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ABSTRACT

A Schurtype decomposition for Hamiltonian matrices is given that relies on
wnitary symplectic similarity transformations. These transformations preserve the
Hamiltonian structure and are numerically stable, making them ideal for analysis and
computation. Using this decomposition and a special singular-value decomposition for
unitary symplectic matrices, a canonical reduction of the algebraic Riccati equation is
obtained which sheds light on the sensitivity of the nonnegative definite solution.
After presenting some real decompositions for real Hamiltonian matrices, we look into
the possibility of an orthogonal symplectic version of the QR algorithm suitable for
Hamiltonian matrices. A finite-step initial reduction to a Hessenberg-type canonical
foﬁn,is presented. However, no extension of the Francis implicit-shift technique was
found, and reasons for the difficulty are given.

L.- INTRODUCTION

L

-A matrix M €C2"*%" is said to be Hamiltonian [11] if JM=(JM )", where
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! Here, I, denotes the nXn identity and the superscript H conjugate trap,
y

g
| If we partition M conformably with J, then we find Pose, .3

A N
M= ‘ , N”:N, K=K
4 ) K.

‘ Throughout this paper, M will denote this block matrix.
| The eigensystem of M has many easily verified properties. In particulay

M[?]:A[!{] y,z€C", y'y+z'zs£0,

~

SRR R
yHKy+z Nzs=(A+ N )y,
Re(M)#0 = y'=ER,

N>0 and K>0 = Re(A)#0

N=0, K=0, and Re(A)=0 = Ay=2Ay and A'z=—-Az

Here, F>0 (F=0) means that F is positive (nonnegative) definite. Fora good
set of references to the Hamiltonian-matrix literature, see the paper by Laub

‘ and Meyer [4].
‘ Our interest in Hamiltonian matrices stems from the fact that if

‘s A Z\T Y . Y 7 nXn
‘ {K #AHHZ]-[Z]W, Y, Z.Wee,

and Y is nonsingular, then X= —7Y 1 solves the following matrix Ricesd

equation:
— XNX+XA+AHX+K=0.
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the desired Riccati equation solution is given by X= —Q, 0.
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following three conditions hold:

Nonnegative definiteness (NND):

N=BB#, K=CHC.

Stabilizability (S):

I wiA=Aw" (w+0) and RE(A)=0, then w"Bz40.
Detectability (D):

If Ax=MAx(x5:0) and Re(A)=0, then Cx+0.

These conditions ensure, via (1.6) and (1.2), that M has precisely n eigenval-
ues in the open left half plane. Moreover, if the columns of ; span the
associated invariant subspace, then it is known, and will be shown in Section

4, that the matrix X=—ZY ~! exists and satisfies X¥ =X>=0. It is this

solution to the Riccati equation that is normally required and to which we
direct all our attention in the sequel.

The most reliable method for carrying out the above invariant-subspace
computations makes use of the well-known QR algorithm for eigenvalues and
is described by Laub [3]. The crux of his technique involves the calculation of
M’s Schur decomposition, i.e., a unitary matrix

. Qll QlZ nXn
[Qm sz]’ Oy €™

is found such that

Tl 1 T12

H =T= . nxn
QMQT[O Té}, T,EC™",

is upper triangular with the eigenvalues of T}, in the open left half plane.

Since
0u]_[0u
M[Qm] [Qm]T”’




CHRIS PAIGE AND CHARLES VAN LOAN

Although Laub’s method relies on numerically stable unitary transformy.
tions, it has the defect of not preserving the Hamiltonian form of \; durin
the computations; the QR algorithm treats M as just another general matn'xg
This shortcoming is the motivation for the present paper. Our intentioy is t(;
examine a class of unitary transformations which preserve Hamiltoniay strue-
ture under similarity. Using these transformations, we prove Hamiltoman
matrix “versions” of both the Schur and Hessenberg decompositions, giving
an algorithm in the latter case.

