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‘ A STORAGE-EFFICIENT WY REPRESENTATION FOR PRODUCTS OF
l HOUSEHOLDER TRANSFORMATIONS*

ROBERT SCHREIBERT aND CHARLES VAN LOANt

Abstract. A product Q= P, - -+ P, of mxm Householder matrices can be written in the form Q=
I+ WYT where W and Y are each m X r. This is called the WY representation of Q. It is of interest when
implementing Householder techniques in high-performance computing environments that are especially
good at matrix-matrix multiplication. In this note a storage-efficient way to implement the WY representation
is described. In particular, it is shown how the matrix Q can be expressed in the form Q = I+ YTY7, where
Ye R"™ " and Te R™" with T upper triangular. Usually r « m and so this “compact” WY representation
requires less storage. When compared with the recent block-reflector strategy proposed by Schreiber and
Parlett [ STAM J. Numer. Anal,, 25 (1988), pp. 189-205], the new technique still has a storage advantage
and involves a comparable amount of work.
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Introduction. Many important eigenvalue and least squares methods rely on
Householder matrices, i.e., matrices of the form H = I —2vv”, where v has unit 2-norm.
(The normalization of the Householder vector v is unnecessary in practice, but con-
venient for exposition.) Householder matrices are orthogonal and can be used to zero
selected portions of a matrix (see Golub and Van Loan [4]). Important implementations
are discussed in the LINPACK and EISPACK manuals, (Dongarra et al. [3], Smith
et al. [6]).

The QR factorization of an mXxn matrix A is a good setting for describing
Householder matrix use. In this application Householder matrices H,,- -, H, are
generated such that H,- - - H,H, A= R is upper triangular. '

ALcoriTHM 1 (Householder QR).
For k=1:n
Determine Householder H, such that if z= H,A(1:m, k:k)
then z(k+1:m)=0.
A<« HA
end k

N

Here, the notation A(i:j, p:q) denotes the submatrix of A consisting of rows i
through j and columns p through q. For vectors, z(i: j) denotes the subvector consisting
of components i through j.

The Householder update A< H.A is “rich” in matrix-vector multiplication.
Unfortunately, many of the new supercomputing architectures require code that is rich
in matrix-matrix multiplication in order to attain near-peak performance. This is not
surprising, because parallel-processing speeds have outstripped memory bandwidths.
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Matrix-vector products suffer from the need for one memory reference per multiply-add.
The corresponding ratio for square matrix-matrix multiplication is one to n. This
accounts for the current interest in the level-three BLAS and the increasingly vigorous

search for efficient block algorithms. (See Dongarra [2].)
Along these lines there has been some recent work on “block™ Householder

methods. Two such techniques are of interest to us. They are the WY representation
due to Bischof and Van Loan [1] and the block reflector method of Schreiber and
Parlett [5]. Both of these techniques can be used to solve what we shall refer to as
problem (P):

' B ()
(P) Given B = [Bl]’ find an orthogonal Q so Q"B=C =[ 0‘:'.

2

Here, B, Ce R™*" and B,, C;€ R™". In the WY approach the solution to problem
(P) is represented in the form
(1) Q=I+WwWY’ W, Ye R™",
where Y is lower trapezoidal, i.e., y; =0 if i <j. The submatrix C, is upper triangular.
Q is a rank-r correction to the identity, and so can be regarded as a generalization of

a Householder matrix.
A different solution to problem (P) is obtained by the block refiector approach.

It has the form
(2) Q=I-GG7, GeR™,
and obviously can be regarded as a block Householder matrix. It requires mr storage

locations to represent Q in this fashion, about half of those required by the WY
representation. The block reflector solution to problem (P) does not in general yield

an upper triangular C;.
The point of this note is to show how to modify the WY representation so that

only mr storage is necessary. In particular, we show how to write the matrix Q in (1)
as
(3) Q=I+YTY",
where Y e R™™" (lower trapezoidal) and T < R™" (upper triangular). We refer to (3)
as the compact WY representation of Q and we discuss its use in the design of a block
Householder QR procedure.

Block QR procedures. Any of the above block Householder representations can
be used to implement a block QR factorization procedure that is rich in matrix
multiplication. Suppose Ae R™™” and that n = rN.

ALGORITHM 2 (Block Householder QR).
Fork=1:N
s<(k—Dr+1
Determine block Householder Q such that if
QTA(s:m,s:s+r—1)=C then C is zero below row r.
A(s:m,s:n)« QTA(s:m, s:n)
end
Note that the update of B= A(s:m, s: n) is rich in matrix multiplication if Q is
represented as I+ WY7 or I- GG or I+ YTY  ie,

B« (I+WYT)"B=B+ Y(WTB).
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In the case of the WY representation, the kth W and Y are generated from the
Householder matrices P;=1 —2vjva j=1:r, that upper triangularize the submatrix

A(s:m, s:s+r—1). The procedure is simple.
ALGORITHM 3 (WY Generation).

l Forj=1:r

Ifj=1
) we[-20,]; Ye[u,]

else

ze 21+ WYy, We[W z, Y<[Y o]
endif

It follows that [+ WY = P, - - - P, and so A is reduced to upper triangular form
when Algorithm 2 is implemented with block Householders in WY form. Note that
each Y is just the aggregation of the Householder vectors and so is lower trapezoidal.
Thus, all the Y matrices fit into the zeroed portion of A as Algorithm 2 proceeds. If
the W factors are saved, then a workspace of size '

\ end
|
|

IZV: (m—(k—1)r)r=mn-n?/2

is required. This is a serious storage overhead although in many applications it is not
necessary to store all the W matrices.

