
SIAM REVIEW c© 2003 Society for Industrial and Applied Mathematics
Vol. 45, No. 1, pp. 3–000

Nineteen Dubious Ways to
Compute the Exponential of a
Matrix, Twenty-Five Years
Later∗

Cleve Moler†

Charles Van Loan‡

Abstract. In principle, the exponential of a matrix could be computed in many ways. Methods involv-
ing approximation theory, differential equations, the matrix eigenvalues, and the matrix
characteristic polynomial have been proposed. In practice, consideration of computational
stability and efficiency indicates that some of the methods are preferable to others, but
that none are completely satisfactory.
Most of this paper was originally published in 1978. An update, with a separate bibliog-
raphy, describes a few recent developments.

Key words. matrix, exponential, roundoff error, truncation error, condition

AMS subject classifications. 15A15, 65F15, 65F30, 65L99

PII. S0036144502418010

1. Introduction. Mathematical models of many physical, biological, and eco-
nomic processes involve systems of linear, constant coefficient ordinary differential
equations

ẋ(t) = Ax(t).

Here A is a given, fixed, real or complex n-by-n matrix. A solution vector x(t) is
sought which satisfies an initial condition

x(0) = x0.

In control theory, A is known as the state companion matrix and x(t) is the system
response.

In principle, the solution is given by x(t) = etAx0 where etA can be formally
defined by the convergent power series

etA = I + tA +
t2A2

2!
+ · · · .

∗Published electronically February 3, 2003. A portion of this paper originally appeared in SIAM
Review, Volume 20, Number 4, 1978, pages 801–836.

http://www.siam.org/journals/sirev/45-1/41801.html
†The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 (moler@mathworks.com).
‡Department of Computer Science, Cornell University, 4130 Upson Hall, Ithaca, NY 14853-7501

(cv@cs.cornell.edu).

1

2 CLEVE MOLER AND CHARLES VAN LOAN

The effective computation of this matrix function is the main topic of this survey.
We will primarily be concerned with matrices whose order n is less than a few

hundred, so that all the elements can be stored in the main memory of a contemporary
computer. Our discussion will be less germane to the type of large, sparse matrices
which occur in the method of lines for partial differential equations.

Dozens of methods for computing etA can be obtained from more or less classical
results in analysis, approximation theory, and matrix theory. Some of the methods
have been proposed as specific algorithms, while others are based on less constructive
characterizations. Our bibliography concentrates on recent papers with strong algo-
rithmic content, although we have included a fair number of references which possess
historical or theoretical interest.

In this survey we try to describe all the methods that appear to be practical, clas-
sify them into five broad categories, and assess their relative effectiveness. Actually,
each of the “methods” when completely implemented might lead to many different
computer programs which differ in various details. Moreover, these details might have
more influence on the actual performance than our gross assessment indicates. Thus,
our comments may not directly apply to particular subroutines.

In assessing the effectiveness of various algorithms we will be concerned with the
following attributes, listed in decreasing order of importance: generality, reliability,
stability, accuracy, efficiency, storage requirements, ease of use, and simplicity. We
would consider an algorithm completely satisfactory if it could be used as the basis
for a general purpose subroutine which meets the standards of quality software now
available for linear algebraic equations, matrix eigenvalues, and initial value problems
for nonlinear ordinary differential equations. By these standards, none of the algo-
rithms we know of are completely satisfactory, although some are much better than
others.

Generality means that the method is applicable to wide classes of matrices. For
example, a method which works only on matrices with distinct eigenvalues will not
be highly regarded.

When defining terms like reliability, stability and accuracy, it is important to
distinguish between the inherent sensitivity of the underlying problem and the error
properties of a particular algorithm for solving that problem. Trying to find the
inverse of a nearly singular matrix, for example, is an inherently sensitive problem.
Such problems are said to be poorly posed or badly conditioned. No algorithm working
with finite precision arithmetic can be expected to obtain a computed inverse that is
not contaminated by large errors.

An algorithm is said to be reliable if it gives some warning whenever it introduces
excessive errors. For example, Gaussian elimination without some form of pivoting is
an unreliable algorithm for inverting a matrix. Roundoff errors can be magnified by
large multipliers to the point where they can make the computed result completely
erroneous, but there is no indication of the difficulty.

An algorithm is stable if it does not introduce any more sensitivity to perturbation
than is inherent in the underlying problem. A stable algorithm produces an answer
which is exact for a problem close to the given one. A method can be stable and
still not produce accurate results if small changes in the data cause large changes in
the answer. A method can be unstable and still be reliable if the instability can be
detected. For example, Gaussian elimination with either partial or complete pivoting
must be regarded as a mildly unstable algorithm because there is a possibility that
the matrix elements will grow during the elimination and the resulting roundoff errors

THE EXPONENTIAL OF A MATRIX 3

will not be small when compared with the original data. In practice, however, such
growth is rare and can be detected.

The accuracy of an algorithm refers primarily to the error introduced by trun-
cating infinite series or terminating iterations. It is one component, but not the only
component, of the accuracy of the computed answer. Often, using more computer
time will increase accuracy provided the method is stable. For example, the accuracy
of an iterative method for solving a system of equations can be controlled by changing
the number of iterations.

Efficiency is measured by the amount of computer time required to solve a par-
ticular problem. There are several problems to distinguish. For example, computing
only eA is different from computing etA for several values of t. Methods which use
some decomposition of A (independent of t) might be more efficient for the second
problem. Other methods may be more efficient for computing etAx0 for one or several
values of t. We are primarily concerned with the order of magnitude of the work
involved. In matrix eigenvalue computation, for example, a method which required
O(n4) time would be considered grossly inefficient because the usual methods require
only O(n3).

In estimating the time required by matrix computations it is traditional to esti-
mate the number of multiplications and then employ some factor to account for the
other operations. We suggest making this slightly more precise by defining a basic
floating point operation, or “flop”, to be the time required for a particular computer
system to execute the FORTRAN statement

A(I, J) = A(I, J) + T ∗A(I, K).

This involves one floating point multiplication, one floating point addition, a few
subscript and index calculations, and a few storage references. We can then say,
for example, that Gaussian elimination requires n3/3 flops to solve an n-by-n linear
system Ax = b.

The eigenvalues of A play a fundamental role in the study of etA even though
they may not be involved in a specific algorithm. For example, if all the eigenvalues
lie in the open left half plane, then etA → 0 as t → ∞. This property is often called
“stability” but we will reserve the use of this term for describing numerical properties
of algorithms.

Several particular classes of matrices lead to special algorithms. If A is sym-
metric, then methods based on eigenvalue decompositions are particularly effective.
If the original problem involves a single, nth order differential equation which has
been rewritten as a system of first order equations in the standard way, then A is a
companion matrix and other special algorithms are appropriate.

The inherent difficulty of finding effective algorithms for the matrix exponential
is based in part on the following dilemma. Attempts to exploit the special properties
of the differential equation lead naturally to the eigenvalues λi and eigenvectors vi of
A and to the representation

x(t) =
n∑

i=1

αie
λitvi.

However, it is not always possible to express x(t) in this way. If there are confluent
eigenvalues, then the coefficients αi in the linear combination may have to be poly-
nomials in t. In practical computation with inexact data and inexact arithmetic, the

4 CLEVE MOLER AND CHARLES VAN LOAN

gray area where the eigenvalues are nearly confluent leads to loss of accuracy. On the
other hand, algorithms which avoid use of the eigenvalues tend to require considerably
more computer time for any particular problem. They may also be adversely effected
by roundoff error in problems where the matrix tA has large elements.

These difficulties can be illustrated by a simple 2-by-2 example,

A =
[
λ α

0 µ

]
.

The exponential of this matrix is

etA =

eλt α
eλt − eµt

λ− µ

0 eµt

 .

Of course, when λ = µ, this representation must be replaced by

etA =
[
eλt αteλt

0 eλt

]
.

There is no serious difficulty when λ and µ are exactly equal, or even when their
difference can be considered negligible. The degeneracy can be detected and the
resulting special form of the solution invoked. The difficulty comes when λ − µ is
small but not negligible. Then, if the divided difference

eλt − eµt

λ− µ

is computed in the most obvious way, a result with a large relative error is produced.
When multiplied by α, the final computed answer may be very inaccurate. Of course,
for this example, the formula for the off-diagonal element can be written in other
ways which are more stable. However, when the same type of difficulty occurs in
nontriangular problems, or in problems that are larger than 2-by-2, its detection and
cure is by no means easy.

The example also illustrates another property of etA which must be faced by any
successful algorithm. As t increases, the elements of etA may grow before they decay.
If λ and µ are both negative and α is fairly large, the graph in Figure 1 is typical.

Several algorithms make direct or indirect use of the identity

esA = (esA/m)m.

The difficulty occurs when s/m is under the hump but s is beyond it, for then

‖esA‖ ¿ ‖esA/m‖m.

Unfortunately, the roundoff errors in the mth power of a matrix, say Bm, are usually
small relative to ‖B‖m rather than ‖Bm‖. Consequently, any algorithm which tries
to pass over the hump by repeated multiplications is in difficulty.

Finally, the example illustrates the special nature of symmetric matrices. A is
symmetric if and only if α = 0, and then the difficulties with multiple eigenvalues
and the hump both disappear. We will find later that multiple eigenvalue and hump
problems do not exist when A is a normal matrix.

THE EXPONENTIAL OF A MATRIX 5

t
ss/m

(etA (

Fig. 1 The “hump”.

It is convenient to review some conventions and definitions at this time. Un-
less otherwise stated, all matrices are n-by-n. If A = (aij) we have the notions of
transpose, AT = (aji), and conjugate transpose, A∗ = (aji). The following types of
matrices have an important role to play:

A symmetric ↔ AT = A,

A Hermitian ↔ A∗ = A,

A normal ↔ A∗A = AA∗,
Q orthogonal ↔ QT Q = I,

Q unitary ↔ Q∗Q = I,

T triangular ↔ tij = 0, i > j,

D diagonal ↔ dij = 0, i 6= j.

Because of the convenience of unitary invariance, we shall work exclusively with
the 2-norm:

‖x‖ =

[
n∑

i=1

|xi|2
]1/2

, ‖A‖ = max
‖x‖=1

‖Ax‖.

However, all our results apply with minor modification when other norms are used.
The condition of an invertible matrix A is denoted by cond(A) where

cond(A) = ‖A‖‖A−1‖.
Should A be singular, we adopt the convention that it has infinite condition. The
commutator of two matrices B and C is [B, C] = BC − CB.

Two matrix decompositions are of importance. The Schur decomposition states
that for any matrix A, there exists a unitary Q and a triangular T , such that

Q∗AQ = T.

If T = (tij), then the eigenvalues of A are t11, · · · , tnn.

6 CLEVE MOLER AND CHARLES VAN LOAN

The Jordan canonical form decomposition states that there exists an invertible P
such that

P−1AP = J.

where J is a direct sum, J = J1 ⊕ · · · ⊕ Jk, of Jordan blocks

Ji =

λi 1 0 · · · 0
0 λi 1 · · · 0
...

...
...
1

0 0 0 · · · λi

(mi-by-mi).

The λi are eigenvalues of A. If any of the mi are greater than 1, A is said to be
defective. This means that A does not have a full set of n linearly independent
eigenvectors. A is derogatory if there is more than one Jordan block associated with
a given eigenvalue.

2. The Sensitivity of the Problem. It is important to know how sensitive a
quantity is before its computation is attempted. For the problem under consideration
we are interested in the relative perturbation

φ(t) =
‖et(A+E) − etA‖

‖etA‖ .

In the following three theorems we summarize some upper bounds for φ(t) which are
derived in Van Loan [32].

Theorem 1. If α(A) = max{Re(λ)|λ an eigenvalue of A} and µ(A) = max{µ|µ
an eigenvalue of (A∗ + A)/2}, then

φ(t) 5 t‖E‖ exp[µ(A)− α(A) + ‖E‖]t (t = 0).

The scalar µ(A) is the “log norm” of A (associated with the 2-norm) and has many
interesting properties [35], [36], [37], [38], [39], [40], [41], [42]. In particular, µ(A) =
α(A).

Theorem 2. If A = PJP−1 is the Jordan decomposition of A and m is the
dimension of the largest Jordan block in J , then

φ(t) 5 t‖E‖MJ (t)2eMJ (t)‖E‖t (t = 0),

where

MJ (t) = m cond(P) max
05j5m−1

tj/j!.

Theorem 3. If A = Q(D + N)Q∗ is the Schur decomposition of A with D
diagonal and N strictly upper triangular (nij = 0, i = j), then

φ(t) 5 t‖E‖MS(t)2eMS(t)‖E‖t (t = 0),

where

MS(t) =
n−1∑

k=0

(‖N‖t)k/k!.

THE EXPONENTIAL OF A MATRIX 7

As a corollary to any of these theorems one can show that if A is normal, then

φ(t) 5 t‖E‖e‖E‖t.

This shows that the perturbation bounds on φ(t) for normal matrices are as small as
can be expected. Furthermore, when A is normal, ‖esA‖ = ‖esA/m‖m for all positive
integers m implying that the “hump” phenomenon does not exist. These observations
lead us to conclude that the eA problem is “well conditioned” when A is normal.

It is rather more difficult to characterize those A for which etA is very sensitive
to changes in A. The bound in Theorem 2 suggests that this might be the case when
A has a poorly conditioned eigensystem as measured by cond(P). This is related to
a large MS(t) in Theorem 3 or a positive µ(A) − α(A) in Theorem 1. It is unclear
what the precise connection is between these situations and the hump phenomena we
described in the Introduction.

Some progress can be made in understanding the sensitivity of etA by defining
the “matrix exponential condition number” ν(A, t):

ν(A, t) = max
‖E‖=1

∥∥∥∥
∫ t

0

e(t−s)AEesA ds

∥∥∥∥
‖A‖
‖etA‖ .

A discussion of ν(A, t) can be found in [32]. One can show that there exists a pertur-
bation E such that

φ(t) ∼= ‖E‖
‖A‖ν(A, t).

This indicates that if ν(A, t) is large, small changes in A can induce relatively large
changes in etA. It is easy to verify that

ν(A, t) = t‖A‖,

with equality if and only if A is normal. When A is not normal, ν(A, t) can grow like
a high degree polynomial in t.

3. Series Methods. The common theme of what we call series methods is the
direct application to matrices of standard approximation techniques for the scalar
function et. In these methods, neither the order of the matrix nor its eigenvalues play
a direct role in the actual computations.

