T2 [ -2
X Tl x+'f,,...1

is the square of the distance from [§]e R""' to the nearest point in the subspace P,
defined by

P,z{[ﬂ|aeR",beR,b=xTa}.

Here, the “distance™ between two points u and v in R" "' is given by || T'(u —v) |l..
Thus, the TLS problem is tantamount to finding a “‘closest’ subspace P, to the
(n+1)-tuples [5], i=1,- -, m. The simple case when n =1 and D and T are both
identities is worth illustrating. In Fig. 1 the LS and the TLS measures of goodness-of-fit
are depicted. In the LS problem it is the vertical distances that are important while in the
TLS problem it is the perpendicular distances that are critical. (When T # I, these
perpendiculars are “*skewed”.) To say that the TLS problem has no solution in the n =1
case is to say that the TLS fitting line is vertical. This would be the case, for example, if
the three data points in Figure 1are (1, 8), (2, —2),and (4, —1), for then the line a = Iis
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closest to the data in the sense of minimizing the sum of the squared perpendicular
distances.

(ay. bs)

FiG. 1. Least Squares versus Total Least Squares.

The fitting of straight lines when both variables are subject to error has received a
lot of attention in the statistics literature. We refer the interested reader to the papers by
Pearson [15], Madansky [14], Riggs et al. [16], and York [22], as well as Chapter 13 of
Linnik [13].

4. The sensitivity of the TLS problem. In this section we establish some inequalities
that shed light on the sensitivity of the TLS problem as well as on the relationship
between x;sand r1.s. The starting point in the analysis is to formulate the TLS problem
as an eigenvalue problem. Recall the definitions of the matrix C and the subspace S¢ in
§ 2. Itis easy to show that the “singular vectors™ ¢, in (2.3) are eigenvectors of the C'C,
and that in particular, S is the invariant subspace associated with o2_,, the smallest
eigenvalue of this matrix. Thus, if x € R" is such that

(4.1) C""CT”{_ﬂ:aﬁ_lr”[ ;]

then x solves the TLS problem. With the definitions

(4.2) A=DAT\, b=Db, A=t,.,,
(4.1) is readily seen to have the following block structure:
(4.3) [;;i :i:ﬂ[ T lli - ”][Ti lﬂ
Moreover, if

4.4) U'AV=3=diag(6,,---,6,), UU=1I, V'V=I, 6,262

Qs
I
=

is the SVD of A, and if we define
(4.5)  K=%"3=diag(d}, .62, g=3"0"h, K =6ThH z=V'T, s
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then (4.3) transforms to

K Ag z z
(4.6) [AgT' Azhz][—,\‘l]:J?’“l[--,&"‘]'
From this equation we see that
(4.7) (K-oral)z=¢
and
(4.8) ";;1+gTz =K

With these reductions, we now obtain some useful characterizations of both xt.s
and o, . In order for the subsequent analysis to be uncluttered, we freely make use of
the notation established in (2.2)-(2.8) and (4.2)-(4.5).

THEOREM 4.1. If &, > 0,41, then xrLs exists and is the only solution to the TLS
problem. Moreover,

(4.9) xrs=T(ATA -0l 0)7!
and

2 1 n .c.-2 2
(4.10) R ey

A i=1 0] — T p41

where
(4.11) c=(cy, ,en) =U"b,
(4.12) pis=min||D(b-Ax)|3=]D(b - Axws)5.

Proof. The separation theorem [21, p. 103] for eigenvalues of symmetric matrices
implies that

A -
(413) 0'1%0'120'23'"30’,,;(7,120',”1.

The assumptlon G, > 0.+ thus insures that o,,.1 is not a repeated smgu]ar value of CIf
C'Cll=0l.1[3) and 0#yeR", then it clearly follows that ATAy=02,1y, a
contradiction since &2 is the smallest eigenvalue of ATA. Thus, S, must contain a vector
whose (n + 1)st component is nonzero. This implies that TLS problem has a solution.
Since Se has dimension 1, this solution is unique. The formula (4.9) follows directly
from the “top half” of (4.3).
To establish (4.10) we observe from (4.7) and (4. 8) that

2
a-n+1

g (K—ak. ) 'g=h".

By using the definitions (4.5) and (4.11) this can be rewritten as

2 2

O’n+1 n (;'C; _ AR
+ Y =3 5—= 2 Ci,

P = S

or

> [1 » el meoo,
om[—ffZ PR ]=Z Ci.