As mentioued above, our interest in these things has to do with solving the
Riccati equation. By presenting unitary, structure preserving reductiong of
this problem, we hope to lay the groundwork for future algorithmic and
perturbation-theory developments. Although many authors before us have
offered analyses of the Riccati problem and the associated matrix M (2,3, 6),
we think that the unitary-matrix approach should prove to be as useful in this
setting as it has in other application areas.

2. UNITARY SYMPLECTIC MATRICES

A matrix QE€C?**" is said to be symplectic [11] if Q”JQ=], where Jis
defined by (1.1). If Q is symplectic and M is a Hamiltonian matrix, then
M, =0QMQ ™! is also a Hamiltonian matrix:

QMM Q=0Q" oM =M= (JM)"=0"(1M,)"0.

Let © denote the set of all unitary symplectic matrices. Note that Q€2
implies QJ=JQ, from which we conclude

Qll QIZ

Q= ), ECVL
~le Qn]’o Q In’()ll’gl_e }

Q:{QECZ"””K):[

It is clear that © is closed under multiplication and conjugate transposition.

We now identify two subsets of 2 that are importaut for both practical
and theoretical reasons. The first subset is made up of Householder symplectic
matrices, which have the form

H(k,u):[g (;] peCr .

where

Quu’
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and

uf =0,...,0,1,,..., i, ] #0.

The other subset is comprised of the Jacobi symplectic matrices which have
the structure

](k,C,S):[_g g]y C;SECnxn’

where

C=diag(1,...,1,c,1,...,1), S=diag(0,...,0,s,0,...,0)
[—
k—1
and

lc|2+]s]2=1, ¢éseR.

Observe that the cosine and sine in a Jacobi symplectic matrix have the form
c=wé and s=w§, where ¢ and § are real and satisfy ¢% +52=1 and where
weC,

We now present three algorithms which show how these special members
of 9 can be used to zero specified entries in a vector. The verification that
these algorithms perform as described is left to the reader, who may wish to

review the zeroing capabilities of Householder and Jacobi transformations in
Wilkinson {9] before reading further.

ArcorrreM 1. Given y and z in C" and k (1<<k<n), the following
algorithm constructs a unitary Q€2 such that if

then for all i>k, x, =0, while for all i<k, y, =w; and z,=x;:

L Let a=(jz; >+ - - - +|2,,*)"/2, and let z; =]z, |¢'® define I ER.
2. If a=0, then set Q=I,,. Otherwise set Q=H(k, u), where

H_. = ~i® 3 >
u —(O,...,O,zk—l—ae ’e,zkH,...,zn).
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ArcoriTBM 2. Given y and z in C*, k (1<k<n), and the assumptioy
that §, 2, ER, the following algorithm computes a unitary Q€9 such that if

Yyl_(w
Q[z]_[x]’
then x;, =0 and for all ik, y,=w,, and z, =x:

L. If z, =0, then set ¢=1 and s=0. Otherwise, define ¢ and s by the
equations 1=y, /7, s=(1+72)"2 and c=7s.
2. Set Q=J(k,c,s).

(Note: If y,z, is not real, then no J(k,c,s) exists such that the (n+k)th
component of J(k,c, s) ‘f is zero.)

ArcoritaM 3. Given y and z in C", k (1<<k<Xn), and the assumption
that 27, 7,3, ER, the following algorithm constructs a unitary Q&2 such
that if

then w; =0 for all i>k, x;=0 for all i=k, and for all i<k—1, z;=x, and

Yy, —w;.

1. Use Algorithm 1 to construct @, €2 such that

2. Use Algorithm 2 to construct Q, €2 such that
T n _
oGl e o

(Note: frg, =27, y;z; is real, so that this step is defined.)
3. Use Algorithm 1 to construct Qy €2 such that

Qs[;]:[l;)], w,xeCn, wkH:---:wn:O.

4. Set Q=000
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We mention in passing that the matrix  that emerges from Algorithm 3
has the following structure:

I, O 0 0
o I
k—1

0 - le 0 Qu

We next establish a special variant of the singular-value decomposition for
matrices in 2. The result is a specialization of a theorem due to Stewart (8]
and will be useful in Section 4, where we analyze the Riccati equation. Before
we proceed, we remind the reader of the “ordinary” singular-value decom-

position theorem which states that if FEC "7 then there exist unitary U and
V in C"*" such that

UfFV=diag(p,,..., o), O<p;<p,<---<p

ne

The u, are referred to as singular values. See [7] for details.