Method 1. Taylor series. The definition

eA = I + A + A2/2! + · · ·

is, of course, the basis for an algorithm. If we momentarily ignore efficiency, we can
simply sum the series until adding another term does not alter the numbers stored in
the computer. That is, if

Tk(A) =
k∑

j=0

Aj/j!

and fl[Tk(A)] is the matrix of floating point numbers obtained by computing Tk(A) in
floating point arithmetic, then we find K so that fl[TK(A)] = fl[TK+1(A)]. We then
take TK(A) as our approximation to eA.

8 CLEVE MOLER AND CHARLES VAN LOAN

Such an algorithm is known to be unsatisfactory even in the scalar case [4] and our
main reason for mentioning it is to set a clear lower bound on possible performance. To
illustrate the most serious shortcoming, we implemented this algorithm on the IBM
370 using “short” arithmetic, which corresponds to a relative accuracy of 16−5 ∼=
0.95 · 10−6. We input

A =
[−49 24
−64 31

]

and obtained the output

eA '
[−22.25880 −1.432766
−61.49931 −3.474280

]
.

A total of K = 59 terms were required to obtain convergence. There are several
ways of obtaining the correct eA for this example. The simplest is to be told how the
example was constructed in the first place. We have

A =
[
1 3
2 4

] [−1 0
0 −17

] [
1 3
2 4

]−1

,

and so

eA =
[
1 3
2 4

] [
e−1 0
0 e−17

] [
1 3
2 4

]−1

,

which, to 6 decimal places is,

eA '
[−0.735759 0.551819
−1.471518 1.103638

]
.

The computed approximation even has the wrong sign in two components.
Of course, this example was constructed to make the method look bad. But

it is important to understand the source of the error. By looking at intermediate
results in the calculation we find that the two matrices A16/16! and A17/17! have
elements between 106 and 107 in magnitude but of opposite signs. Because we are
using a relative accuracy of only 10−5, the elements of these intermediate results
have absolute errors larger than the final result. So, we have an extreme example of
“catastrophic cancellation” in floating point arithmetic. It should be emphasized that
the difficulty is not the truncation of the series, but the truncation of the arithmetic.
If we had used “long” arithmetic which does not require significantly more time but
which involves 16 digits of accuracy, then we would have obtained a result accurate
to about nine decimal places.

Concern over where to truncate the series is important if efficiency is being con-
sidered. The example above required 59 terms giving Method 1 low marks in this
connection. Among several papers concerning the truncation error of Taylor series,
the paper by Liou [52] is frequently cited. If δ is some prescribed error tolerance, Liou
suggests choosing K large enough so that

‖TK(A)− eA‖ 5
(‖A‖K+1

(K + 1)!

)(
1

1− ‖A‖/(K + 2)

)
5 δ.

THE EXPONENTIAL OF A MATRIX 9

Moreover, when etA is desired for several different values of t, say t = 1, · · · ,m, he
suggests an error checking procedure which involves choosing L from the same in-
equality with A replaced by mA and then comparing [TK(A)]mx0 with TL(mA)x0. In
related papers Everling [50] has sharpened the truncation error bound implemented
by Liou, and Bickhart [46] has considered relative instead of absolute error. Unfor-
tunately, all these approaches ignore the effects of roundoff error and so must fail in
actual computation with certain matrices.

Method 2. Padé approximation. The (p, q) Padé approximation to eA is
defined by

Rpq(A) = [Dpq(A)]−1Npq(A),

where

Npq(A) =
p∑

j=0

(p + q − j)!p!
(p + q)!j!(p− j)!

Aj

and

Dpq(A) =
q∑

j=0

(p + q − j)!q!
(p + q)!j!(q − j)!

(−A)j .

Nonsingularity of Dpq(A) is assured if p and q are large enough or if the eigenvalues
of A are negative. Zakian [76] and Wragg and Davies [75] considered the advantages
of various representations of these rational approximations (e.g. partial fraction, con-
tinued fraction) as well as the choice of p and q to obtain prescribed accuracy.

Again, roundoff error makes Padé approximations unreliable. For large q, Dqq(A)
approaches the series for e−A/2 whereas Nqq(A) tends to the series for eA/2. Hence,
cancellation error can prevent the accurate determination of these matrices. Similar
comments apply to general (p, q) approximants. In addition to the cancellation prob-
lem, the denominator matrix Dpq(A) may be very poorly conditioned with respect
to inversion. This is particularly true when A has widely spread eigenvalues. To see
this again consider the (q, q) Padé approximants. It is not hard to show that for large
enough q, we have

cond[Dqq(A)] ' cond(e−A/2) = e(α1−αn)/2

where α1 = · · · = αn are the real parts of the eigenvalues of A.
When the diagonal Padé approximants Rqq(A) were computed for the same ex-

ample used with the Taylor series and with the same single precision arithmetic, it was
found that the most accurate was good to only three decimal places. This occurred
with q = 10 and cond[Dqq(A)] was greater than 104. All other values of q gave less
accurate results.

Padé approximants can be used if ‖A‖ is not too large. In this case, there are
several reasons why the diagonal approximants (p = q) are preferred over the off
diagonal approximants (p 6= q). Suppose p < q. About qn3 flops are required to
evaluate Rpq(A), an approximation which has order p+q. However, the same amount
of work is needed to compute Rqq(A) and this approximation has order 2q > p + q.
A similar argument can be applied to the superdiagonal approximants (p > q).

There are other reasons for favoring the diagonal Padé approximants. If all the
eigenvalues of A are in the left half plane, then the computed approximants with

10 CLEVE MOLER AND CHARLES VAN LOAN

p > q tend to have larger rounding errors due to cancellation while the computed
approximants with p < q tend to have larger rounding errors due to badly conditioned
denominator matrices Dpq(A).

There are certain applications where the determination of p and q is based on the
behavior of

lim
t→∞

Rpq(tA).

If all the eigenvalues of A are in the open left half plane, then etA → 0 as t →∞ and
the same is true for Rpq(tA) when q > p. On the other hand, the Padé approximants
with q < p, including q = 0, which is the Taylor series, are unbounded for large t.
The diagonal approximants are bounded as t →∞.

Method 3. Scaling and squaring. The roundoff error difficulties and the
computing costs of the Taylor and Padé approximants increases as t‖A‖ increases,
or as the spread of the eigenvalues of A increases. Both of these difficulties can be
controlled by exploiting a fundamental property unique to the exponential function:

eA = (eA/m)m.

The idea is to choose m to be a power of two for which eA/m can be reliably and
efficiently computed, and then to form the matrix (eA/m)m by repeated squaring.
One commonly used criterion for choosing m is to make it the smallest power of two
for which ‖A‖/m 5 1. With this restriction, eA/m can be satisfactorily computed
by either Taylor or Padé approximants. When properly implemented, the resulting
algorithm is one of the most effective we know.

This approach has been suggested by many authors and we will not try to at-
tribute it to any one of them. Among those who have provided some error analysis
or suggested some refinements are Ward [72], Kammler [97], Kallstrom [116], Scraton
[67], and Shah [56], [57].

If the exponential of the scaled matrix eA/2j

is to be approximated by Rqq(A/2j),
then we have two parameters, q and j, to choose. In Appendix A we show that if
‖A‖ 5 2j−1 then

[Rqq(A/2j)]2
j

= eA+E ,

where

‖E‖
‖A‖ 5 8

[‖A‖
2j

]2q (
(q!)2

(2q)!(2q + 1)!

)
.

This “inverse error analysis” can be used to determine q and j in a number of ways.
For example, if ε is any error tolerance, we can choose among the many (q, j) pairs
for which the above inequality implies

‖E‖
‖A‖ 5 ε.

Since [Rqq(A/2j)]2
j

requires about (q + j + 1
3)n3 flops to evaluate, it is sensible to

choose the pair for which q+j is minimum. The table below specifies these “optimum”
pairs for various values of ε and ‖A‖. By way of comparison, we have included the
corresponding optimum (k, j) pairs associated with the approximant [Tk(A/2j)]2

j

.

THE EXPONENTIAL OF A MATRIX 11

Table 1 Optimum scaling and squaring parameters with diagonal Padé and Taylor series approxi-
mation.

ε

10−3 10−6 10−9 10−12 10−15

‖A‖

10−2 (1, 0)
(1, 0)

(1, 0)
(2, 1)

(2, 0)
(3, 1)

(3, 0)
(4, 1)

(3, 0)
(5, 1)

10−1 (1, 0)
(3, 0)

(2, 0)
(4, 0)

(3, 0)
(4, 2)

(4, 0)
(4, 4)

(4, 0)
(5, 4)

100 (2, 1)
(5, 1)

(3, 1)
(7, 1)

(4, 1)
(6, 3)

(5, 1)
(8, 3)

(6, 1)
(7, 5)

101 (2, 5)
(4, 5)

(3, 5)
(6, 5)

(4, 5)
(8, 5)

(5, 5)
(7, 7)

(6, 5)
(9, 7)

102 (2, 8)
(4, 8)

(3, 8)
(5, 9)

(4, 8)
(7, 9)

(5, 8)
(9, 9)

(6, 8)
(10, 10)

103 (2, 11)
(5, 11)

(3, 11)
(7, 11)

(4, 11)
(6, 13)

(5, 11)
(8, 13)

(6, 11)
(8, 14)

These pairs were determined from Corollary 1 in Appendix A, and from the fact that
about (k + j − 1)n3 flops are required to evaluate [Tk(A/2j)]2

j

.
To read the table, for a given ε and ‖A‖ the top ordered pair gives the optimum

(q, j) associated with [Rqq(A/2j)]2
j

while the bottom ordered pair specifies the most
efficient choice of (k, j) associated with [Tk(A/2j)]2

j

.
On the basis of the table we find that Padé approximants are generally more effi-

cient than Taylor approximants. When ‖A‖ is small, the Padé approximant requires
about one half as much work for the same accuracy. As ‖A‖ grows, this advantage
decreases because of the larger amount of scaling needed.

Relative error bounds can be derived from the above results. Noting from Ap-
pendix A that AE = EA, we have

‖[Rqq(A/2j)]2
j − eA‖

‖eA‖ =
‖eA(eE − I)‖

‖eA‖
5 ‖E‖e‖E‖ 5 ε‖A‖eε‖A‖.

A similar bound can be derived for the Taylor approximants.
The analysis and our table does not take roundoff error into account, although

this is the method’s weakest point. In general, the computed square of a matrix R
can be severely affected by arithmetic cancellation since the rounding errors are small
when compared to ‖R‖2 but not necessarily small when compared to ‖R2‖. Such
cancellation can only happen when cond(R) is large because R−1R2 = R implies

cond(R) = ‖R‖2
‖R2‖ .

The matrices which are repeatedly squared in this method can be badly conditioned.
However, this does not necessarily imply that severe cancellation actually takes place.
Moreover, it is possible that cancellation occurs only in problems which involve a large

12 CLEVE MOLER AND CHARLES VAN LOAN

hump. We regard it as an open question to analyze the roundoff error of the repeated
squaring of eA/m and to relate the analysis to a realistic assessment of the sensitivity
of eA.

In his implementation of scaling and squaring Ward [72] is aware of the possibility
of cancellation. He computes an a posteriori bound for the error, including the effects
of both truncation and roundoff. This is certainly preferable to no error estimate at
all, but it is not completely satisfactory. A large error estimate could be the result of
any of three distinct difficulties:

(i) The error estimate is a severe overestimate of the true error, which is actually
small. The algorithm is stable but the estimate is too pessimistic.

(ii) The true error is large because of cancellation in going over the hump, but the
problem is not sensitive. The algorithm is unstable and another algorithm
might produce a more accurate answer.

(iii) The underlying problem is inherently sensitive. No algorithm can be expected
to produce a more accurate result.

Unfortunately, it is currently very difficult to distinguish among these three situations.
Method 4. Chebyshev rational approximation. Let cqq(x) be the ratio of

two polynomials each of degree q and consider max05x<∞ |cqq(x)− e−x|. For various
values of q, Cody, Meinardus, and Varga [62] have determined the coefficients of the
particular cqq which minimizes this maximum. Their results can be directly translated
into bounds for ‖cqq(A)− eA‖ when A is Hermitian with eigenvalues on the negative
real axis. The authors are interested in such matrices because of an application to
partial differential equations. Their approach is particularly effective for the sparse
matrices which occur in such applications.

For non-Hermitian (non-normal) A, it is hard to determine how well cqq(A) ap-
proximates eA. If A has an eigenvalue λ off the negative real axis, it is possible for
cqq(λ) to be a poor approximation to eλ. This would imply that cqq(A) is a poor
approximation to eA since

‖eA − cqq(A)‖ = |eλ − cqq(λ)|.

These remarks prompt us to emphasize an important facet about approxima-
tion of the matrix exponential, namely, there is more to approximating eA than just
approximating ez at the eigenvalues of A. It is easy to illustrate this with Padé
approximation. Suppose

A =

0 6 0 0
0 0 6 0
0 0 0 6
0 0 0 0

 .

Since all of the eigenvalues of A are zero, R11(z) is a perfect approximation to ez at
the eigenvalues. However,

R11(A) =

1 6 18 54
0 1 6 18
0 0 1 6
0 0 0 1

 ,

THE EXPONENTIAL OF A MATRIX 13

whereas

eA =

1 6 18 36
0 1 6 18
0 0 1 6
0 0 0 1

and thus,

‖eA −R11(A)‖ = 18.

These discrepancies arise from the fact that A is not normal. The example illustrates
that non-normality exerts a subtle influence upon the methods of this section even
though the eigensystem, per se, is not explicitly involved in any of the algorithms.

4. Ordinary Differential Equation Methods. Since etA and etAx0 are solutions
to ordinary differential equations, it is natural to consider methods based on numeri-
cal integration. Very sophisticated and powerful methods for the numerical solution
of general nonlinear differential equations have been developed in recent years. All
worthwhile codes have automatic step size control and some of them automatically
vary the order of approximation as well. Methods based on single step formulas, mul-
tistep formulas, and implicit multistep formulas each have certain advantages. When
used to compute etA all these methods are easy to use and they require very little
additional programming or other thought. The primary disadvantage is a relatively
high cost in computer time.

The o.d.e. programs are designed to solve a single system

ẋ = f(x, t), x(0) = x0,

and to obtain the solution at many values of t. With f(x, t) = Ax the kth column
of etA can be obtained by setting x0 to the kth column of the identity matrix. All
the methods involve a sequence of values 0 = t0, t1, · · · , tj = t with either fixed or
variable step size hi = ti+1− ti. They all produce vectors xi which approximate x(ti).

