Swastik Kopparty
Abstract:
Multiplicity codes are natural  error-correcting codes based on evaluations of polynomials and their derivatives.  In many ways they have nicer properties than the classical polynomial-based  Reed-Solomon codes and Reed-Muller codes. Multiplicity codes can have  arbitrarily high rate, while simultaneously allowing for sublinear time  decoding from errors. They also admit powerful list-decoding  algorithms, achieving the so-called list-decoding capacity. I will  talk about these codes and their decoding algorithms.
  
Part of this talk is based on joint work with Shubhangi Saraf and Sergey  Yekhanin.