TueoreM 2.1 (Symplectic SVD). If

_ Qll Ql2 nXn
Q—[_le Qn]’ Qu> P €C™,

is unitary, then there exist unitary U and V in C"*" such that

diag(U”,U”)Qdiag(V,V):{ A g] (2.1)

Z=diag(oy,...,0,),

!
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Proof. Let U/'Q, |V, =3=diag(o,,...,0,) be the singular-value deco.
| position of ;. Write

I S=diag(d, I, ,....di1, ), my+---+m,=n,
‘ where 0<d, <d, < - -- <d,, and partition W= U}Q,V; conformably:

\ Wi T
| W=U/"0,V, = :
| W W

Since

. . > \"%
dlag(UIH,UIH)leag(Vl,Vl)Z[ “wos ]

is unitary, it follows that

SW=WH"3S, SWH=ws, (2.22)

2+ WHW=I,, S:4+wWwhH=]

By comparing blocks in (2.2a) we find

diVVij:“/,'inf’ diVV,'iH:W-d- (2.3a)

L het

Thus, diW,,=dW;fd,=W,d? from which we conclude that W;=0

v - whenever i4j. It then follows from (2.2b) that

WilW,=(1-d})L,.  WWi=(1-d})L,. @3 |

We now determine unitary Y=diag(Y,,,...,Y;;) and Z=diag(Zn
.vsZy,) such that YAWZ is diagonal. If d ; 70, then from (2.3a) we se€ W
is Hermitian. Let Y,; be a unitary matrix comprised of its eigenvectors, andsé |
Z,;=Y,.1f d, =0, then from (2.3b) W, is unitary. In this case, set Y;; =W ;
| and Z,, =1, . It then follows that

Y”WZZdiag(Yﬁ'WuZu, ey YﬁWkakk) =A
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is diagonal. Moreover, it is easy to show from the block structure of = that
yH3$Z=3. Equation (2.1) now follows by setting U= U,Y and V=V, Z. The
relations between the o, and the §, follow from the equation 22 +A%=] . W

We conclude this section with a corollary that assures us that without loss
of generality, we may consider only J(k,c,s) and H(k, u) matrices in the
course of doing computations with unitary symplectic transformations.

CoroLLaRY 2.2. If QEQ, then Q is the product of Householder sym-
plectic and Jacobi symplectic matrices.

Proof. Note that in (2.1),

s -Al_ 7 B
[A by ]—kI——Ill(k’ok’ O)-

Thus, it suffices to show that the corollary holds for matrices of the form
diag(V,V) where V#V=1] . Let P,_, ---PV=R be the Householder upper

triangularization of V. (See [7] for details.) It follows that R has the form
R=diag(e’®*) and therefore .

ding(V,V)=diag(P,, P,) - -ding(P,-, Boy)- 1] (k,e0).  m

3. UNITARY DECOMPOSITIONS FOR HAMILTONIAN MATRICES

. We now turn to the problem of reducing a given Hamiltonian matrix to
ééﬁle “Hluminating” canonical form using unitary symplectic similarity trans-
formations, The following theorem constitutes our main result along these

lines.

THEOREM 3.1 (The Schur-Hamiltonian decomposition). If

M:[A N ] EcanZn
K —A¥

amiltonian matrix whose eigenvalues have nonzero real part, then there
@ unitary

o QH Ql2 nXn
Q“[_Qm Qu]’ Q1> Q1 EC™,
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such that

T R axn
QHZMQ:[O __TH], T,ReC x N (3.1)

where T is upper triangular and RY =R. Q can be chosen so that the
eigenvalues of T are in the left half plane.

The matrix in (3.1) is said to be in Schur-Hamiltonian form.