Method 5. General purpose o.d.e. solver. Most computer center libraries
contain programs for solving initial value problems in ordinary differential equations.
Very few libraries contain programs that compute etA. Until the latter programs are
more readily available, undoubtedly the easiest and, from the programmer’s point of
view, the quickest way to compute a matrix exponential is to call upon a general pur-
pose o.d.e. solver. This is obviously an expensive luxury since the o.d.e. routine does
not take advantage of the linear, constant coefficient nature of our special problem.

We have run a very small experiment in which we have used three recently devel-
oped o.d.e. solvers to compute the exponentials of about a dozen matrices and have
measured the amount of work required. The programs are:

(1) RKF45. Written by Shampine and Watts [108], this program uses the Fehlberg
formulas of the Runge–Kutta type. Six function evaluations are required per step.
The resulting formula is fifth order with automatic step size control. (See also [4].)

(2) DE/STEP. Written by Shampine and Gordon [107], this program uses variable
order, variable step Adams predictor-corrector formulas. Two function evaluations are
required per step.

(3) IMPSUB. Written by Starner [109], this program is a modification of Gear’s
DIFSUB [106] and is based on implicit backward differentiation formulas intended for
stiff differential equations. Starner’s modifications add the ability to solve “infinitely

14 CLEVE MOLER AND CHARLES VAN LOAN

Table 2 Work as a function of subroutine and local error tolerance.

10−6 10−9 10−12

RKF45 217 832 3268

DE/STEP 118 160 211

IMPSUB 173 202 1510

stiff” problems in which the derivatives of some of the variables may be missing. Two
function evaluations are usually required per step but three or four may occasionally
be used.

For RKF45 the output points are primarily determined by the step size selection
in the program. For the other two routines, the output is produced at user specified
points by interpolation. For an n-by-n matrix A, the cost of one function evaluation
is a matrix-vector multiplication or n2 flops. The number of evaluations is determined
by the length of the integration interval and the accuracy requested.

The relative performance of the three programs depends fairly strongly on the
particular matrix. RKF45 often requires the most function evaluations, especially
when high accuracy is sought, because its order is fixed. But it may well require
the least actual computer time at modest accuracies because of its low overhead.
DE/STEP indicates when it thinks a problem is stiff. If it doesn’t give this indication,
it usually requires the fewest function evaluations. If it does, IMPSUB may require
fewer.

Table 2 gives the results for one particular matrix when we arbitrarily declare to
be a “typical” nonstiff problem. The matrix is of order 3, with eigenvalues λ = 3, 3, 6;
the matrix is defective. We used three different local error tolerances and integrated
over [0, 1]. The average number of function evaluations for the three starting vectors
is given in the table. These can be regarded as typical coefficients of n2 for the single
vector problem or of n3 for the full matrix exponential; IBM 370 long arithmetic was
used.

Although people concerned with the competition between various o.d.e. solvers
might be interested in the details of this table, we caution that it is the result of
only one experiment. Our main reason for presenting it is to support our contention
that the use of any such routine must be regarded as very inefficient. The scaling
and squaring method of section 3 and some of the matrix decomposition methods of
section 6 require on the order of 10 to 20 n3 flops and they obtain higher accuracies
than those obtained with 200 n3 or more flops for the o.d.e. solvers.

This excessive cost is due to the fact that the programs are not taking advantage
of the linear, constant coefficient nature of the differential equation. They must
repeatedly call for the multiplication of various vectors by the matrix A because, as
far as they know, the matrix may have changed since the last multiplication.

We now consider the various methods which result from specializing general o.d.e.
methods to handle our specific problem.

Method 6. Single step o.d.e. methods. Two of the classical techniques for
the solution of differential equations are the fourth order Taylor and Runge–Kutta

THE EXPONENTIAL OF A MATRIX 15

methods with fixed step size. For our particular equation they become

xj+1 =
(

I + hA + · · ·+ h4

4!
A4

)
xj = T4(hA)xj

and

xj+1 = xj + 1
6k1 + 1

3k2 + 1
3k3 + 1

6k4,

where k1 = hAxj , k2 = hA(xj + 1
2k1), k3 = hA(xj + 1

2k2), and k4 = hA(xj + k3). A
little manipulation reveals that in this case, the two methods would produce identical
results were it not for roundoff error. As long as the step size is fixed, the matrix
T4(hA) need be computed just once and then xj+1 can be obtained from xj with just
one matrix-vector multiplication. The standard Runge–Kutta method would require
4 such multiplications per step.

Let us consider x(t) for one particular value of t, say t = 1. If h = 1/m, then

x(1) = x(mh) ' xm = [T4(hA)]mx0.

Consequently, there is a close connection between this method and Method 3 which
involved scaling and squaring [54], [60]. The scaled matrix is hA and its exponential
is approximated by T4(hA). However, even if m is a power of 2, [T4(hA)]m is usually
not obtained by repeated squaring. The methods have roughly the same roundoff
error properties and so there seem to be no important advantages for Runge–Kutta
with fixed step size.

Let us now consider the possibility of varying the step size. A simple algorithm
might be based on a variable step Taylor method. In such a method, two approxi-
mations to xj+1 would be computed and their difference used to choose the step size.
Specifically, let ε be some prescribed local relative error tolerance and define xj+1 and
x∗j+1 by

xj+1 = T5(hjA)xj ,

x∗j+1 = T4(hjA)xj .

One way of determining hj is to require

‖xj+1 − x∗j+1‖ ' ε‖xj‖.

Notice that we are using a 5th order formula to compute the approximation, and a
4th order formula to control step size.

At first glance, this method appears to be considerably less efficient than one with
fixed step size because the matrices T4(hjA) and T5(hjA) cannot be precomputed.
Each step requires 5 n2 flops. However, in those problems which involve large “humps”
as described in section 1, a smaller step is needed at the beginning of the computation
than at the end. If the step size changes by a factor of more than 5, the variable step
method will require less work.

The method does provide some insight into the costs of more sophisticated inte-
grators. Since

xj+1 − x∗j+1 =
h5

jA
5

5!
xj ,

16 CLEVE MOLER AND CHARLES VAN LOAN

we see that the required step size is given approximately by

hj '
[

5!ε
‖A5‖

]1/5

.

The work required to integrate over some fixed interval is proportional to the inverse
of the average step size. So, if we decrease the tolerance ε from, say 10−6 to 10−9,
then the work is increased by a factor of (103)1/5 which is about 4. This is typical of
any 5th order error estimate—asking for 3 more figures roughly quadruples the work.

Method 7. Multistep o.d.e. solver. As far as we know, the possibility
of specializing multistep methods, such as those based on the Adams formulas, to
linear, constant coefficient problems has not been explored in detail. Such a method
would not be equivalent to scaling and squaring because the approximate solution at
a given time is defined in terms of approximate solutions at several previous times.
The actual algorithm would depend upon how the starting vectors are obtained, and
how the step size and order are determined. It is conceivable that such an algorithm
might be effective, particularly for problems which involve a single vector, output at
many values of t, large n, and a hump.

The problems associated with roundoff error have not been of as much concern
to designers of differential equation solvers as they have been to designers of matrix
algebra algorithms since the accuracy requested of o.d.e. solvers is typically less than
full machine precision. We do not know what effect rounding errors would have in a
problem with a large hump.

5. Polynomial Methods. Let the characteristic polynomial of A be

c(z) = det(zI −A) = zn −
n−1∑

k=0

ckzk.

From the Cayley–Hamilton theorem c(A) = 0 and hence

An = c0I + c1A + · · ·+ cn−1A
n−1.

It follows that any power of A can be expressed in terms of I, A, · · · , An−1:

Ak =
n−1∑

j=0

βkjA
j .

This implies that etA is a polynomial in A with analytic coefficients in t:

etA =
∞∑

k=0

tkAk

k!
=

∞∑

k=0

tk

k!

n−1∑

j=0

βkjA
j

=
n−1∑

j=0

[∞∑

k=0

βkj
tk

k!

]
Aj

≡
n−1∑

j=0

αj(t)Aj .

The methods of this section involve this kind of exploitation of the characteristic
polynomial.

THE EXPONENTIAL OF A MATRIX 17

Method 8. Cayley–Hamilton. Once the characteristic polynomial is known,
the coefficient βkj which define the analytic functions αj(t) =

∑
βkjt

k/k! can be
generated as follows:

βkj =

δkj (k < n)
cj (k = n)
c0βk−1,n−1 (k > n, j = 0)
cjβk−1,n−1 + βk−1,j−1 (k > n, j > 0).

One difficulty is that these recursive formulas for the βkj are very prone to roundoff
error. This can be seen in the 1-by-1 case. If A = (α) then βk0 = αk and α0(t) =∑

(αt)k/k! is simply the Taylor series for eαt. Thus, our criticisms of Method 1 apply.
In fact, if αt = −6, no partial sum of the series for eαt will have any significant digits
when IBM 370 short arithmetic is used.

Another difficulty is the requirement that the characteristic polynomial must be
known. If λ1, · · · , λn are the eigenvalues of A, then c(z) could be computed from
c(z) =

∏n
1 (z − λi). Although the eigenvalues could be stably computed, it is unclear

whether the resulting cj would be acceptable. Other methods for computing c(z) are
discussed in Wilkinson [14]. It turns out that methods based upon repeated powers of
A and methods based upon formulas for the cj in terms of various symmetric functions
are unstable in the presence of roundoff error and expensive to implement. Techniques
based upon similarity transformations break down when A is nearly derogatory. We
shall have more to say about these difficulties in connection with Methods 12 and 13.

In Method 8 we attempted to expand etA in terms of the matrices I, A, · · · , An−1.
If {A0, · · · , An−1} is some other set of matrices which span the same subspace, then
there exist analytic functions βj(t) such that

etA =
n−1∑

j=0

βj(t)Aj .

The convenience of this formula depends upon how easily the Aj and βj(t) can be
generated. If the eigenvalues λ1, · · · , λn of A are known, we have the following three
methods.

Method 9. Lagrange interpolation.

etA =
n−1∑

j=0

eλjt
n∏

k=1
k 6=j

(A− λkI)
(λj − λk)

.

Method 10. Newton interpolation.

etA = eλ1tI +
n∑

j=2

[λ1, · · · , λj]
j−1∏

k=1

(A− λkI).

The divided differences [λ1, · · · , λj] depend on t and are defined recursively by

[λ1, λ2] = (eλ1t − eλ2t)/(λ1 − λ2),

[λ1, · · · , λk+1] =
[λ1, · · · , λk]− [λ2, · · · , λk+1]

λ1 − λk+1
(k = 2).

18 CLEVE MOLER AND CHARLES VAN LOAN

We refer to MacDuffee [9] for a discussion of these formulae in the confluent eigenvalue
case.

Method 11. Vandermonde. There are other methods for computing the
matrices

Aj =
n∏

k=1
k 6=j

(A− λkI)
(λj − λk)

which were required in Method 9. One of these involves the Vandermonde matrix

V =

1 1 · · · 1
λ1 λ2 · · · λn
...

...
...

λn−1
1 λn−1

2 · · · λn−1
n

 .

If νjk is the (j, k) entry of V −1, then

Aj =
n∑

k=1

νjkAk−1,

and

etA =
n∑

j=1

eλjtAj .

When A has repeated eigenvalues, the appropriate confluent Vandermonde matrix is
involved. Closed expressions for the νjk are available and Vidysager [92] has proposed
their use.

Methods 9, 10, and 11 suffer on several accounts. They are O(n4) algorithms
making them prohibitively expensive except for small n. If the spanning matrices
A0, · · · , An−1 are saved, then storage is n3 which is an order of magnitude greater
than the amount of storage required by any “nonpolynomial” method. Furthermore,
even though the formulas which define Methods 9, 10, and 11 have special form in
the confluent case, we do not have a satisfactory situation. The “gray” area of near
confluence poses difficult problems which are best discussed in the next section on
decomposition techniques.

The next two methods of this section do not require the eigenvalues of A and
thus appear to be free of the problems associated with confluence. However, equally
formidable difficulties attend these algorithms.

Method 12. Inverse Laplace transforms. If L[etA] is the Laplace trans-
form of the matrix exponential, then

L[etA] = (sI −A)−1.

The entries of this matrix are rational functions of s. In fact,

(sI −A)−1 =
n−1∑

k=0

sn−k−1

c(s)
Ak,

where c(s) = det(sI −A) = sn −∑n−1
k=0 cksk and for k = 1, · · · , n:

cn−k = −trace(Ak−1A)/k, Ak = Ak−1A− cn−kI (A0 = I).

THE EXPONENTIAL OF A MATRIX 19

These recursions were derived by Leverrier and Faddeeva [3] and can be used to
evaluate etA:

etA =
n−1∑

k=0

L−1[sn−k−1/c(s)]Ak,

The inverse transforms L−1[sn−k−1/c(s)] can be expressed as a power series in t. Liou
[102] suggests evaluating these series using various recursions involving the ck. We
suppress the details of this procedure because of its similarity to Method 8. There are
other ways Laplace transforms can be used to evaluate etA [78], [80], [88], [89], [93].
By and large, these techniques have the same drawbacks as Methods 8–11. They are
O(n4) for general matrices and may be seriously effected by roundoff error.

Method 13. Companion matrix. We now discuss techniques which involve
the computation of eC where C is a companion matrix:

C =

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...
1

c0 c1 c2 · · · cn−1

.

Companion matrices have some interesting properties which various authors have tried
to exploit:

(i) C is sparse.
(ii) The characteristic polynomial of C is c(z) = zn −∑n−1

k=0 ckzk.
(iii) If V is the Vandermonde matrix of eigenvalues of C (see Method 11), then

V −1CV is in Jordan form. (Confluent Vandermonde matrices are involved in the
multiple eigenvalue case.)

(iv) If A is not derogatory, then it is similar to a companion matrix; otherwise
it is similar to a direct sum of companion matrices.

Because C is sparse, small powers of C cost considerably less than the usual n3

flops. Consequently, one could implement Method 3 (scaling and squaring) with a
reduced amount of work.

Since the characteristic polynomial of C is known, one can apply Method 8 or
various other techniques which involve recursions with the ck. However, this is not
generally advisable in view of the catastrophic cancellation that can occur.

As we mentioned during our discussion of Method 11, the closed expression for
V −1 is extremely sensitive. Because V −1 is so poorly conditioned, exploitation of
property (iii) will generally yield a poor estimate of eA.

If A = Y CY −1, then from the series definition of the matrix exponential it is easy
to verify that

eA = Y eCY −1.

Hence, property (iv) leads us to an algorithm for computing the exponential of a
general matrix. Although the reduction of A to companion form is a rational process,
the algorithm for accomplishing this are extremely unstable and should be avoided
[14].