These storage concerns do not arise if the block reflector approach is taken. If we
choose to write Q as I — GG then the Schreiber-Parlett procedure can be used to
generate the G matrices in Algorithm 2 as follows.

ALGORITHM 4 (G Generation).

—Compute Householders P, - -, P, such that P,--- P A(s:m,s:s+r—1) is
upper triangular.

—Let [ﬂ;] be the first r columns of P, - - - P, with U, e R™",

—Compute orthogonal Z e R™" and symmetric nonnegative definite M e R™"
such that U, = ZM, the polar decomposition.

—Compute Cholesky factorization LL” =1+ M.

—Set

j ZL
: G= .
y [UQL'T]

A block reflector implementation of Algorithm 2 results in a block upper triangular
reduction of A. Subsequent computations are necessary to obtain true triangular form.
If all the G matrices are to be saved, then a workspace of size Nr’= nr is required.
(There is no room in the A array for the top r X r portions of each G.)

To sum up, the WY representation is simpler to compute but it requires a much
larger workspace if all the block Householder factors are saved (mn —n?/2 versus nr).

The compact WY representation. The idea behind the compact WY representa-
tion is to exploit a connection between the W and Y matrices in (1). Here is the main
result that enables us to build up Y and T just as W and Y are constructed in
Algorithm 3.

THEOREM 1 (Compact WY update). Suppose Q=I+ YTY" € R™*™ is orthogonal
. WithY e R™ (m>j) and T € R” (upper triangular). Suppose P = I —2vv" is a House-
holder matrix with ve R™ and ||v||,=1. If

Q.=QP,
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then
Q+= I+ Y+T+YI,

T+=[T z]
0 p

where Y. =[Y v]e R™Y"V and

with p=—-2 and z=-2TY "v.
Proof. Note that

T Yy’
I+ Y, T,YT=I+[Y v][ Z][ T]
0 piLv

TY  + 207
~I+[Y v][ ke ]
pv

=]+ YTY T+ szT-{;pva.
This equals
Q.,=QP=I+YTY")YI -200")=I+YTY" =2YTY oo™ —2w07,

as long as we set p=—2 and z=-2TY "v. o
Returning to Algorithm 2, if P,=1 -2/, j=1:r, are the Householder matrices

that upper triangularize A(s:m, s:s+r—1) during the kth step, then here is how T
and Y are determined so that P, - - - P,=I+ YTY".

ALGORITHM 5 (YT Generation).

Forj=1:r
if j=1 then
Yol Te[~2]
else
ze«—=2TY Ty,
Y<[Y 9]
Te [T z ]
0 -2
endif
end j

Remarks. We conclude with a number of remarks concerning the compact WY
representation and its use in block Householder schemes such as Algorithm 2. To
begin with, if each triangular matrix T is saved, then a workspace of size Nr*/2=nr/2
is required. As with WY, the Y matrices fit in the zeroed portion of A and so no
additional workspace is required for their storage. Thus, compact WY is the most
storage efficient of the three representations discussed.

From the standpoint of actually generating the representative factors, {W, Y7},
{G}, or {T, Y}, the compact WY representation is also the most efficient. This can be
seen by comparing Algorithms 3, 4, and 5.

We next compare the cost of the update B« Q7B, where Q is in one of our three
block Householder forms. If B€ R™*™ and rank (Q —~ I) =7, then simple flop counts
reveal that the updates

(a) B«(I+WY")"™B=B+Y- (W' B),
(b) B«(I-GG")"™B=B-G- (G- B),
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(¢) Be«(I+YTY")'B=B+(Y-T")-(YT-B),

(d) B«(I+YTY")Y'B=B+Y-(T7-(Y"- B)),
each require about the same amount of arithmetic: 2n,n,r flops. (If Y’s trapezoidal
structure is exploited, then the flops thus saved offset those needed for the T multiplica-
tions.) Of course, counting flops is a crude predictor of performance. There is some
penalty associated with the compact WY form as it involves three matrix-matrix
operations instead of just two. However, if r<« n, or n,, as is often the case, then the
multiplications involving T are not significant. Note that there are two possible
strategies for compact WY updates; see (c) and (d) above. The proper choice depends
on n,, n,, r and the underlying architecture.

We mention that a QR factorization routine based on the compact WY representa-
tion is part of the new level-three BLAS LINPACK.

Last, but not least, the compact WY representation is stable. We omit the proof,
as it closely follows the demonstration of stability given in Bischof and Van Loan [1]
for the ordinary WY representation.
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