CS 99

Summer 2001

7.23

Lecture Notes 7

Reading 5.2, 5.3, 5.5 Savitch

Objects and Constructors

· An object is an instance of a class.

· The process of creating objects usually involves the following steps:

1. Declaration of a reference variable.
Example:
Triangle t;

2. Creating an object.
Example:
t = new Triangle(3, 4, 5);

You can also combine the steps in one statement:

Triangle t = new Triangle(3, 4, 5);

· The part of the statement after the new keyword is called the constructor. The only kind of constructor that comes automatically with each class is the default constructor, which takes no parameter arguments:

 Triangle t = new Triangle();
 Rectangle r = new Rectangle();

· When you use this kind of constructor, the instance variables of the class all get their default values (0 for ints, 0.0 for doubles, false for booleans, null for Strings, etc).

· To get the constructor to do something more interesting, like assign the various variables in the class values when you create the object, then you have to write your own constructor with that express purpose in mind.

· Indeed, the main purpose of constructors is to set the initial state of an object when the object is created using the new operator.

· A constructor has the following general syntax:

<constructor header> (<parameter list>) {

<constructor body>
}

· In many ways, a constructor is like a method. However, it does not return a value; it also must have the same name as the class in which it is defined.

Anatomy of a Method

· A method is simply a group of programming language statements that are given a name.

· Every method in Java is part of a particular class.

· Where do we put methods? Inside class declarations like this:

class Whatever {

boolean method1() {

/* some code that returns a boolean*/

}

void method2() {

/* some code that doesn't return anything */

}

public static void main(String[] args) {

/* main code */

}
}

Here we included method main just to show you that main is a method like any other. Note that you cannot declare a method inside another method. It has to go inside a class declaration at the level shown above.

· A method declaration specifies the code that gets executed when a method is invoked.

· The syntax for a method is

[<modifiers>] <return type> <method name> (<parameters>) {

<method body>
}

· For example, here is the code for the definition of a method called thirdPower() that returns the cube of its parameter n:

int thirdPower (int n) {

return n*n*n;
}

· Let's examine each of the parts of a method one by one (we'll skip the [<modifiers>] part and leave that for Wednesday's lecture):

Return type

· The return type specified in the method header can be a primitive type, class type, or the reserved word void.

· We use void when the method doesn't return any value.

· A method that returns a value must have a return statement, and in that return statement it must return an expression or variable or value that matches the type specified by the method header. If the method says it returns an int, you have to do just that.

· A return statement consists of the reserved word return followed by an expression that dictates the value that gets returned.

· It is not considered good practice to have more than one return statement in a method, though it is perfectly legal to do so.

· In general, a method should have one return statement as the last line of the method body, unless that makes the method overly complex.

Method name

· This can be anything you want (though it must follow the legal rules for identifiers).

· It's considered good Java programming style to always start your method names with a lowercase letter.

· Choose your names so that a reader can guess what your method does just by looking at it. For instance, if you're writing a method that translates Strings into PigLatin, you should never call that method x() or survivor().

Parameters

· A parameter is a value that is passed into a method when it is invoked.

· A method definition always gives the parameter list in parentheses after the method name. If there are no parameters, an empty set of parentheses is used.

· The parameter list specifies the types of the values that are used and the names by which the method will refer to those parameters.

· The names of the accepted parameters are called formal parameters. For instance, in method thirdPower() above, n is the formal parameter.

· When a method is actually invoked, the values passed into the method are called actual parameters. So if we made the following call with thirdPower():

int cube = thirdPower(6);

Then the actual parameter is 6.

· The formal parameters are identifiers that serve as variables inside the method and whose initial values comes from the actual parameters in the invocation. Actual parameters can be literals, variables, or full expressions that are evaluated and the result passed as the parameter. So the following calls with thirdPower() are all legal:

thirdPower(7); // passing a literal
int m = 72;
thirdPower(m); // passing a variable
thirdPower((int) (Math.random()*m)); // passing the result of an expression

· The parameter lists in the invocation and the method declaration must match up! The following two invocations are illegal because thirdPower is expecting an int, not a String or a double:

thirdPower("Guantanamera");
thirdPower(Math.exp(5));

· For methods with more than one parameter, each parameter in the invocation must match up with the parameters in the declaration, in the order that they're declared. So a method with the following header:

void someMethod(int n, String s, boolean b) {
 /* some random code */
}

must, when called, have an int as its first parameter; a String, as its second; and a boolean as its third.

Method Body

· When a method is called, the flow of control transfers to that method. One by one, the statements of its method body are executed. When the method is done, control returns to the location where the call was made and execution continues.

· For instance, consider the method Math.max() which returns the maximum of the two values that are passed to it (they can be doubles or ints). The body of Math.max() (when the parameters are ints) must look something like this:

static int max(int x, int y) {

if (x > y)

return x;

return y;
}

If we have a program segment that does the following:

int m = 5, n = 8;
int z = Math.max(m, n);
/* more statements */

Then before the assignment to z is made the flow of control of wherever that program segment is sitting transfers to the body of max(int, int), and the statements there are executed.

The actual parameters are 5 and 8; the formal parameters, x and y, will copy those values: x will be 5, and y will be 8. Since y is greater than x, y is returned and the value 8 is assigned to z.

After the assignment is made, the program continues with the statements that follow the comment.

· We can declare local variables in the body of the method for use in that method.

· These local variables cannot be accessed from outside of the method, even from other methods in the same class.

· The local variables exist only while the method is executing.

Using Methods
· There are three ways we can call methods:

1. Through an object reference
Like so:

TokenReader in = new TokenReader(System.in);
int n = in.readInt();

Triangle t = new Triangle(1, 1, 1);
if (t.area() > 10)
 <do something>

2. Through the class name, but this only works for static methods!
Example:

double f = Math.random();

3. Directly, using its name. This works only when you use the method in the class in which it's defined:
Example:

/* in class Triangle */
boolean isScalene() {

return !isEquilateral() && !isIsosceles();
}

· The way you use a method depends on its return type. When the method is of type void, you cannot assign the results of the method to any variable whatever. Void methods are typically used to perform an action without reporting to wherever they were called from.

· When a method has an return type other than void, then the method can be used to return a value into any expression where a variable of the same type as the return type may be used. Look again at the code involving TokenReader above. in.readInt() returns an int, and its result is assigned to variable n.