We mention that if the original differential equation is actually a single nth order
equation written as a system of first order equations, then the matrix is already in

20 CLEVE MOLER AND CHARLES VAN LOAN

companion form. Consequently, the unstable reduction is not necessary. This is the
only situation in which companion matrix methods should be considered.

We conclude this section with an interesting aside on computing eH where H =
(hij) is lower Hessenberg (hij = 0, j > i + 1). Notice that companion matrices are
lower Hessenberg. Our interest in computing eH stems from the fact that any real
matrix A is orthogonally similar to a lower Hessenberg matrix. Hence, if

A = QHQT , QT Q = I,

then

eA = QeHQT .

Unlike the reduction to companion form, this factorization can be stably computed
using the EISPACK routine ORTHES [113].

Now, let fk denote the kth column of eH . It is easy to verify that

Hfk =
n∑

i=k−1

hikfi (k = 2),

by equating the kth columns in the matrix identity HeH = eHH. If none of the
superdiagonal entries hk−1,k are zero, then once fn is known, the other fk follow
immediately from

fk−1 =
1

hk−1,k

[
Hfk −

n∑

i=k

hikfi

]
.

Similar recursive procedures have been suggested in connection with computing eC

[104]. Since fn equals x(1) where x(t) solves Hx = ẋ, x(0) = (0, · · · , 0, 1)T , it could
be found using one of the o.d.e. methods in the previous section.

There are ways to recover in the above algorithm should any of the hk−1,k be zero.
However, numerically the problem is when we have a small, but non-negligible hk−1,k.
In this case rounding errors involving a factor of 1/hk−1,k will occur precluding the
possibility of an accurate computation of eH .

In summary, methods for computing eA which involve the reduction of A to
companion or Hessenberg form are not attractive. However, there are other matrix
factorizations which can be more satisfactorily exploited in the course of evaluating
eA and these will be discussed in the next section.

6. Matrix Decomposition Methods. The methods which are likely to be most
efficient for problems involving large matrices and repeated evaluation of etA are those
which are based on factorizations or decompositions of the matrix A. If A happens
to be symmetric, then all these methods reduce to a simple very effective algorithm.

All the matrix decompositions are based on similarity transformations of the form

A = SBS−1.

As we have mentioned, the power series definition of etA implies

etA = SetBS−1.

The idea is to find an S for which etB is easy to compute. The difficulty is that S
may be close to singular which means that cond(S) is large.

THE EXPONENTIAL OF A MATRIX 21

Method 14. Eigenvectors. The naive approach is to take S to be the matrix
whose columns are eigenvectors of A, that is, S = V where

V = [v1| · · · |vn]

and

Avj = λjvj , j = 1, · · · , n.

These n equations can be written

AV = V D.

where D = diag(λ1, · · · , λn). The exponential of D is trivial to compute assuming we
have a satisfactory method for computing the exponential of a scalar:

etD = diag(eλ1t, · · · , eλnt).

Since V is nonsingular we have etA = V etDV −1.
In terms of the differential equation ẋ = Ax, the same eigenvector approach takes

the following form. The initial condition is a combination of the eigenvectors,

x(0) =
n∑

j=1

αjvj ,

and the solution x(t) is given by

x(t) =
n∑

j=0

αje
λjtvj .

Of course, the coefficients αj are obtained by solving a set of linear equations V α =
x(0).

The difficulty with this approach is not confluent eigenvalues per se. For example,
the method works very well when A is the identity matrix, which has an eigenvalue
of the highest possible multiplicity. It also works well for any other symmetric matrix
because the eigenvectors can be chosen orthogonal. If reliable subroutines such as
TRED2 and TQL2 in EISPACK [113] are used, then the computed vj will be orthog-
onal to the full accuracy of the computer and the resulting algorithm for etA has all
the attributes we desire—except that it is limited to symmetric matrices.

The theoretical difficulty occurs when A does not have a complete set of linearly
independent eigenvectors and is thus defective. In this case there is no invertible
matrix of eigenvectors V and the algorithm breaks down. An example of a defective
matrix is

[
1 1
0 1

]
.

A defective matrix has confluent eigenvalues but a matrix which has confluent eigen-
values need not be defective.

In practice, difficulties occur when A is “nearly” defective. One way to make
this precise is to use the condition number, cond(V) = ‖V ‖‖V −1‖, of the matrix
of eigenvectors. If A is nearly (exactly) defective, then cond(V) is large (infinite).

22 CLEVE MOLER AND CHARLES VAN LOAN

Any errors in A, including roundoff errors in its computation and roundoff errors
from the eigenvalue computation, may be magnified in the final result by cond(V).
Consequently, when cond(V) is large, the computed etA will most likely be inaccurate.
For example, if

A =
[
1 + ε 1

0 1− ε

]
,

then

V =
[
1 −1
0 2ε

]
,

D = diag(1 + ε, 1− ε),

and

cond(V) = O

(
1
ε

)
.

If ε = 10−5 and IBM 370 short floating point arithmetic is used to compute the
exponential from the formula eA = V eDV −1, we obtain

[
2.718307 2.750000

0 2.718254

]
.

Since the exact exponential to six decimals is
[
2.718309 2.718282

0 2.718255

]
,

we see that the computed exponential has errors of order 105 times the machine
precision as conjectured.

One might feel that for this example eA might be particularly sensitive to pertur-
bations in A. However, when we apply Theorem 3 in section 2 to this example, we
find

‖e(A+E) − eA‖
‖eA‖ 5 4‖E‖e2‖E‖,

independent of ε. Certainly, eA is not overly sensitive to changes in A and so Method
14 must be regarded as unstable.

Before we proceed to the next method it is interesting to note the connection
between the use of eigenvectors and Method 9, Lagrange interpolation. When the
eigenvalues are distinct the eigenvector approach can be expressed

etA = V diag(eλjt)V −1 =
n∑

j=1

eλjtvjy
T
j ,

where yT
j is the jth row of V −1. The Lagrange formula is

etA =
n∑

j=1

eλjtAj ,

THE EXPONENTIAL OF A MATRIX 23

where

Aj =
n∏

k=1
k 6=j

(A− λkI)
(λj − λk)

.

Because these two expressions hold for all t, the individual terms in the sum must be
the same and so

Aj = vjy
T
j .

This indicates that the Aj are, in fact, rank one matrices obtained from the eigen-
vectors. Thus, the O(n4) work involved in the computation of the Aj is totally
unnecessary.

Method 15. Triangular systems of eigenvectors. An improvement in
both the efficiency and the reliability of the conventional eigenvector approach can
be obtained when the eigenvectors are computed by the QR algorithm [14]. Assume
temporarily that although A is not symmetric, all its eigenvalues happen to be real.
The idea is to use EISPACK subroutines ORTHES and HQR2 to compute the eigen-
values and eigenvectors [113]. These subroutines produce an orthogonal matrix Q and
a triangular matrix T so that

QT AQ = T.

Since Q−1 = QT , this is a similarity transformation and the desired eigenvalues occur
on the diagonal of T . HQR2 next attempts to find the eigenvectors of T . This results
in a matrix R and a diagonal matrix D, which is simply the diagonal part of T , so
that

TR = RD.

Finally, the eigenvectors of A are obtained by a simple matrix multiplication V = QR.
The key observation is that R is upper triangular. In other words, the

ORTHES/HQR2 path in ISPACK computes the matrix of eigenvectors by first com-
puting its “QR” factorization. HQR2 can be easily modified to remove the final multi-
plication of Q and R. The availability of these two matrices has two advantages. First,
the time required to find V −1 or to solve systems involving V is reduced. However,
since this is a small fraction of the total time required, the improvement in efficiency
is not very significant. A more important advantage is that cond(V) = cond(R) (in
the 2-norm) and that the estimation of cond(R) can be done reliably and efficiently.

The effect of admitting complex eigenvalues is that R is not quite triangular, but
has 2-by-2 blocks on its diagonal for each complex conjugate pair. Such a matrix is
called quasi-triangular and we avoid complex arithmetic with minor inconvenience.

In summary, we suspect the following algorithm to be reliable:
(1) Given A, use ORTHES and a modified HQR2 to find orthogonal Q, diagonal

D, and quasi-triangular R so that

AQR = QRD.

(2) Given x0, compute y0 by solving

Ry0 = QT x0.

Also estimate cond(R) and hence the accuracy of y0.

24 CLEVE MOLER AND CHARLES VAN LOAN

(3) If cond(R) is too large, indicate that this algorithm cannot solve the problem
and exit.

(4) Given t, compute x(t) by

x(t) = V etDy0.

(If we want to compute the full exponential, then in Step 2 we solve RY = QT for
Y and then use etA = V etDY in Step 4.) It is important to note that the first three
steps are independent of t, and that the fourth step, which requires relatively little
work, can be repeated for many values of t.

We know there are examples where the exit is taken in Step 3 even though the
underlying problem is not poorly conditioned implying that the algorithm is unstable.
Nevertheless, the algorithm is reliable insofar as cond(R) enables us to assess the
errors in the computed solution when that solution is found. It would be interesting
to code this algorithm and compare it with Ward’s scaling and squaring program for
Method 3. In addition to comparing timings, the crucial question would be how often
the exit in Step 3 is taken and how often Ward’s program returns an unacceptably
large error bound.

Method 16. Jordan canonical form. In principle, the problem posed by
defective eigensystems can be solved by resorting to the Jordan canonical form (JCF).
If

A = P [J1 ⊕ · · · ⊕ Jk]P−1

is the JCF of A, then

etA = P [etJ1 ⊕ · · · ⊕ etJk]P−1.

The exponentials of the Jordan blocks Ji can be given in closed form. For example, if

Ji =

λi 1 0 0
0 λi 1 0
0 0 λi 1
0 0 0 λi

 ,

then

etJi = eλit

1 t t2/2! t3/3!

0 1 t t2/2!
0 0 1 t
0 0 0 1

 .

The difficulty is that the JCF cannot be computed using floating point arithmetic.
A single rounding error may cause some multiple eigenvalue to become distinct or vice
versa altering the entire structure of J and P . A related fact is that there is no a
priori bound on cond(P). For further discussion of the difficulties of computing the
JCF, see the papers by Golub and Wilkinson [110] and K̊agstrom and Ruhe [111].

Method 17. Schur. The Schur decomposition

A = QTQT

with orthogonal Q and triangular T exists if A has real eigenvalues. If A has complex
eigenvalues, then it is necessary to allow 2-by-2 blocks on the diagonal of T or to

THE EXPONENTIAL OF A MATRIX 25

make Q and T complex (and replace QT with Q∗). The Schur decomposition can
be computed reliably and quite efficiently by ORTHES and a short-ended version of
HQR2. The required modifications are discussed in the EISPACK guide [113].

Once the Schur decomposition is available,

etA = QetT QT .

The only delicate part is the computation of etT where T is a triangular or quasi-
triangular matrix. Note that the eigenvectors of A are not required.

Computing functions or triangular matrices is the subject of a recent paper by
Parlett [112]. If T is upper triangular with diagonal elements λ1, · · · , λn, then it is
clear that etT is upper triangular with diagonal elements eλ1t, · · · , eλnt. Parlett shows
how to compute the off-diagonal elements of etT recursively from divided differences
of the eλit. The example in section 1 illustrates the 2-by-2 case.

Again, the difficulty is magnification of roundoff error caused by nearly confluent
eigenvalues λi. As a step towards handling this problem, Parlett describes a general-
ization of his algorithm applicable to block upper triangular matrices. The diagonal
blocks are determined by clusters of nearby eigenvalues. The confluence problems do
not disappear, but they are confined to the diagonal blocks where special techniques
can be applied.

Method 18. Block diagonal. All methods which involve decompositions of
the form

A = SBS−1

involve two conflicting objectives:
1. Make B close to diagonal so that etB is easy to compute.
2. Make S well conditioned so that errors are not magnified.

The Jordan canonical form places all the emphasis on the first objective, while the
Schur decomposition places most of the emphasis on the second. (We would regard
the decomposition with S = I and B = A as placing even more emphasis on the
second objective.)

The block diagonal method is a compromise between these two extremes. The
idea is to use a nonorthogonal, but well conditioned, S to produce a B which is
triangular and block diagonal as illustrated in Figure 2.

Each block in B involves a cluster of nearly confluent eigenvalues. The number
in each cluster (the size of each block) is to be made as small as possible while
maintaining some prescribed upper bound for cond(S), such as cond(S) < 100. The
choice of the bound 100 implies roughly that at most 2 significant decimal figures will
be lost because of rounding errors when etA is obtained from etB via etA = SetBS−1.
A larger bound would mean the loss of more figures while a smaller bound would
mean more computer time—both for the factorization itself and for the evaluation of
etB .

In practice, we would expect almost all the blocks to be 1-by-1 or 2-by-2 and
the resulting computation of etB to be very fast. The bound on cond(S) will mean
that it is occasionally necessary to have larger blocks in B, but it will insure against
excessive loss of accuracy from confluent eigenvalues.

G. W. Stewart has pointed out that the grouping of the eigenvalues into clusters
and the resulting block structure of B is not merely for increased speed. There can
be an important improvement in accuracy. Stewart suggests expressing each block Bj

26 CLEVE MOLER AND CHARLES VAN LOAN

Fig. 2 Triangular block diagonal form.

in the form

Bj = γjI + Ej

where γj is the average value of the eigenvalues in the jth cluster. If the grouping
has been done properly, the matrices Ej should then be nearly nilpotent in the sense
that Ek

j will rapidly approach zero as k increases. Since Ej is triangular, this will
certainly be true if the diagonal part of Ej is small, that is, if all the eigenvalues in
the cluster are close together. But it will also be true in another important case. If

Ej =

[√
ε 1

0 −√ε

]
,

where ε is the computer rounding unit, then

E2
j =

[
ε 0
0 ε

]

can be regarded as negligible. The ±√ε perturbations are typical when a double,
defective eigenvalue is computed with, say, HQR2.

The fact that Ej is nearly nilpotent means that etBj can be found rapidly and
accurately from

etBj = eγjtetEj ;

computing etEj by a few terms of the Taylor series.
Several researchers, including Parlett, Ruhe, and Stewart, are currently develop-

ing computer programs based on some of these ideas. The most difficult detail is the
proper choice of the eigenvalue clustering. It is also important for program efficiency
to avoid complex arithmetic as much as possible. When fully developed, these pro-
grams will be fairly long and complicated but they may come close to meeting our
other criteria for satisfactory methods.