-
i
3
|
q
x
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Inequality (4.10) now follows since

min||D(b - Ax)|3 = min|l6 - Ay} =minlc —Swli= ¥ 2 U
* ¥ w t=n+1
We shall make use of (4.10) in the next section. The characterization (4.9) points
out an interesting connection between total squares and ridge regression. Ridge
regression is a way of “‘regularizing” the solution to an ill-conditioned LS problem. (See
[12, pp. 190ft.].) Consider, for example, the minimization of

S ) =[D(b-AD|3+u] T x5,
where u is a positive scalar. It is easy to show that
xis(u) = Ti(ATA +uI)'AT6

solves this problem, and that || 77 x s(u) | = |xLs(1) |l becomes small as u becomes
large. This is the key to ridge regression; by controlling . we can control the 7-norm of
xrs(u).

What is particularly interesting, however, is that x5 = x;s(— 0',.+1} That is, total
least squares is a deregularizing procedure, a kind of “‘reverse” ridge regression. As we
shall see, this implies that the condition of the TLS problem is always worse than the
condition of the corresponding LS problem. For this reason it is interesting to compare
the LS and TLS fits with one another.

COROLLARY 4.2. Let prs=||D(b — Ax )| If &, > e, then

AlG
(4.14) leres—xusl, s Al leers
Ty~ Tpst
and
_ N
(4.15) HD(b_xTLS)”ngLSIil"’A“i”Q]-
T = Tp+

Proof. From (1.2) it is clear that x; 5= TA(ATA)'A75 and so from (4.9) we have
(4.16) xrs—xs = Ti[(A TA‘A—OA'iHU_] —(ATA)MATE
=aainTHATA —o0  J) ' T x0s
Applying T1' to both sides of this equation and taking norms gives

0'n+1 ”ILs“

”JCTLS xLS“T"- a2
Ty "0’}:4—1

This result coupled with the inequalities

(417) PLs = !]D(Axl.s T b) ||2 - | D[A I b]TT [xL‘lS} 5 =0 S ”xLS”ﬂ
{4-18) A“5”2=HD[A]b]T€n+1“gO'n+1, (63"4_1:(0,‘.',0, 1}}5

establish (4.14).
To prove (4.15), note that

(4.19) Db —Axtis)ll2 = prs +I| DA (x1is — x1s) |2
Now by (4.16),
DA(xpis—x1s) = Ui+IA(AA T/i -'01'214 1”_'17'1_1st,
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and so by invoking (4.17) and (4.18) we find

DA (xtis—xis) 2 = pusA ||f;.|2llfdi‘14~”"I —one)

A Ty 1
=pisAllbl; max ———— ———
l=k=n Ok TOp+1 Ok~ Tnsi

=pisAllbll/ (G, —ont)

M

Inequality (4.15) follows by substituting this result into (4.19). U

The corollary shows that xr s> ¥is as A10. Thus, by reducing the “observation
weight™ A =1,., the TLS problem “‘converges™ to the LS problem. Of course, if prs =0
and A has full rank, then x5 = x; s regardless of A.

The boundsin (4.14)and (4.15) are large whenever g, -1 is close to &, (This occurs,
for example, whenever o, is a nearly repeated singular value.) Our next results
indicate the extent to which (&, — .- ,)” ! measures the sensitivity of the TLS problem.

LEmMa 4.3, IfU =[iy, - - - , i) is a column partitioning of the matrix Uin the SVD
4.4) and if G = 0oy, then

b . 181
———— e oL L NN Lo
NG —ons) =|lxrusll- IR,

Proof. Substituting the SVD (4.4) into (4.9) and taking the r-norm of both sides
gives

i AT 2
| & - [ a, a: b ]
fXTisll- = - T T a .

i:I L()'l--"-(]““..-lj {(T;_G',,-l}

The lemma follows from the inequalities l=6/6+0)=1 O
TuroreEM 4.4, IfFA'e R™ " and b'€ R™ are such that
n=|D[A - A ;b'—b]THFgg
where
E= &!i T+ = 0‘
then the perturbed TLS problem
minimize |D[E|r]T |
E,r
(4.20) ‘
subject to b'+re Range (A'+E)
has a unique solution xt.s. Moreover, if x1s # 0, then
@.21) ”i_T'LS_x'.TLS“Té 9na, [“_A/\Hbu } i 1 .
“xTLS”r Tp — Tp+i Ty~ Tp+1 |!/\b|12_o-n—1

Proof. Denote the singular values of the matrices A’ = DA'T and C' = D[A'|b']T
by 6;=--=d, and o) =+ - =0, respectively. Well-known perturbation results
for singular values ensure that
. Al r _] o~ A - P £ & 2
{422) Ty — T p+1 !,£|G',, “0'::—1!—‘}031 _J,,i_iﬂ,g_.] _(T,,..1!§E—6_g=35.