Proof. We use induction. For the n=1 case, M has the form

a; i, ]

. oy, &, K, TER
K —a; tia, L %o B TR

>

and the assumption that M has no purely imaginary eigenvalues ensures that
Kk is positive. It then follows that real ¢ and s exist such that if Q=J(1,¢, ),

then
QH[al K ]Q: Aooe A, <O
koo 0 A/ 1=

It follows that QMQ has the Schur-Hamiltonian form (3.1).
We now assuune that the decomposition exists for Hamiltonian matrices of

order 2(n~—1) that have no purely imaginary eigenvalues. Suppose

M[y]:A[y], y,z€C"

-~ -
~ ~

with yHy+ 27250 and Re(A)<<0. By (1.4) we have yz€R, and so, using
Algorithm 3, there exists a PE2 such that
PlY] :a[%‘], a0,

~

where e, is the first column of I,. From the equation (PMP)e, =Ae, we

conclude that
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However, since this matrix is also Hamiltonian, we must have v=0, K#

13
B= =B, s=r, N =N,, y=-X, u=0, g=—w, and D, = —AF, Thus, the
eigenvalues of M are A and —X together with the eigenvalues of the
1) Hamiltonian matrix M, defined by
the A N,
VIR, A
By induction, there exists a unitary symplectic Z of the form
Zy, Zm] _
Z= , Zyy», 2y, ECT XD
[ —Zy Zy Hee
hat such that
8),
; ZH A N _ T, R,
K, -—AY o -TH|
4 where T} is upper triangular with eigenvalues in the left half plane. It is easy
to verify that if
vof
1 0 0 0
0 Z 0 Z
0=>p|_ 11 2|
0 0 1 0
0 —Z,10 Z,

then QMO has the form specified by the theorem. u

This result amounts to a Schurlike decomposition for Hamiltonian
matrices. However, unlike the ordinary Schur decomposition, it may fail to
exist if M has purely imaginary eigenvalues. For example, it is easy to verify
ﬂ?at no unitary symplectic similarity transformation can reduce

ve




22 CHRIS PAIGE AND CHARLES VAN LOAN

CoroLLARY 3.2. If MEC2®" is ¢ Hamiltonian matrix, then there
exists a unitary symplectic Q€ C* "2 such that

T, Ty R, Ry }p
iy 0 Ty Ry Ry |,
MO = R +g=
Q Q 0 0 ; ’1‘1111 O } ) p q n,

0 1\22 - TIJZI - ]2{; } q
P P
s 20 Ba

where T,, is upper triangular and . -y is a Hamiltonian matrix with
1\22 — Ty

purely imaginary eigenvalues.

Let us refer to those Hamiltonian matrices that can be reduced to the
form (3.1) as Schur-reducible Hamiltonian matrices. An important class of
Schurreducible Hamiltonian matrices is identified in the following result:

Cororrary 3.3. If

A N

K —al

with N'=N=0 and K" =K=0, then M is Schurreducible.

Proof. Let N; —»N and K; — K be sequences of positive definite matrices,
and define
A N,
M; = K. —All

1
It follows from (1.5) and Theorem 3.1 that for each j, M, is Schur-reducible.
Suppose Qj” M,Q, (Q; €YY is in Schur-Hamiltonian form and that Q is a limit
point of the (bounded) sequence {Q,}. It follows that Q is in 2 and that
Q*MQ is in Schur-Hamiltonian form. n

4. THE RICCATI EQUATION

The results of the previous two sections can be used to render an
interesting reduction of the Riccati equation (1.8). Assume first that Nz0

—y-
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K =0. In light of Corollary 3.3 there exists a unitary
Q:[ Qu le]
—Q1 Qu
such that
QHMQZ[g _I;H]. (4.1)

Using the symplectic SVD (Theorem 2.2), we can find nXn unitary matrices
U and V such that

UHQ,Vv=2=diag(o,,...,0,), O0<o, <. - <g,<1,
UHQ\V=A4=diag(s,,...,8,), (4.2)

and thus the equation

[2 -ZZH] [ —QéllJ = [ _ng]T (43)
transforms to
[é j]iﬂ][—za]:[—za]f’ (4.4)

where A=U"AU, N=U"NU, K=U"KU, and T=VH#TV. Moreover, it is
easy to verify that if

—~XNX+XA+AHX+K=0,

then X=UXU¥ solves the original Riccati equation (1.8). In particular, if the
diagonal matrix £ is nonsingular, then

X=Udiag($, /0,,...,8, /0,) U" (4.5
/

ls 2 Hermitian solution. .