THE EXPONENTIAL OF A MATRIX 27

Most of the computational cost lies in obtaining the basic Schur decomposition.
Although this cost varies somewhat from matrix to matrix because of the iterative
nature of the QR algorithm, a good average figure is 15 n3 flops, including the further
reduction to block diagonal form. Again we emphasize that the reduction is indepen-
dent of t. Once the decomposition is obtained, the calculation of etA requires about 2
n3 flops for each t. If we require only x(t) = etAx0 for various t, the equation Sy = x0

should be solved once at a cost of n3/3 flops, and then each x(t) can be obtained with
n2 flops.

These are rough estimates. There will be differences between programs based on
the Schur decomposition and those which work with the block diagonal form, but the
timings should be similar because Parlett’s algorithm for the exponential is very fast.

7. Splitting Methods. A most aggravating, yet interesting, property of the ma-
trix exponential is that the familiar additive law fails unless we have commutivity:

etBetC = et(B+C) ⇔ BC = CB.

Nevertheless, the exponentials of B and C are related to that of B + C, for example,
by the Trotter product formula [30]:

eB+C = lim
m→∞

(eB/meC/m)m.

Method 19. Splitting. Our colleagues M. Gunzburger and D. Gottleib sug-
gested that the Trotter result be used to approximate eA by splitting A into B + C
and then using the approximation

eA ' (eB/meC/m)m.

This approach to computing eA is of potential interest when the exponentials of B
and C can be accurately and efficiently computed. For example, if B = (A + AT)/2
and C = (A−AT)/2 then eB and eC can be effectively computed by the methods of
section 5. For this choice we show in Appendix B that

(7.1) ‖eA − (eB/meC/m)m‖ 5 ‖[AT , A]‖
4m

eµ(A),

where µ(A) is the log norm of A as defined in section 2. In the following algorithm,
this inequality is used to determine the parameter m.

(a) Set B = (A + AT)/2 and C = (A − AT)/2. Compute the factorization
B = Q diag(µi)QT (QT Q = I) using TRED2 and TQL2 [113]. Variations of
these programs can be used to compute the factorization C = UDUT where
UT U = I and D is the direct sum of zero matrices and real 2-by-2 blocks of
the form

[
0 a

−a 0

]

corresponding to eigenvalues ±ia.
(b) Determine m = 2j such that the upper bound in (7.1) is less than some

prescribed tolerance. Recall that µ(A) is the most positive eigenvalue of B
and that this quantity is known as a result of step (a).

28 CLEVE MOLER AND CHARLES VAN LOAN

(c) Compute X = Q diag(eµi/m)QT and Y = UeD/mUT . In the latter compu-
tation, one uses the fact that

exp
[

0 a/m

−a/m 0

]
=

[
cos(a/m) sin(a/m)

− sin(a/m) cos(a/m)

]

(d) Compute the approximation, (XY)2
j

, to eA by repeated squaring.
If we assume 5n3 flops for each of the eigenvalue decompositions in (a), then

the overall process outlined above requires about (13 + j)n3 flops. It is difficult to
assess the relative efficiency of this splitting method because it depends strongly on
the scalars ‖[AT , A]‖ and µ(A) and these quantities have not arisen in connection
with any of our previous eighteen methods. On the basis of truncation error bounds,
however, it would seem that this technique would be much less efficient than Method
3 (scaling and squaring) unless µ(A) were negative and ‖[AT , A]‖ much less than ‖A‖.

Accuracy depends on the rounding errors which arise in (d) as a result of the
repeated squaring. The remarks about repeated squaring in Method 3 apply also here:
there may be severe cancellation but whether or not this only occurs in sensitive eA

problems is unknown.
For a general splitting A = B + C, we can determine m from the inequality

(7.2) ‖eA − (eB/meC/m)m‖ 5 ‖[B, C]‖
2m

e‖B‖+‖C‖,

which we establish in Appendix B.
To illustrate, suppose A has companion form

A =

0 1 0 · · · 0
...

...
1

c0 c1 · · · cn−1

 .

If

B =

[
0 In−1

0 0

]

and C = encT where cT = (c0, · · · , cn−1) and eT
n = (0, 0, · · · , 0, 1), then

eB/m =
n−1∑

k=0

[
B

m

]k 1
k!

and

eC/m = I +
ecn−1/m − 1

cn−1
encT .

Notice that the computation of these scaled exponentials require only O(n2) flops.
Since ‖B‖ = 1, ‖C‖ = ‖c‖, and ‖[B, C]‖ 5 2‖c‖, (7.2) becomes

‖eA − (eB/meC/m)m‖ 5 e1+‖c‖‖c‖
m

.

The parameter m can be determined from this inequality.

THE EXPONENTIAL OF A MATRIX 29

8. Conclusions. A section called “conclusions” must deal with the obvious ques-
tion: Which method is best? Answering that question is very risky. We don’t know
enough about the sensitivity of the original problem, or about the detailed perfor-
mance of careful implementations of various methods to make any firm conclusions.
Furthermore, by the time this paper appears in the open literature, any given conclu-
sion might well have to be modified.

We have considered five general classes of methods. What we have called poly-
nomial methods are not really in the competition for “best”. Some of them require
the characteristic polynomial and so are appropriate only for certain special problems
and others have the same stability difficulties as matrix decomposition methods but
are much less efficient. The approaches we have outlined under splitting methods are
largely speculative and untried and probably only of interest in special settings. This
leaves three classes in the running.

The only generally competitive series method is Method 3, scaling and squaring.
Ward’s program implementing this method is certainly among the best currently
available. The program may fail, but at least it tells you when it does. We don’t
know yet whether or not such failures usually result from the inherent sensitivity of
the problem or from the instability of the algorithm. The method basically computes
eA for a single matrix A. To compute etA for p arbitrary values of t requires about
p times as much work. The amount of work is O(n3), even for the vector problem
etAx0. The coefficient of n3 increases as ‖A‖ increases.

Specializations of o.d.e. methods for the eA problem have not yet been imple-
mented. The best method would appear to involve a variable order, variable step
difference scheme. We suspect it would be stable and reliable but expensive. Its
best showing on efficiency would be for the vector problem etAx0 with many values
of t since the amount of work is only O(n2). It would also work quite well for vec-
tor problems involving a large sparse A since no “nonsparse” approximation to the
exponential would be explicitly required.

The best programs using matrix decomposition methods are just now being writ-
ten. They start with the Schur decomposition and include some sort of eigenvalue
clustering. There are variants which involve further reduction to a block form. In all
cases the initial decomposition costs O(n3) steps and is independent of t and ‖A‖. Af-
ter that, the work involved in using the decomposition to compute etAx0 for different
t and x0 is only a small multiple of n2.

Thus, we see perhaps three or four candidates for “best” method. The choice will
depend upon the details of implementation and upon the particular problem being
solved.

Appendix A. Inverse Error Analysis of Padé Matrix Approximation.
Lemma 1. If ‖H‖ < 1, then log(I + H) exists and

‖ log(I + H)‖ 5 ‖H‖
1− ‖H‖ .

Proof. If ‖H‖ < 1 then log(I + H) =
∑∞

k=1(−1)k+1(Hk/k) and so

‖ log(I + H)‖ 5
∞∑

k=1

‖H‖k

k
5 ‖H‖

∞∑

k=0

‖H‖k =
‖H‖

1− ‖H‖ .

Lemma 2. If ‖A‖ 5 1
2 and p > 0, then ‖Dpq(A)−1‖ 5 (q + p)/p.

30 CLEVE MOLER AND CHARLES VAN LOAN

Proof. From the definition of Dpq(A) in section 3, Dpq(A) = I + F where

F =
q∑

j=1

(p + q − j)!q!
(p + q)!(q − j)!

(−A)j

j!
.

Using the fact that

(p + q − j)!q!
(p + q)!(q − j)!

5
[

q

p + q

]j

we find

‖F‖ 5
q∑

j=1

[
q

p + q
‖A‖

]j 1
j!

5 q

p + q
‖A‖(e− 1) 5 q

p + q

and so ‖Dpq(A)−1‖ = ‖(I + F)−1‖ 5 1/(1− ‖F‖) 5 (q + p)/p.
Lemma 3. If ‖A‖ 5 1

2 , q 5 p, and p = 1, then Rpq(A) = eA+F where

‖F‖ 5 8‖A‖p+q+1 p!q!
(p + q)!(p + q + 1)!

.

Proof. From the remainder theorem for Padé approximants [71],

Rpq(A) = eA − (−1)q

(p + q)!
Ap+q+1Dpq(A)−1

∫ 1

0

e(1−u)Aup(1− u)q du,

and so e−ARpq(A) = I + H where

H =
(−1)q+1

(p + q)!
Ap+q+1Dpq(A)−1

∫ 1

0

e−uAup(1− u)q du.

By taking norms, using Lemma 2, and noting that (p + q)/pe.5 5 4 we obtain

‖H‖ 5 1
(p + q)!

‖A‖p+q+1 p + q

p

∫ 1

0

e.5up(1− u)q du

5 4‖A‖p+q+1 p!q!
(p + q)!(p + q + 1)!

.

With the assumption ‖A‖ 5 1
2 it is possible to show that for all admissible p and q,

‖H‖ 5 1
2 and so from Lemma 1,

‖ log(I + H)‖ 5 ‖H‖
1− ‖H‖ 5 8‖A‖p+q+1 p!q!

(p + q)!(p + q + 1)!
.

Setting F = log(I + H), we see that e−ARpq(A) = I + H = eF . The lemma now
follows because A and F commute implying Rpq(A) = eAeF = eA+F .

Lemma 4. If ‖A‖ 5 1
2 then Rpq(A) = eA+F where

‖F‖ 5 8‖A‖p+q+1 p!q!
(p + q)!(p + q + 1)!

.

THE EXPONENTIAL OF A MATRIX 31

Proof. The case p = q, p = 1 is covered by Lemma 1. If p + q = 0, then F = −A
and the above inequality holds. Finally, consider the case q > p, q = 1. From Lemma
3, Rqp(−A) = e−A+F where F satisfies the above bound. The lemma now follows
because ‖ − F‖ = ‖F‖ and Rpq(A) = [Rqp(−A)]−1 = [e−A+F]−1 = eA−F .

Theorem 4. If ‖A‖/2j 5 1
2 , then [Rpq(A/2j)]2

j

= eA+E where

‖E‖
‖A‖ 5 8

(‖A‖
2j

)p+q
p!q!

(p + q)!(p + q + 1)!
5

(
1
2

)p+q−3
p!q!

(p + q)!(p + q + 1)!
.

Proof. From Lemma 4, Rpq(A/2j) = eA/2j+F where

‖F‖ 5 8
[‖A‖

2j

]p+q+1
p!q!

(p + q)!(p + q + 1)!
.

The theorem follows by noting that if E = 2jF , then

[
Rpq

(
A

2j

)]2j

= [eA/2j+F]2
j

= eA+E .

Corollary 1. If ‖A‖/2j 5 1
2 , then [Tk(A/2j)]2

j

= eA+E where

‖E‖
‖A‖ 5 8

(‖A‖
2j

)k

· 1
k + 1

5
(

1
2

)k−3 1
k + 1

.

Corollary 2. If ‖A‖/2j 5 1
2 , then [Rqq(A/2j)]2j = eA+E, where

‖E‖
‖A‖ 5 8

(‖A‖
2j

)2q

· (q!)2

(2q)!(2q + 1)!
5

(
1
2

)2q−3 (q!)2

(2q)!(2q + 1)!
.

Appendix B. Accuracy of Splitting Techniques. In this appendix we derive the
inequalities (7.1) and (7.2). We assume throughout that A is an n-by-n matrix and
that

A = B + C.

It is convenient to define the matrices

Sm = eA/m,

and

Tm = eB/meC/m,

where m is a positive integer. Our goal is to bound ‖Sm
m − Tm

m ‖. To this end we shall
have to exploit the following properties of the log norm µ(A) defined in section 2:

(i) ‖etA‖ 5 eµ(A)t (t = 0)
(ii) µ(A) 5 ‖A‖
(iii) µ(B + C) 5 µ(B) + ‖C‖.

32 CLEVE MOLER AND CHARLES VAN LOAN

These and other results concerning log norms are discussed in references [35]–[42].
Lemma 5. If Θ = max{µ(A), µ(B) + µ(C)} then

‖Sm
m − Tm

m ‖ 5 meΘ(m−1)/m‖Sm − Tm‖.
Proof. Following Reed and Simon [11] we have

Sm
m − Tm

m =
m−1∑

k=0

Sk
m(Sm − Tm)Tm−1−k

m .

Using log norm property (i) it is easy to show that both ‖Sm‖ and ‖Tm‖ are bounded
above by eΘ/m and thus

‖Sm
m − Tm

m ‖ 5
m−1∑

k=0

‖Sm‖k‖Sm − Tm‖‖Tm‖m−1−k

≤ ‖Sm − Tm‖
m−1∑

k=0

eΘk/meΘ(m−1−k)/m,

from which the lemma immediately follows.
In Lemmas 6 and 7 we shall make use of the notation

F (t)|t=t1
t=t0

= F (t1)− F (t0),

where F (t) is a matrix whose entries are functions of t.
Lemma 6.

Tm − Sm =
∫ 1

0

etB/m

[
e(1−t)A/m,

1
m

C

]
etC/m dt.

Proof. We have Tm − Sm = etB/me(1−t)A/metC/m|t=1
t=0 and thus

Tm − Sm =
∫ 1

0

{
d

dt
[etB/me(1−t)A/metC/m]

}
dt.

The lemma follows since

d

dt
[etB/me(1−t)A/metC/m] = etB/m

[
e(1−t)A/m,

1
m

C

]
etC/m.

Lemma 7. If X and Y are matrices then

‖[eX , Y]‖ 5 eµ(X)‖[X, Y]‖.
Proof. We have [eX , Y] = etXY e(1−t)X |t=1

t=0 and thus

[eX , Y] =
∫ 1

0

{
d

dt
[etXY e(1−t)X]

}
dt.

Since d/dt[etXY e(1−t)X] = etX [X, Y]e(1−t)X we get

‖[eX , Y]‖ 5
∫ 1

0

‖etX‖‖[X, Y]‖‖e(1−t)X‖ dt

5 ‖[X, Y]‖
∫ 1

0

eµ(X)teµ(X)(1−t) dt

THE EXPONENTIAL OF A MATRIX 33

from which the lemma immediately follows.
Theorem 5. If Θ = max{µ(A), µ(B) + µ(C)}, then

‖Sm
m − Tm

m ‖ 5 1
2m

eΘ‖[B, C]‖.