In view of Theorem 4.1, this implies that the perturbed TLS problem above has a
unique solution xTis.
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Let [[](yeR", a € R) be a unit right singular vector of C associated with o, . ;.
Using the SVD perturbation theory of Stewart (18], it is possible to bound the
difference between [}] and [;], a corresponding singular vector of C' associated with
-1 Not surprisingly, the bound involves the separation of ¢, and o, ;:

MEH

Now from § 2 we have xp = éTl)-,f(/lcr) and xT s = ~T,z/(AB), where A = t,., and
T, =diag (t,,- - -, t,). Thus,

3n
Un _o-rr-‘-l

Lé

1 1 Izl
lers=xiusle = i/ - @/Be S fly =2+l o )
and so
' 3 x'.,"r .
[l xris — xTis Il E_“L‘ ML [1+AllxTs 1.
Tn=0uir |yl
Set 5" = Db'. From Lemma 4.3, (4.22), and the fact that A (5 - 6") |, = £/6, we have
y 18], 3{ 6] 1
[ === —
”xTLS’[ &n_on-v-] 2 6’;!'_0'n+1+6)l '
and so
733} lxos—xnusl._ 3n {§+§, Ale] }_Ih_
e lxresly On=0n 42 G~ Sy

In order to get a lower bound on ||y [, observe that

Ml 181 =ILA 8] ) [+ Ay oy 1AL Iy s

MEl=owr = (1 ~]a DA B+ Al [y
=yl 6l +1ALI=2]y LI Clh.

The assumption that xp;s#0 implies that A||4],> 0., for otherwise [1=[{]is a
singular vector of C. The theorem now follows because

1 201

—_— ) D
”)}”2 ”Abnz T Tne

Both the lemma and the theorem suggest that the TLS problem is unstable
whenever &, is close to o, . ;. This is borne out by some results established in [23] where
itis shown that a change of order la|in C can result in an insoluble TLS problem. Using
Lemma 4.3, this translates into the assertion that ¢, —o,., is a measure of how close
(1.4) is to the class of insoluble TLS problems.

Finally, we remark that if the LS problem is ill-conditioned, i.e., @, is small, then
the TLS problem is likewise sensitive.

5. Algorithmic considerations. Although a stable and efficient algorithm for
computing the SVD exists [7], there are numerical difficulties associated with the
determination of the dimension of S, Le., the multiplicity of ¢,,,;. One approach is to
regard all computed singular values in the interval [owe1, 0001+ €] as being identical,
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where £ = 0 is some small machine-dependent parameter. This leads to the following
overall procedure for computing the solution to the TLS problem:

1. Compute the SVD L’T(D[Aib]T_': V =diag (o, - * -, 041 ). Accumulate V.
2. Definetheindexp by o, >a, .1+ e Z20,.1 2 =001
3. Let V=[ty, -+, ,] be a column partition of V. and compute a Householder
matrix Q such that
> \]
[Lp—-ls sLn-rlJO_'[O i Ola .

4. If =0, then the TLS problem has no solution. Otherwise, Xtis=
- T| }".){{{Ifn_l}<

A shortcoming of this scheme is that it does not compute &, — o, -1, which as we
have seen, is a measure of TLS sensitivity. To rectify this it may be more desirable to
compute the SVD UTAV =diag (&1, -+, G = $ and then make use of the TLS
“secular equation’:

18
‘Ftrr)=cr‘[F+ z A—ac-—g]=m2_,s-

j=1T; —(T

In view of (4.9) and (4.11), if a o can be found that satisfies this equation and is less than
&, then

X718 = T; ‘:,{ifi = 0'11)_ 1iT6YTbA.

Standard root-finding techniques can be used for this purpose. (The function ¥ has
monotonicity properties in the bracketing interval [0, &,].) Notice how easy it is to
compute the TLS solution for different values of the weight A =1,.,. A detailed
discussion of these and other algorithmic aspects of the TLS problem, such as the
choosing of the weights, will appear elsewhere.

Acknowledgments. We are grateful to the following people for calling our
attention to various aspects of the TLS problem: A. Bjork, R. Byers, P. Diaconis, C.
Moler, C. Paige, C. Reinsch. B. Rust, P. Velleman, and J. H. Wilkinson.

Note added in proof. In collaboration with R. Byers, a graduate student at Cornell,
the authors have recently shown how to solve the TLS problem for the case when some
of the columns of A are known exactly. The technique involves (a) computing a OR
factorization of the “known” columns and (b) solving a TLS problem of reduced
dimension. This work will be described elsewhere.
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