Recall the conditions of stabilizability (S) and detectability (D) given in
;:SeCtion 1. We now show that if (S) and (D) both hold, as they frequently do
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in optimal control, then the matrix X in (4.5) not only exists but satisfic
X=0.

TuroreM 4.1.  Suppose that N=BB* and K=C"C and that the matr
Q in (4.1) is chosen so that T has eigenvalues in the left half plane. Let th
unitary matrices U and V be given by (4.2). If (S) and (D) hold, then tk
matrix X in (4.5) exists, solves the Riccati equation, and satisfies X=0.

Proof. We first show that (S) implies that o, is positive We do this b
contradiction. Suppose for some j=1 that 0=0,=---=0;<<g;, . Thu
diag($,....,8;)=1;, and 2, =diag(o,.,,...,,) is nonsmgulal With obvioy
notation, (4.4) can be partitioned as follows:

Ay Ap Ny Nyg 0 0 0 0

A 21 A 22 Nltzl sz 0 2y _ 0 2 Tll Tlg
Ku KIQ _AAtlll _A[z[l B 17 0 B 17 0 rAzl Azz
Kfé Kzz _Aﬁlz _Agz 0 = 0 ~4,

By comparing (1, 1) blocks in this equation we find that 1\11 =0. Sinc
N=0, it follows that Nlo =0 as well Companson of the (2 1) (3,1), and (4,1
blocks respectively reveals that T,, =0, A11 TH and A, =0.If0s£weC
satisfies Tllw Aw, then it follows that Re(A)<0, since the eigenvalues of |
are the eigenvalues of T}, and T,, collectively. This implies that

elglls] (5]

However, if we define x by

x:U[lg],

then we have Affx= —Ax and B!x=0. This contradicts (S), and hence o, >0,

Now conditions (D) ensures via (1.3) and (1.6) that M has no purely
imaginary eigenvalues. Thus, the eigenvalues of T are in the open left half
plane. However, if the matrix X is defined by (4.5), then A—NX=0Q,,70;;
and

X(A—NX)+(A—NX)"'X=—(K+XNX).

It follows from Lyapunov theory that X=0.
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It should be apparent at this stage that if o, is small, then numerical
difficulties can be expected to arise in the course of solving the Riccati
equation. To begin with, if follows from (4.5) that

_(-e)”

=-——————=cot0,.

)
I, = A

-1
0

Suppose X is computed with a computer having machine precision &. Since

rounding errors of order &/0; can be expected to contaminate the result, we
see that serious inaccuracies can arise whenever o, is small.

Another way to understand the difficulties posed by a small ¢, is based on
the observation that an O(o,) perturbation of M can lead to a breakdown of
Laub’s method [3] (or any other technique that requires the calculation of

M’s “stable” invariant subspace). To illustrate this important point, define the
Hamiltonian M, by

M, =ZQHMQZH,

where Q is chosen in (4.1) so that T’s eigenvalues are in the left half plane
and where Z is defined by the quantities in (4.2) as follows:

Z:[ le ZIZ]
—Zy Zy|
Z,,=Udiag(0, 0,,...,0,)V#,  Z,=Udiag(1,é,,...,8,)VH.

Note that

Ml ZIl ]:[ Zu ]T
0 —Zy —Zyy |

but since Z,, is singular, the matrix X=2,Z ;' is undefined. We conclude

that Laub’s method would fail when applied to M, a matrix that is within
O(Ul) Of M:

IM=Myll, =I(Q—Z)QHM—ZQHUM(Q—Z)ZH |, <2/2 0, I M |l ;.

f.lowever, the precise connection between a small 0; and nearness to unstabi-
lizability is unclear at this time.
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5. ORTHOGONAL DECOMPOSITIONS FOR REAL HAMILTONIAN
MATRICES

Much of what we have presented carries over to the case of rey
Hamiltonian matrices. For example, if M is real and Q is orthogonal apg
symplectic, then QTMQ is Hamiltonian. Obvious real analogs exist for Algo.
rithms 1, 2, and 3, Theorems 2.1, 3.1, and 4.1, and Corollaries 2.2, 3.2, anq
3.3.