Proof. If 0 5 t 5 1 then an application of Lemma 7 with X ≡ (1 − t)A/m and
Y ≡ C/m yields

‖[e(1−t)A/m, C/m]‖ 5 eµ(A)(1−t)/m‖[(1− t)A/m,C/m]‖

≤ eΘ(1−t)/m (1− t)
m2

‖[B,C]‖.

By coupling this inequality with Lemma 6 we can bound ‖Tm − Sm‖:

‖Tm − Sm‖ 5
∫ 1

0

‖etB/m‖‖[e(1−t)A/m, C/m]‖‖etC/m‖ dt

5
∫ 1

0

eµ(B)t/meΘ(1−t)/m (1− t)
m2

‖[B, C]‖eµ(C)t/m dt

5 1
2
eΘ/m ‖[B, C]‖

m2
.

The theorem follows by combining this result with Lemma 5.
Corollary 3. If B = (A + A∗)/2 and C = (A−A∗)/2 then

‖Sm
m − Tm

m ‖ 5 1
4m

eµ(A)‖[A∗, A]‖.

Proof. Since µ(A) = µ(B) and µ(C) = 0, we can set Θ = µ(A). The corollary is
established by noting that [B, C] = 1

2 [A∗, A].
Corollary 4.

‖Sm
m − Tm

m ‖ 5 1
2m

eµ(B)+‖C‖‖[B, C]‖ 5 1
2m

e‖B‖+‖C‖‖[B, C]‖.

Proof. max{µ(A), µ(B) + µ(C)} 5 µ(B) + ‖C‖ 5 ‖B‖+ ‖C‖.
Acknowledgments. We have greatly profited from the comments and suggestions

of so many people that it is impossible to mention them all. However, we are partic-
ularly obliged to B. N. Parlett and G. W. Stewart for their very perceptive remarks
and to G. H. Golub for encouraging us to write this paper. We are obliged to Pro-
fessor Paul Federbush of the University of Michigan for helping us with the analysis
in Appendix B. Finally, we would like to thank the referees for their numerous and
most helpful comments.

REFERENCES

Background.
[1] R. Bellman, Introduction to Matrix Analysis, McGraw-Hill, New York, 1969.
[2] C. Davis, Explicit functional calculus, J. Linear Algebra Appl., 6 (1973), pp. 193–199.
[3] V. N. Faddeeva, Computational Methods of Linear Algebra, Dover, New York, 1959.
[4] G. E. Forsythe, M. A. Malcolm and C. B. Moler, Computer Methods for Mathematical

Computations, Prentice-Hall, Englewood Cliffs, NJ, 1977.

34 CLEVE MOLER AND CHARLES VAN LOAN

[5] J. S. Frame, Matrix functions and applications, Part II: Functions of matrices, IEEE Spec-
trum, 1 (April, 1964), pp. 102–108.

[6] J. S. Frame, Matrix functions and applications, Part IV: Matrix functions and constituent
matrices, IEEE Spectrum, 1 (June, 1964), pp. 123–131.

[7] J. S. Frame, Matrix functions and applications, Part V: Similarity reductions by rational or
orthogonal matrices, IEEE Spectrum, 1 (July, 1964), pp. 103–116.

[8] F. R. Gantmacher, The Theory of Matrices, Vols. I and II, Chelsea Publishing Co., New
York, 1959.

[9] C. C. MacDuffee, The Theory of Matrices, Chelsea, New York, 1956.
[10] L. Mirsky, An Introduction to Linear Algebra, Oxford University Press, London, 1955.
[11] M. Reed and B. Simon, Functional Analysis, Academic Press, New York, 1972.
[12] R. F. Rinehart, The equivalence of definitions of a matrix function, Amer. Math. Monthly,

62 (1955), pp. 395–414.
[13] P. C. Rosenbloom, Bounds on functions of matrices, Amer. Math. Monthly, 74 (1967),

pp. 920–926.
[14] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, 1965.

Properties and representations.
[15] T. M. Apostol, Some explicit formulas for the matrix exponential, Amer. Math. Monthly,

76 (1969), pp. 284–292.
[16] R. W. Atherton and A. E. De Gance, On the evaluation of the derivative of the matrix

exponential function, IEEE Trans. Automatic Control, AC-20 (1975), pp. 707–708.
[17] A. Bradshaw, The eigenstructure of sample data systems with confluent eigenvalues, Inter-

nat. J. Systems Sci., 5 (1975), pp. 607–613.
[18] R. Bellman, Perturbation Techniques in Mathematics, Physics, and Engineering, Holt, Rine-

hart, and Winston, New York, 1964.
[19] J. C. Cavendish, On the norm of a matrix exponential, SIAM Rev., 17 (1975), pp. 174–175.
[20] C. G. Cullen, Remarks on computing eAt, IEEE Trans. Automatic Control, AC-16 (1971),

pp. 94–95.
[21] F. Fer, Resolution de l’equation matricelle dU/dt = pU par produit infini d’exponentielles,

Acad. Roy. Belg. Bull. Cl. Sci., 44 (1958), pp. 819–829.
[22] E. P. Fulmer, Computation of the matrix exponential, Amer. Math. Monthly, 82 (1975),

pp. 156–159.
[23] B. Kågstrom, Bounds and perturbation bounds for the matrix exponential, BIT, 17 (1977),

pp. 39–57.
[24] T. Kato, Perturbation Theory for Linear Operators, Chap. 9, Springer-Verlag, New York,

1966.
[25] R. B. Kirchner, An explicit formula for eAt, Amer. Math. Monthly, 74 (1967), pp. 1200–

1204.
[26] H. O. Kreiss, Über Matrizen die beschränkte Halbgruppen erzeuge, Math. Scand., 7 (1959),

pp. 71–80.
[27] D. L. Powers, On the eigenstructure of the matrix exponential, Internat. J. Systems Sci., 7

(1976), pp. 723–725.
[28] E. J. Putzer, Avoiding the Jordan canonical form in the discussion of linear systems with

constant coefficients, Amer. Math. Monthly, 73 (1966), pp. 2–7.
[29] N. M. Rice, More explicit formulas for the exponential matrix, Queen’s Mathematical

Reprints 1970–21, Queen’s University, Kingston, Ontario, 1970.
[30] H. F. Trotter, Product of semigroups of operators, Proc. Amer. Math. Soc., 10 (1959),

pp. 545–551.
[31] C. F. Van Loan, A study of the matrix exponential, Numerical Analysis Report 7, Department

of Mathematics, University of Manchester, Manchester, England, 1975.
[32] C. F. Van Loan, The sensitivity of the matrix exponential, SIAM J. Numer. Anal., 14 (1977),

pp. 971–981.
[33] G. H. Weiss and A. A. Maradudin, The Baker–Hausdorff formula and a problem in crystal

physics, J. Math. and Phys., 3 (1962), pp. 771–777.
[34] A. D. Ziebur, On determining the structure of A by analyzing eAt, SIAM Rev., 12 (1970),

pp. 98–102.

Log norms and stability.
[35] W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, D. C. Heath,

Boston, 1965.
[36] G. Dahlquist, Stability and error bounds in the numerical integration of ordinary differential

THE EXPONENTIAL OF A MATRIX 35

equations, Transactions of the Royal Institute of Technology 130, Stockholm, Sweden,
1959.

[37] C. A. Desoer and H. Haneda, The measure of a matrix as a tool to analyze computer
algorithms for circuit analysis, IEEE Trans. Circuit Theory, CT-19 (1972), pp. 480–486.

[38] E. Deutsch, On matrix norms and logarithmic norms, Numer. Math., 24 (1975), pp. 49–51.
[39] C. V. Pao, Logarithmic derivatives of a square matrix, J. Linear Algebra Appl., 6 (1973),

pp. 159–164.
[40] C. V. Pao, A further remark on the logarithmic derivatives of a square matrix, J. Linear

Algebra Appl., 7 (1973), pp. 275–278.
[41] T. Strom, Minimization of norms and logarithmic norms by diagonal similarities, Comput-

ing, 10 (1972), pp. 1–9.
[42] T. Strom, On logarithmic derivatives, SIAM J. Numer. Anal., 12 (1975), pp. 741–753.

Survey articles.
[43] M. Healey, Study of methods of computing transition matrices, Proc. IEEE, 120 (1973),

pp. 905–912.
[44] C. B. Moler, Difficulties in computing the exponential of a matrix, Proceedings of the

Second USA–Japan Computer Conference, A.F.I.P.S., Montvale, NJ, 1975, pp. 79–82.

Truncated Taylor series.
[45] L. Y. Bahar and A. K. Sinha, Matrix exponential approach to dynamic response, Computers

and Structures, 5 (1975), pp. 159–165.
[46] T. A. Bickart, Matrix exponential: Approximation by truncated power series, Proc. IEEE,

56 (1968), pp. 372–373.
[47] G. J. Bierman, Power series evaluation of transition and covariance matrices, IEEE Trans.

Automatic Control, AC-17 (1972), pp. 228–231.
[48] D. A. Calahan, Numerical solution of linear systems with widely separated time constants,

Proc. IEEE, 55 (1967), pp. 2016–2017.
[49] K. C. Daly, Evaluating the matrix exponential, Electron. Lett., 8 (1972), p. 390.
[50] W. Everling, On the evaluation of eAt by power series, Proc. IEEE, 55 (1967), p. 413.
[51] D. A. Gall, The solution of linear constant coefficient ordinary differential equations with

APL, Comput. Methods Mechanics and Engrg., 1 (1972), pp. 189–196.
[52] M. L. Liou, A novel method of evaluating transient response, Proc. IEEE, 54 (1966), pp. 20–

23.
[53] J. B. Mankin and J. C. Hung, On roundoff errors in computation of transition matrices,

Reprints of the Joint Automatic Control Conference, pp. 60–64, University of Colorado,
Boulder, CO, 1969.

[54] E. J. Mastascusa, A relation between Liou’s method and fourth order Runge–Kutta method
for evaluation of transient response, Proc. IEEE, 57 (1969), pp. 803–804.

[55] J. B. Plant, On the computation of transient matrices for time invariant systems, Proc.
IEEE, 56 (1968), pp. 1397–1398.

[56] M. M. Shah, On the evaluation of eAt, Cambridge Report CUED/B-Control TR8, Cambridge,
England, 1971.

[57] M. M. Shah, Analysis of roundoff and truncation errors in the computation of transition
matrices, Cambridge Report CUED/B-Control TR12, Cambridge, England, 1971.

[58] C. J. Standish, Truncated Taylor series approximation to the state transition matrix of a
continuous parameter Markov chain, J. Linear Algebra Appl., 12 (1975), pp. 179–183.

[59] D. E. Whitney, Propagated error bounds for numerical solution of transient response, Proc.
IEEE, 54 (1966), pp. 1084–1085.

[60] D. E. Whitney, More similarities between Runge–Kutta and matrix exponential methods for
evaluating transient response, Proc. IEEE, 57 (1969), pp. 2053–2054.

Rational approximation.
[61] J. L. Blue and H. K. Gummel, Rational approximations to the matrix exponential for sys-

tems of stiff differential equations, J. Comput. Phys., 5 (1970), pp. 70–83.
[62] W. J. Cody, G. Meinardus and R. S. Varga, Chebyshev rational approximation to exp(−x)

in [0, +∞] and applications to heat conduction problems, J. Approx. Theory, 2 (1969),
pp. 50–65.

[63] W. Fair and Y. Luke, Padé approximations to the operator exponential, Numer. Math., 14
(1970), pp. 379–382.

[64] S. P. Norsett, C-polynomials for rational approximation to the exponential function, Numer.
Math., 25 (1975), pp. 39–56.

36 CLEVE MOLER AND CHARLES VAN LOAN

[65] E. B. Saff, On the degree of best rational approximation to the exponential function, J.
Approx. Theory, 9 (1973), pp. 97–101.

[66] E. B. Saff and R. S. Varga, On the zeros and poles of Padé approximants to exp(z), Numer.
Math., 25 (1975), pp. 1–14.

[67] R. E. Scraton, Comment on rational approximants to the matrix exponential, Electron.
Lett., 7 (1971), pp. 260–261.

[68] J. L. Siemieniuch, Properties of certain rational approximations to e−z , BIT, 16 (1976),
pp. 172–191.

[69] G. Siemieniuch and I. Gladwell, On time discretizations for linear time dependent par-
tial differential equations, Numerical Analysis Report 5, Department of Mathematics,
University of Manchester, England, 1974.

[70] D. M. Trujillo, The direct numerical integration of linear matrix differential equations using
Padé approximations, Internat. J. Numer. Methods Engrg., 9 (1975), pp. 259–270.

[71] R. S. Varga, On higher order stable implicit methods for solving parabolic partial differential
equations, J. Math. Phys., 40 (1961), pp. 220–231.

[72] R. C. Ward, Numerical computation of the matrix exponential with accuracy estimate, SIAM
J. Numer. Anal., 14 (1977), pp. 600–610.

[73] A. Wragg and C. Davies, Evaluation of the matrix exponential, Electron. Lett., 9 (1973),
pp. 525–526.

[74] A. Wragg and C. Davies, Computation of the exponential of a matrix I: Theoretical con-
siderations, J. Inst. Math. Appl., 11 (1973), pp. 369–375.

[75] A. Wragg and C. Davies, Computation of the exponential of a matrix II: Practical consid-
erations, J. Inst. Math. Appl., 15 (1975), pp. 273–278.

[76] V. Zakian, Rational approximants to the matrix exponential, Electron. Lett., 6 (1970),
pp. 814–815.

[77] V. Zakian and R. E. Scraton, Comments on rational approximations to the matrix
exponential, Electron. Lett., 7 (1971), pp. 260–262.

Polynomial methods.
[78] G. J. Bierman, Finite series solutions for the transition matrix and covariance of a time-

invariant system, IEEE Trans. Automatic Control, AC-16 (1971), pp. 173–175.
[79] J. A. Boehm and J. A. Thurman, An algorithm for generating constituent matrices, IEEE

Trans. Circuit Theory, CT-18 (1971), pp. 178–179.
[80] C. F. Chen and R. R. Parker, Generalization of Heaviside’s expansion technique to transi-

tion matrix evaluation, IEEE Trans. Educ., E-9 (1966), pp. 209–212.
[81] W. C. Davidon, Exponential Function of a 2-by-2 Matrix, Hewlett-Packard HP65 Library

Program.
[82] S. Deards, On the evaluation of exp(tA), Matrix Tensor Quart., 23 (1973), pp. 141–142.
[83] S. Ganapathy and R. S. Rao, Transient response evaluation from the state transition matrix,

Proc. IEEE, 57 (1969), pp. 347–349.
[84] I. C. Goknar, On the evaluation of constituent matrices, Internat. J. Systems Sci., 5 (1974),

pp. 213–218.
[85] I. I. Kolodner, On exp(tA) with A satisfying a polynomial, J. Math. Anal. Appl., 52 (1975),

pp. 514–524.
[86] Y. L. Kuo and M. L. Liou, Comments on “A novel method of evaluating eAt in closed

form”, IEEE Trans. Automatic Control, AC-16 (1971), p. 521.
[87] E. J. Mastascusa, A method of calculating eAt based on the Cayley–Hamilton theorem, Proc.

