
E�cient Numerical Error Bounding for Replicated Network

Services

Haifeng Yu and Amin Vahdat

Computer Science Department

Duke University, Box 90129

Durham, NC 27708

fyhf, vahdatg@cs.duke.edu

Abstract

The goal of this work is to use database techniques to support replicated network services

that accept updates to numerical records from multiple locations. Given the high overhead

of maintaining strong consistency, many replicated services can tolerate divergence of their

shared data, as long as the numerical error is bounded. Target distributed services include

replicated stock quotes services, online auctions, distributed sensor systems, wide-area re-

source accounting and load balancing for replicated servers. While these target systems are

broader than typical database applications, this work demonstrates how variants of existing

database techniques can support these applications.

We present two algorithms to e�ciently bound absolute error using only local informa-

tion. Split-Weight AE separately bounds negative and positive weights, while Compound-

Weight AE bounds them together. The two algorithms can be combined to provide good

performance and low space overhead. Our Inductive RE bounds relative error also based

on local information, taking advantage of the fact that the divergence was properly bounded

prior to each invocation of the algorithm to reduce required wide-area communication. We

discuss two optimizations that enable the algorithms to scale to thousands of data items

and hundreds of replicas.

1 Introduction

In our e�orts to build high performance replicated network services, we repeatedly encountered

scenarios where we needed to bound the relative error of numerical values stored and updated

at multiple sites. Consider the following replicated services:

Stock Quotes Services Users retrieve stock quotes from replicated stock quotes servers.

Each server may also accept updates to the current quotes. Users are concerned with

the amount of \error" in the quotes they observe. For example, a user may prefer to

see quotes within only �1 cent/share (absolute error) or �1% (relative error) of the

accurate quotes.

1



Online Auctions Each online auction server maintains the highest current bid for a number

of items. A user accessing a replica desires guarantees regarding the maximum di�erence

between the highest bid stored locally and the largest global bid.

Distributed Sensor Systems The sensor system takes the average temperature (pollution

level, etc.) of an area. Each sensor periodically takes a sample at a �xed point in the

area, and updates the average value according to the new sample value taken. User may

retrieve the average value at any sensor location. It is desirable that the error in the

average value is bounded.

Wide-area Resource Accounting This is an open problem in current operating system

and network research[7, 21, 22]. As we move toward global distributed computing,

one goal is to account for aggregate consumed resources across multiple providers on

a per-user basis. Given the scale of this problem, maintaining accurate resource usage

information will incur prohibitive overhead. Allowing bounded error in usage information

is a promising approach to solving this problem.

Load Balancing for Replicated Servers For many replicated services, client programs do

not directly choose which replica to contact. Instead, they contact a nearby font end

and the front end then forwards the request to the server judged to deliver the highest

quality of service for that request. A front end uses the forwarding history to estimate

the load of each server. When there are multiple front ends[16, 21], each front end sees

a subset of the request stream, and uses that information to update the estimated load

information. Once again, the load information is updated from multiple locations, and

it is bene�cial to bound the maximum error on load information observed by each front

end.

One approach for guaranteeing accurate numerical information is to utilize standard tech-

niques for maintaining strong consistency across wide-area networks. However, the com-

munication costs and latency associated with such techniques often have prohibitively high

overhead. We observe that many replicated services, including the ones described above, can

tolerate some level of inconsistency in exchange for improved performance, as long as they are

provided guarantees regarding the maximum allowable error. In this context, the goal of this

work is to build on existing database techniques to e�ciently bound numerical inaccuracy by

reducing the amount of required wide-area communication.

Despite the importance of bounding numerical error for replicated network services, this

topic has not been well studied in the literature. In the context of data caching, [2] pro-

poses the concept of bounded numerical error. However, the authors do not generalize the

concept to replicated databases. Much work[13, 14, 15, 18, 19, 20] that exploits weak con-

sistency concentrates on aspects other than numerical error. Integrity constrain management

algorithms[3, 4, 5, 6, 10, 11] for distributed databases are related to error bounding but most

of them cannot be e�ciently applied to the special case of bounding numerical error. The de-

marcation protocol[3] allows easy maintenance of linear inequalities for distributed databases.

2



Error bounding is closely related to enforcing linear inequalities but has three important prop-

erties not present in general linear inequalities: i) The copies of a data item are inter-related,

ii) servers have approximate information about what writes other servers have seen, iii) during

write propagation, writes on all data items are propagated. Not being able to exploit these

properties makes the demarcation protocol infeasible for bounding numerical error because of

prohibitive communication and space overhead. See Section 7 for detailed discussion.