In this section we consider the canonical forms for real Hamiltonjay
matrices that can be attained via orthogonal symplectic similarity transforms.
tions. Recall that in the ordinary eigenvalue problem, the real Schur decom-
position theorem states that if FER"*" then there exists an orthogonal
QER" " such that QTFQ is upper quasitriangular, i.e., upper traingular with
possible 22 blocks along the diagonal. By confining the complex conjugate
eigenvalues of F to these blocks, complex arithmetic is avoided.

TuroreM 5.1, (The real Schur-Hamiltonian decomposition) Suppose
/ N
M:{A’ T], AN, KER"",
K -A

where NT=N and K" =K. If M has no nonzero purely imaginary cigenval-
ues, then there exists an orthogonal

Cu O «
= = N s o ER” ”’
Q [_ng Oy, Q> Ve
such that
T S RN (5)

where T is upper quasitriangular and R" =R. Q can be chosen such that the
eigenvalues of T are in the left half plane and such that each 2X2 block on
the diagonal of T is associated with a complex conjugate pair of eigenvalues.

Proof. The proof is identical with the proof of Theorem 3.1 except in the
handling of the complex conjugate eigenvalues, which we now describe.
Suppose
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AN where
A=y+iy, VSRER, p5£0, so ys£0,
eal y:u—}_iv’ u,veRn’
nd !
20- =r+is, r,sER", :
nd ;
’ From these equations we have

an
la- u ol_fu o[ Y o
n- M[r S]_[r s][—‘u yJ' (5-2)
al
th Let Z; be an orthogonal symplectic matrix determined by Algorithm 3 such
te ( that

Z u V| _ ael f R n O R

1[ r s ] - 0 g ’ fa ge > # acR.

) ae, +if
Since ;

Is an eigenvector of Z\MZ], it follows from (1.4) that
(ae, +if)”(z'g) is real and hence g,=0.
Again using Algorithm 3, we ¢

an find an orthogonal symplectic Z, such
that
ae; fl_[w _[“ 77] 2xg
z2[0 gHoJ’ w=[o Meges

G R |

The theorem now follows by induction, since
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| 6. ALGORITHMS

,J We conclude this paper with some remarks about the computation of the
i real Schur-Hamiltonian form. Ideally, we would like an analog of the OR
| algorithm consisting of a finite-step initial reduction followed by a Francis-type
‘ iteration. (See Stewart [7] for a discussion of the QR algorithm.) Of course,
[ both phases of the proposed algorithm should rely exclusively on orthogohaj
| symplectic similarity transformations.

We have been able to produce an initial reduction for this problem with
] an analog of the Householder reduction to Hessenberg form. (A matriy i
‘ upper Hessenberg if it is zero below its first subdiagonal.) In particular, if
;l: N=N? K=K’ and A are in R™*”, then there exists an orthogonal sym-
' plectic Q such that

7| A N — H R nxn g
Qf[K ;AT]Q,—[D _H,,.}, H,R,DER""", (6.1)

where H is upper Hessenberg, R” =R, and D= diag( di....d).
To see how this can be accomplished, suppose that we have computed
orthogonal symplectic matrices Py, ..., P, _; such that '

| M, ,=(P,---P_ ) M(P,---P,_ )

‘ : Hy Hyp Ny Nyo Iz
| uey  Hy Nt Np Jok
Dy, et —HL —eu” Jeo
vel Dy | —HE —HL | )«

where H,, is upper Hessenberg, D, is diagonal, and e, is the kth column of
1. By using Algorithm 3 we can construct an orthogonal symplectic matrix I
such that
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It then follows that !