IEEE, 57 (1969), pp. 1328–1329.
[88] K. R. Rao and N. Ahmed, Heaviside expansion of transition matrices, Proc. IEEE, 56 (1968),

pp. 884-886.
[89] K. R. Rao and N. Ahmed, Evaluation of transition matrices, IEEE Trans. Automatic Con-

trol, AC-14 (1969), pp. 779–780.
[90] B. Roy, A. K. Mandal, D. Roy Choudhury, A. K. Choudhury, On the evaluation of the

state transition matrix, Proc. IEEE, 57 (1969), pp. 234–235.
[91] M. N. S. Swamy, On a formula for evaluating eAt when the eigenvalues are not necessarily

distinct, Matrix Tensor Quart., 23 (1972), pp. 67–72.
[92] M. Vidysager, A novel method of evaluating eAt in closed form, IEEE Trans. Automatic

Control, AC-15 (1970), pp. 600–601.
[93] V. Zakian, Solution of homogeneous ordinary linear differential equations by numerical

inversion of Laplace transforms, Electron. Lett., 7 (1971), pp. 546–548.

Companion matrix methods.

THE EXPONENTIAL OF A MATRIX 37

[94] A. K. Choudhury, et al., On the evaluation of eAt, Proc. IEEE, 56 (1968), pp. 1110–1111.
[95] L. Falcidieno and A. Luvinson, A numerical approach to computing the companion matrix

exponential, CSELT technical report 4, 1975, pp. 69–71.
[96] C. J. Harris, Evaluation of matrix polynomials in the state companion matrix of linear time

invariant systems, Internat. J. Systems Sci., 4 (1973), pp. 301–307.
[97] D. W. Kammler, Numerical evaluation of exp(At) when A is a companion matrix, unpub-

lished manuscript, University of Southern Illinois, Carbondale, IL, 1976.
[98] I. Kaufman, Evaluation of an analytical function of a companion matrix with distinct eigen-

values, Proc. IEEE, 57 (1969), pp. 1180–1181.
[99] I. Kaufman, A note on the “Evaluation of an analytical function of a companion matrix with

distinct eigenvalues”, Proc. IEEE, 57 (1969), pp. 2083–2084.
[100] I. Kaufman and P. H. Roe, On systems described by a companion matrix, IEEE Trans.

Automatic Control, AC-15 (1970), pp. 692–693.
[101] I. Kaufman, H. Mann and J. Vlach, A fast procedure for the analysis of linear time invariant

networks, IEEE Trans. Circuit Theory, CT-18 (1971), pp. 739–741.
[102] M. L. Liou, Evaluation of the transition matrix, Proc. IEEE, 55 (1967), pp. 228–229.
[103] A. K. Mandal, et al., Numerical computation method for the evaluation of the transition

matrix, Proc. IEEE, 116 (1969), pp. 500–502.
[104] W. E. Thomson, Evaluation of transient response, Proc. IEEE, 54 (1966), p. 1584.

Ordinary differential equations.
[105] B. L. Ehle and J. D. Lawson, Generalized Runge–Kutta processes for stiff initial value

problems, J. Inst. Math. Appl., 16 (1975), pp. 11–21.
[106] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-

Hall, Englewood Cliffs, NJ, 1971.
[107] L. F. Shampine and M. K. Gordon, Computer Solution of Ordinary Differential Equations—

The Initial Value Problem, W. H. Freeman and Co., San Francisco, 1975.
[108] L. F. Shampine and H. A. Watts, Practical solution of ordinary differential equations by

Runge–Kutta methods, Sandia Lab Report SAND 76-0585 Albuquerque, NM, 1976.
[109] J. Starner, Numerical solution of implicit differential-algebraic equations, Ph. D. Thesis,

University of New Mexico, Albuquerque, NM, 1976.

Matrix decomposition methods.
[110] G. H. Golub and J. H. Wilkinson, Ill-conditioned eigensystems and the computation of the

Jordan canonical form, SIAM Rev., 18 (1976), pp. 578–619.
[111] B. Kågstrom and A. Ruhe, An algorithm for numerical computation of the Jordan normal

form of a complex matrix, Report UMINF 51.74, Department of Information Processing,
University of Umea, Umea, Sweden, 1974. Subsequently published in ACM Trans. Math.
Software, 6 (1980), pp. 398–419.

[112] B. N. Parlett, A recurrence among the elements of functions of triangular matrices, Linear
Algebra Appl., 14 (1976), pp. 117–121.

[113] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, C. B.
Moler, Matrix Eigensystem Routines: EISPACK Guide, 2nd ed., Lecture Notes in
Comput. Sci. 6, Springer-Verlag, New York, 1976.

Integrals involving eAt.
[114] E. S. Armstrong and A. K. Caglayan, An algorithm for the weighting matrices in the

sampled-data optimal linear regulator problem, NASA Technical Note, TN D-8372, 1976.
[115] J. Johnson and C. L. Phillips, An algorithm for the computation of the integral of the state

transition matrix, IEEE Trans. Automat. Control, AC-16 (1971), pp. 204–205.
[116] C. Kallstrom, Computing exp(A) and

R
exp(As) ds, Report 7309, Division of Automatic

Control, Lund Institute of Technology, Lund, Sweden, 1973.
[117] A. H. Levis, Some computational aspects of the matrix exponential, IEEE Trans. Automat.

Control, AC-14 (1969), pp. 410–411.
[118] C. F. Van Loan, Computing integrals involving the matrix exponential, Cornell Computer

Science Report TR 76-270, 1976, Subsequently published in IEEE Trans. Auto. Cont.
AC-23 (1978), pp. 395–404

Selected applications.
[119] F. H. Branin, Computer methods of network analysis, Proc. IEEE, 55 (1967), pp. 1787–1801.
[120] R. Brockett, Finite Dimensional Linear Systems, John Wiley, New York, 1970.
[121] K. F. Hansen, B. V. Koen and W. W. Little, Stable numerical solutions of the reactor

38 CLEVE MOLER AND CHARLES VAN LOAN

kinetics equations, Nuclear Sci. Engrg., 22 (1965), pp. 51–59.
[122] J. A. W. da Nobrega, A new solution of the point kinetics equations, Nuclear Sci. Engrg.,

46 (1971), pp. 366–375.

9. Update, twenty-five years later. Since the publication of Nineteen Ways
twenty-five years ago, the field of matrix computations has matured in several im-
portant directions:

• There is a greater appreciation for non-normality and related issues of condi-
tioning.

• Krylov-type methods for large sparse problems have been developed that are
very effective.

• Many structure-exploiting variants of the basic algorithms have been devel-
oped which work well in specific application areas.

• High-performance methods have been developed for computers that have a
heirarchical memory and/or multiple processing units.

All these developments have affected the matrix exponential “business”, some
more than others. This brief account of the past twenty-five years is not the distillation
of an exhaustive literature search. Instead, we have chosen to highlight just a few
research threads, especially those that complement and expand upon the key ideas in
Nineteen Ways. We trust that our very incomplete bibliography provides adequate
pointers for the interested reader.

A good place to begin the discussion is with the scaling and squaring method
that is based upon Padé approximation (Method 3). It continues to attract a lot
of attention relative to the other methods presented in Nineteen Ways. Bochev and
Markov [124] discuss its execution using interval arithmetic while Arioli, Codenatti,
and Fassino [123] offer analyses for several important structured examples.

While on the topic of Padé approximation and scaling and squaring it is interest-
ing to note that analogous algorithmic techniques have been developed for the matrix
logarithm problem. See Cheng, Higham, Kenney, and Laub [129] and Higham [137].
Intelligent “eA thinking” has effected how researchers approach other matrix function
problems that arise in application areas such as conrol engineering and signal pro-
cessing. Early studies of the condition of the matrix exponential problem prompted
others to investigate similar issues for general matrix functions, e.g., Kenny and Laub
[141, 142] and Mathias [145]. The sensitivity of the map A → eA requires the analysis
of the underlying Frechet derivative. See Najfeld and Havel [147], Mathias [146], and
and Dieci and Papini [131].

Methods 5 through 7 are based on using numerical ODE solvers to approximate
the matrix exponential. Conversely, the matrix exponential can be used to solve
differential equations. This has been an increasingly popular approach recently, par-
ticularly for stiff problems. For example, Hochbruck, Lubich, and Selhofer [139] show
that using Krylov space methods for the matrix exponentiation (as discussed in sec-
tion 2 below), iterations for the matrix exponential may converge faster than those
for the system of linear equations that would arise with a traditional implicit ODE
method. See also the paper by Edwards, Tuckerman, Friesner, and Sorensen [134].

Several authors have developed new approaches to the exponentiation of the Schur
canonical form thereby adding new dimensions to Methods 17 and 18. Dieci and
Papini [130] work with Padé approximation on a block triangular structure while
Kenny and Laub [143] exploit some practical connections to the Frechet derivative.

The splitting method (Method 19) was a purely speculative inclusion in Nineteen
Ways. We had no experience in using it but thought that it was interesting to include

THE EXPONENTIAL OF A MATRIX 39

a technique that worked around “the great matrix exponential tragedy”, namely, the
fact that eA+B does not generally equal eAeB . It turns out that there is heightened
interest in the exponential splitting idea in various numerical partial differential equa-
tion settings. See Celledoni and Iserles [127, 128], Sheng [150], Jahnke and Lubich
[140], and Zanna and Munthe-Kaas [158].

As mentioned in the fourth bullet item above, changes in hardware have prompted
a major reevaluation of many algorithms in the matrix computation field. For ex-
ample, data reuse issues have elevated interest in methods that are rich in matrix
multiplication. Thus, matrix exponentiation methods (such as scaling and squaring)
that are rich in this operation have an even greater appeal than they did twenty-five
years ago. A few remarks about Level-2 and Level-3 Blas as they apply to the matrix
log problem can be found in Higham [137]. Partial fraction approximants to the ex-
ponential have also attracted attention because of their appeal in parallel computing
settings. See Calvetti, Gallopoulos, and Reichel [126].

10. Method 20: Krylov space methods. If we were to revise thoroughly Nine-
teen Ways, we would have to revise the title because Krylov space methods constitute
a twentieth approach!

In many applications one does not need the full matrix eA, only the product eAv
for some given vector v. This is true, for example, when solving the initial value
problem

ẋ = Ax, x(0) = x0

with solution x(t) = eAtv. Often A is large and sparse, in particular if this ordi-
nary differential equation arises from the spatial discretization of a partial differential
equation. Since eA will typically be dense even if A is sparse, we would like to avoid
computing this matrix.

One of the most significant changes in numerical linear algebra in the past 25
years is the rise of iterative methods for sparse matrix problems, in which only matrix-
vector products are needed. A powerful class of methods that are applicable to many
problems are the Krylov space methods, in which approximations to the solution are
obtained from the Krylov spaces spanned by the vectors {v, Av, A2v, . . . , Amv} for
some m that is typically small compared to the dimension of A. The Lanczos method
for solving symmetric eigenvalue problems is of this form, and for nonsymmetric
matrices the Arnoldi iteration can be used. In this method the eigenvalues of a large
matrix are approximated by the eigenvalues of a Hessenberg matrix of dimension m.
After m steps in Arnoldi with starting vector v (assumed to have unit length) we have
the partial Hessenberg reduction

AVm = VmHm + hm+1,mvm+1e
T
m

where Vm has m orthonormal columns, H is m-by-m and upper Hessenberg, em is the
last column of Im, and vm+1 is a unit vector that satisfies V T

m vm+1 = 0. Returning
to te problem of matrix exponentiation, it turns out that

eAv ≈ VmeHme1

where e1 is the first column of Im.
Very good approximations are often obtained with relatively small m, and com-

putable error bounds exist for the approximation. Thus, the large sparse eA problem
is replaced with a small dense eHm problem.

40 CLEVE MOLER AND CHARLES VAN LOAN

For some interesting analysis and applications, see Knizhnerman [144], Druskin
and Knizhnerman [132], Druskin, Greenbaum, and Knizhnerman [133], Gallopoulos
and Saad [136], Hochbruck, Lubich and Selhofer [138] Hochbruck and Lubich [139],
Nour-Omid [148], Saad [149], and Stewart and Leyk [154].

11. Matrix Exponential in MATLAB. The first version of MATLAB was being
developed at the same time Nineteen Ways was being written in the late 1970’s.
Even though the original MATLAB had only 80 functions, one of them was the matrix
exponential. The first MathWorks MATLAB, released in 1984, included both exp(A),
the element-by-element array exponential, and expm(A), the matrix exponential.

MATLAB was initially intended for the academic numerical linear algebra com-
munity, but researchers and practitioners in the control design community soon found
it useful. The matrix exponential is an important computational tool in control the-
ory, so availability of expm(A) in early versions of MATLAB quite possibly contributed
to the system’s technical and commercial success.

The expm function is used by MATLAB in its Control Toolbox, System Identifi-
cation Toolbox, Neural Net Toolbox, Mu-Analysis and Synthesis Toolbox, and Model
Predictive Control toolbox, as well as in Simulink. It is also used in MATLAB itself
for a Newton-step correction in computing logm.

The expm function in MATLAB is built-in, so the source code is not distributed.
However, the help entry says

EXPM(A) is the matrix exponential of A. EXPM is computed using
a scaling and squaring algorithm with a Pade approximation.

In other words, MATLAB uses methods 3 and 2 from Nineteen Ways.
The MATLAB demos directory contains three M-files, expm1, expm2 and expm3,

that implement three different methods for computing the matrix exponential. The
first of these, expm1, is essentially an M-file description of the built-in algorithm. The
function begins by determining the appropriate scaling.

function E = expm1(A)
[f,e] = log2(norm(A,’inf’));
s = max(0,e+1);
A = A/2^s;

For a floating point number x, the statement [f,e] = log2(x) finds the fraction f ,
with 1/2 ≤ |f | < 1, and integer exponent e so that x = f · 2e. This leads to a scaling
parameter s so that the scaled matrix has ‖A/2s‖∞ < 1/2. The next section of code in
expm1.m finds the numerator E and denominator D of the (6, 6) Padé approximation.

X = A;
c = 1/2;
E = eye(size(A)) + c*A;
D = eye(size(A)) - c*A;
q = 6; p = 1;
for k = 2:q

c = c * (q-k+1) / (k*(2*q-k+1));
X = A*X;
cX = c*X;

THE EXPONENTIAL OF A MATRIX 41

E = E + cX;
if p, D = D + cX;
else, D = D - cX; end
p = ~p;

end

The computation of D−1E is done with the MATLAB backslash operator.

E = D\E;

The computation is completed by squaring the approximant s times.

for k=1:s, E = E*E; end

The second MATLAB demo function, expm2, implements method 1, Taylor Series.
This function is accurate, but not very efficient, for matrices with ‖A‖ < 1. The
accuracy deteriorates and the execution time increases as ‖A‖ increases.

function E = expm2(A)
E = zeros(size(A));
F = eye(size(A));
k = 1;
while norm(E+F-E,1) > 0

E = E + F;
F = A*F/k;
k = k+1;

end

The third MATLAB demo function, expm3, implements method 14, eigenvectors.
This function is accurate and efficient for symmetric, orthogonal and other normal
matrices. The accuracy deteriorates as cond(V), the condition number of the matrix of
eigenvectors, increases. It fails completely, and without warning, when A is defective.

function E = expm3(A)
[V,D] = eig(A);
E = V * diag(exp(diag(D))) / V;

12. Pseudospectra and EigTool. We now know that the behavior of the matrix
exponential is closely related to various matrix properties that express its nonnormal-
ity. These include quantities like the condition numbers of eigenvalues and eigenvec-
tors, the field of values, the polynomial numerical hulls of various degrees, and the
pseudospectra. The study of pseudospectra has been led by L. N. Trefethen[155, 156].
The Pseudospectra Gateway Web page[135] includes a bibliography with, at the time
of this writing, nearly 200 entries.

Let Λ(A) denote the set of eigenvalues of A. The ε-pseudospectrum of a matrix A,
denoted by Λε(A), is a set in the complex plane that depends upon a scalar parameter
ε, and that converges to Λ(A) as ε → 0. There are three equivalent definitions. One
involves the resolvent.

Λε(A) = {z : ‖(zI −A)−1‖ = ε−1}

42 CLEVE MOLER AND CHARLES VAN LOAN

A second definition involves perturbations of the matrix.

Λε(A) = {z : z ∈ Λ(A + E), ‖E‖ 5 ε}
A third definition involves pseudo-eigenvectors

Λε(A) = {z : ‖(A− zI)v‖ 5 ε, ‖v‖ = 1}
If A is normal, then Λε(A) is simply the set of disks of radius ε around the

eigenvalues. But if A is not normal, then Λε(A) can be a much larger and more
interesting set. The size and structure of this set determines the behavior of etA, and
of many of the methods for computing it.

EigTool is a MATLAB toolkit and graphical interface developed by Tom Wright[157]
at Oxford University and available via the Pseudospecta Gateway. Once EigTool has
been installed, the MATLAB command

eigtool(A)
plots the boundary of Λε(A) for several values of ε. A graphical interface provides
a number of related quantities and options, including graphs of ‖Ak‖ and ‖etA‖ as
functions of k and t, together with lower bounds for these quantities based on the
pseudospectra.

EigTool uses a close cousin of Method 3, scaling and squaring, to compute the
graph of ‖etA‖. A step size h must be chosen. No attempt is made to automatically
determine a “good” value. The default value is h = 0.1. The matrix E1 = ehA is
computed using the MATLAB function expm. Then matrices En, which approximate
enhA, are computed by repeated multiplication

En = E1 · En−1, n = 2, . . .

The only errors in this approach are the truncation error in the initial Padé approxi-
mation and the roundoff error in the repeated matrix multiplication. The magnitude
of the error at each step is on the order floating point accuracy, relative to the quan-
tities involved in that step.

13. ExpoKit. The most extensive software for computing the matrix exponential
that we are aware of is ExpoKit, developed by Roger Sidje[151, 152]. Both Fortran and
MATLAB versions are available. In addition to computing the matrix-valued function
etA for small, dense matrices A, Expokit has functions for computing the vector-valued
function etAx0 for both small, dense matrices and large, sparse matrices. There are
also functions for computing the solution to inhomogeneous, constant coefficient linear
ordinary differential equations

ẋ = Ax + u, x(0) = x0

for both dense and sparse A. Transient states of Markov chains are given special
attention in the package.

The methods for dense matrices use Chebyshev approximations instead of Padé
approximations. The methods for sparse matrices use Krylov sequences and only
require operator-vector products, Av, for various vectors v.

14. Transient example. Figure 3 illustrates the hump phenomenon with the
graph of ‖etA‖ for a matrix adapted from the transient demo example in EigTool.
The hump is not very large; the graph reaches a height of only slightly over 250
before it decays to zero.

THE EXPONENTIAL OF A MATRIX 43

0 10 20 30 40 50 60
0

100

200

300

Fig. 3 ‖etA‖, the hump for the transient example

The matrix has order n = 25. It is generated in MATLAB by adding the diagonal
matrix formed from the n-th roots of unity to the circulant matrix with ones on the
superdiagonal and in the lower left-hand corner. The spectrum is shifted to make the
matrix stable; the right-most eigenvalue is −0.0719.

n = 25;
C = diag(ones(n-1,1),1); C(n,1) = 1;
D = diag(exp(2*pi*i*(0:n-1)/n));
I = eye(n);
A = C + D - 1.1*I;

Figure 4 is the plot from EigTool of the pseudospectra for this example. The
matrix is not normal, but the condition number of the matrix of eigenvectors is only
about 2·103. The Froebenius norm of the off-diagonal portion of the Schur form, which
is the Henrici measure of departure from normality, is only 4.86. These figures are
consistent with the height of the hump and the spread of the pseudospectra contours.

15. Boeing 767 example. Figure 5 plots ‖etA‖ and Figure 6 shows the pseu-
dospectra for an example from control theory. Burke, Lewis and Overton[125] describe
nonsmooth, nonconvex optimzation methods that move the spectrum of a matrix A
into the left half-plane by adding a low-order stabilizer, A+BKC. They start with a
matrix of order n = 55 that models a Boeing 767 aircraft at a flutter condition. The
matrix has eigenvalues with positive real part, corresponding to an unstable system.
The control matrix K is 2-by-2, so there are only four control parameters. The op-
timization task is to choose these parameters in such a way that all the eigenvalues
are moved into the left half plane. Their final matrix is stable, but only barely.

The height of the hump is almost 105, so initial transients are greatly magnified
before they eventually die out. The eigenvalue closest to the real axis has Re(λ) =
-0.0788. This should be compared with max |λ| = 103 and ‖A‖ = 1.69 · 107. The
condition number of the matrix of eigenvectors is 9.5 · 106. These values are all
consistent with the pseudospectra plot that shows small perturbations easily move
the eigenvalues into the right half plane and destabilize the system.

The B767 example also provides some timing results. On a 700 MHz Pentium
III laptop, MATLAB requires 0.024 seconds to compute expm(A). The demo function
expm1(A) requires only slightly more time. The norm of this matrix is large, 1.69 ·107,
which is greater than 224, so the scaling and squaring parameter is s = 26. Conse-
quently, almost 70% of the time is spent in the repeated squaring. The remaining
30% is spent in the Padé approximation, including 16% in matrix multiplications,

44 CLEVE MOLER AND CHARLES VAN LOAN

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

dim = 25
−4

−3.5

−3

−2.5

−2

−1.5

−1

Fig. 4 ε-pseudospectra for the transient example

0 10 20 30 40 50 60
0

2

4

6

8

10
x 10

4

Fig. 5 ‖etA‖, the hump for the stabilized Boeing 767

A*X, and 11% in the “matrix division”, D\E. By way of comparison, the computa-
tion of eigenvalues and eigenvectors with [V,D] = eig(A) on this machine requires
0.020 seconds, so for this example, computation of the exponential of a matrix takes
about the same time as computation of its eigenvalues and eigenvectors. However, as
t increases, the time required to compute expm(t*A) also increases, while the time
required to compute eig(t*A) does not change very much.

Acknowledgments. Thanks to the editors of SIAM Review for republishing Nine-
teen Ways and, especially, to Randy LeVeque for his valuable contributions.

THE EXPONENTIAL OF A MATRIX 45

−100 −50 0 50
−100

−80

−60

−40

−20

0

20

40

60

80

100

dim = 55
−5

−4.5

−4

−3.5

−3

−2.5

−2

Fig. 6 ε-pseudospectra for the stabilized Boeing 767

REFERENCES

[123] M. Arioli, B. Codenotti, and C. Fassino, The Padé method for computing the matrix
exponential, Lin. Alg. Applic. 240 (1996), 111–130.

[124] P. Bochev and S. Markov, A self-validating numerical method for the matrix exponential,
J. Computing, 43 (1989), pp. 59–72.

[125] J. V. Burke, A. S. Lewis and M. L. Overton, A Nonsmooth, Nonconvex Optimization
Approach to Robust Stabilization by Static Output Feedback and Low-Order Controllers,
submitted to 4th IFAC Symposium on Robust Control Design (2003).

[126] D. Calvetti, E. Gallopoulos, and L. Reichel, Incomplete partial fractions for parallel
evaluation of rational matrix functions, J. Comput. Appl. Math., 59 (1995), pp. 349–380.

[127] E. Celledoni and A. Iserles, Approximating the exponential from a Lie algebra to a Lie
group, Math. Comp. 69 (2000), pp. 1457–1480.

[128] E. Celledoni and A. Iserles, Methods for the approximation of the matrix exponential in a
Lie-algebraic setting, IMA J. Numer. Anal., 21 (2001), pp. 463–488.

[129] S.H. Chung, N.J. Higham, C.S. Kenney, and A.J. Laub, Approximating the logarithm of a
matrix to specified accuracy, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 1112–1125.

[130] L. Dieci and A. Papini, Padé Approximation for the Exponential of a Block Triangular Matrix,
Lin. Alg. Applic., 308 (2000), pp. 183-202.

[131] L. Dieci and A. Papini, Conditioning of the Exponential of a Block Triangular Matrix, J.
Num. Alg., 28 (2001), pp. 137-150.

[132] V. L. Druskin and L. A. Knizhnerman, Krylov space approximations of eigenpairs and
matrix functions in exact and computer arithmetic, Numer. Linear Algebra Appl. 2 (1995),
pp. 205-217.

[133] V. Druskin, A. Greenbaum, and L. Knizhnerman, Using nonorthogonal Lanczos vectors in
the computation of matrix functions, SIAM J. Sci. Comput., 19 (1998), pp. 38–54.

[134] W.S. Edwards, L.S. Tuckerman, R.A. Friesner, and D.C. Sorensen, Krylov methods for
the incompressible Navier Stokes equations, J. Comput. Phys., 110 (1994), pp. 82–102.

46 CLEVE MOLER AND CHARLES VAN LOAN

[135] M. Embree and L. N. Trefethen, Pseudospectra Gateway,
http://web.comlab.ox.ac.uk/pseudospectra

[136] E. Gallopoulos and Y. Saad, Efficient solution of parabolic equations by Krylov approxi-
mation methods, SIAM J. Sci. Statist. Comput, 13 (1992), pp. 1236–1264.

[137] N. J. Higham, Evaluating Padé approximants of the matrix logarithm, SIAM J. Matrix Anal.
Appl., 22 (2001), pp. 1126–1135.

[138] M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix exponential,
SIAM J. Numer. Anal., 34 (1997), pp. 1911–1925.

[139] M. Hochbruck, C. Lubich and H. Selhofer, Exponential integrators for large systems of
differential equations, SIAM J. Sci. Comput., 19 (1998), pp. 1552–1574.

[140] T. Jahnke and C. Lubich, Error bounds for exponential operator splittings, BIT 40 (2000),
pp. 735–744.

[141] C. Kenney and A. J. Laub, Condition estimates for matrix functions, SIAM J. Matrix Anal.
Appl., 10 (1989), pp. 191–209.

[142] C. Kenney and A. J. Laub, Small-sample statistical condition estimates for general matrix
functions, SIAM J. Sci. Comput., 15 (1995), pp. 36–61.

[143] C. S. Kenney and A. J. Laub, A Schur–Fréchet Algorithm for Computing the Logarithm and
Exponential of a Matrix, SIAM J. Mat. Anal., 19 (1998), pp. 640-663.

[144] L. A. Knizhnerman, Calculation of functions of unsymmetric matrices using Arnoldi’s
method, Comput. Math. and Math. Phys., 31 (1991), pp. 1–9.

[145] R. Mathias, Condition estimation for matrix functions via the Schur decomposition, SIAM
J. Matrix Anal. Appl., 16 (1995), pp. 565–578.

[146] R. Mathias, Evaluating the Fréchet derivative of the matrix exponential, Numer. Math., 63
(1992), pp. 213–226.

[147] I. Najfeld and T.F. Havel, Derivatives of the matrix exponential and their computation,
Adv. Appl. Math., 16 (1995), pp. 321–375.

[148] B. Nour-Omid, Applications of the Lanczos algorithm, Comput. Phys. Comm., 53 (1989), pp.
157–168.

[149] Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator,
SIAM J. Numer. Anal., 29 (1992), pp. 209–228.

[150] Q. Sheng, Global error estimates for exponential splitting, IMA J. Numer. Anal. 14 (1993),
pp. 27–56.

[151] R. B. Sidje, Expokit: Software Package for Computing Matrix Exponentials, ACM Trans.
Math. Software, 24 (1998), pp. 130–156.

[152] R. B. Sidje, Expokit software, http://www.maths.uq.edu.au/expokit.
[143] R. B. Sidje and W.J. Stewart, A Survey of Methods for Computing Large Sparse Matrix

Exponentials Arising in Markov Chains, Computational Statistics and Data Analysis 29
(1999), 345–368.

[154] D.E. Stewart and T.S. Leyk, Error estimates for Krylov subspace approximations of matrix
exponentials, J. Comput. Appl. Math. 72 (1996), pp. 359–369.

[155] L. N. Trefethen, Pseudospectra of linear operators, SIAM Review 39 (1997), pp. 383-406.
[156] L. N. Trefethen, Computation of pseudospectra, in Acta Numerica (1999), pp. 247-295,

Cambridge University Press.
[157] T. G. Wright, EigTool software package,

http://web.comlab.ox.ac.uk/projects/pseudospectra/eigtool/.
[158] A. Zanna and H.Z. Munthe-Kaas, Generalized polar decompositions for the approximation

of the matrix exponential, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 840–862.