Hy, 1'712 Ny Nyp
r = _ -
aee,  Hy Ny, Nyy
PiM; P = 7 1
Dy, 0 —Hj —oee
0 Dzz ‘“H1T2 ~‘Hsz

where the bar is used to indicate those submatrices that are affected by the
update. It is clear that M, _, has the “Hessenberg-Hamiltonian” form de-
scribed in (6.1).

The overall computation can be arranged so that A, K, and N are
overwritten by H, D, and R respectively. To illustrate this and other compu-
} tational nuances associated with the reduction, we give a detailed statement
of the algorithm along with an assessment of the amount of work as measured
in flops. A “flop” is the amount of floating-point arithmetic and subscripting
approximately associated with the arithmetic expression f; «f,, —tg,,.

Forj=1,...,n—2,

A (a) Determine a Householder matrix U of order n—j such that
1
M ki +1,5 :
o |4
k. 0

(* denotes an arbitrary nonzero element).
Set U=diag(L, U)).

A< UAU  [2(n—})*+2n(n—j) flops],
N«UNU  [2(n—j)®+2f(n—j) flops],
K« UKU  [2(n—j)?flops].

(b) Determine ¢ and s such that ¢2 +s2=1 and

[ c s] Qivy,j :[*]
—s c ki+l,7- 0 .
[A' N

X _AT]e—](i—l—l,c,s)[i _A;T]](Hl,o,s)r.
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(c) Determine a Householder matrix V; of order n—j such that

a *
T

0

Vf . 1

a O

Set V=diag( I].,VI.).

A« VAV [2(n—7)2 +2n(n—7j) flops],
N VNV [2(n—1)*+2j(n—j) flops],
K« VKV [2(n—{)? flops).

In deriving the flop counts it is assumed that symmetry and zero structure are
exploited. When these work assessments are totaled, we find that the entire
reduction requires ‘£n® flops.

The orthogonal matrix Q in (6.1) is clearly given by

Q=P P,_, 62)
where each b, has the form
R ) Ty .
P=H(j+ 1, u)J(j+1,c,s) H(j+1,0).

© can be stored in “factored” form, as is so often done in orthogonal matrix
computations. That is, the “Householder vectors™ u and v can be stored in the
positions of the entries that they are designed to reduce. [The sines and
cosines of the n—2 Jacobi symplectics require O(n) storage.] Approximately
5 13 flops are needed to compute Q) when it is synthesized from right to left in
(6.2), assuming, of course, that the symplectic structure of the P, matrices is
exploited. Thus, the entire computation of (6.1) requires 8n® flops and no
more than 4n? storage. (A, Q11, and Q,, each need n® locations, while N and
K require n?/2 locations apiece because of symmetry.)

This brings us to the problem of reducing the “condensed” Hessenberg
form (6.1) to the Schur-Hamiltonian form (5.1). We have so far been unable to
find an algorithm to do this, and here we briefly summarize what some of the
difficulties appear to be. _

The main problem seems to be that all potentially useful symplectic
updates of the condensed form lead to “fillin” of the nice zero structure. F"Of
example, we can compute a shift from the “lower” second-order Hamiltonian
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L matriX H
hpp hp n Top Ton
Po Bn - Top p=n—1
d v 0 - hpp ~h, » ? >

0 d, —h,, —h

easily enough, but then what do we do with it? Somehow we would like to

update the condensed form with an implicit-shift technique in such a way that

the new (n,n—1) entry of H is reduced more or less as it is in the QR

algorithm. We have yet to figure out how this can be accomplished. However,

L we remark that once h, ., is negligible, it is possible to zero d, with a
symplectic J(n, ¢, s) and the problem then deflates.

Despite our lack of success generalizing the iterative portion of the QR
algorithm, we are reasonably optimistic. Extensions of this algorithm exist for
many other unitary eigenvalue decompositions. Consider, for example, the
SVD algorithm [1] for singular values and the QZ algorithm [5] for the
generalized Schur decomposition. It would therefore be somewhat surprising
if no such extension could be found for the Schur-Hamiltonian decomposition.
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