In this paper, we present algorithms to e�ciently bound numerical error for replicated

network services. They are developed in the TACT[23] project, which is a toolkit for building

replicated Internet services. Two algorithms Split-Weight AE and Compound-Weight AE are

proposed to bound absolute error. They all bound error by limiting the \total weighted writes"

(see Section 2) accepted by one server but not seen by another. All decisions are based on local

information. Split-Weight AE makes conservative decisions but easy to optimize space usage,

while Compound-Weight AE makes optimal decisions but di�cult to reduce space overhead.

We combine the two algorithms to achieve good performance and small space overhead. Our

Inductive RE bounds relative error by transforming the problem into absolute error and then

using Split-Weight AE or Compound-Weight AE to bound the absolute error. Inductive RE

takes advantage of the fact that the divergence was properly bounded prior to each invocation

of the algorithm. We also study the performance of our algorithms through both analysis and

simulation.

This paper makes the following contributions:

� We describe the importance of bounding numerical error to support replicated network

services.

� We propose practical algorithms to bound absolute error and relative error using only

local information.

� Two optimizations enable the algorithms to scale to thousands of data items and hun-

dreds of replicas.

The next section describes our replicated database model. We present our error bounding

algorithms in Sections 3 and 4. Section 5 discusses two important optimizations for our

algorithms. In Section 6, we study the performance of the algorithms. Related work is

described in Section 7. In Section 8, we draw the conclusions.

2 System Model

The database we consider is replicated on n servers, server1, server2, . . . , servern, maintain-

ing the data shared by the network servers. The replicated database is composed of multiple

data items. Each data item has a numerical value for which the service desires to bound error.

In the stock quotes example, a data item is the quote of a stock. The allowed error for a data

3



item is independent of other data items. We �rst focus on the case of a single data item and

then discuss scalability issues for multiple data items in later sections.

Every server can accept reads (inquires) and writes (updates) from users. Reads return

the current value of the data item on the server. A write W increases or decreases the value

of a data item by some amount, which is called the weight (W:weight) of the write. W:weight

is positive for increases and negative for decreases. While beyond the scope of this paper, our

algorithms can be extended to transactions that consist of multiple primary operations in a

straightforward manner.

The server that accepts a write W from a client is the originating server of the write,

and is denoted by W:server. Upon accepting a write, a server does not have to update other

servers immediately and divergence among replicas is allowed. However, we still assume that

eventual consistency[8, 15, 17] is preserved in the system. With eventual consistency, all

database replicas will converge to the same \�nal image" within �nite amount of time, if no

new writes are introduced into the system. A server updates other servers by propagating

writes. The database image itself is never communicated to other servers. Writes with the

same originating server are always propagated according to the order they are accepted by

that server. Write propagation can be done in the form of gossip messages[15], anti-entropy

sessions[8, 17], broadcast or even unicast. To reduce communication overhead, some write

propagation methods allow multiple writes to be merged into one write during propagation.

Our algorithms are orthogonal to the write propagation method used by the database, although

the freshness of views (de�ned later in this section) may be a�ected.

A server may propagate writes to other servers at any time, and such write propagation

is called voluntary write propagation or background write propagation. The error bounding

algorithms may require a server to propagate writes, which is called compulsory write propa-

gation. Compulsory write propagation is necessary for the correctness of the algorithms, while

voluntary write propagation only a�ects performance.

Each server maintains a write log, which is an ordered list of writes the server accepts from

clients or sees from other servers. Write log recycling can be done using various techniques[8,

15, 17]. We de�ne the functions twn(i; j) and twp(i; j) as:

twn(i; j) =
X

fW:weight j W:weight < 0 and W:server = serverj and W 2 write log of serverig

twp(i; j) =
X

fW:weight j W:weight > 0 and W:server = serverj and W 2 write log of serverig

Intuitively, twn(i; j) is the total negative weights of the writes serveri sees originated from

serverj , while twp(i; j) is the total positive weights. Distinguishing negative weights and

positive weights is necessary because we allow weights on di�erent data items to be added

up in our optimization, which means negative weights on one data item should not o�set the

positive weights on another data item (see Sections 5.1 and 5.2).

We use Vi to denote the value of the data item on serveri, and Vinit to denote its initial

(consistent) value. We use Vfinal to denote the eventual consistent value. The following

4



equalities hold for Vi, Vinit and Vfinal:

Vi = Vinit +

nX
k=1

(twn(i; k) + twp(i; k))

Vfinal = Vinit +

nX
k=1

(twn(k; k) + twp(k; k))

For serveri, a data item's absolute error(AE) is bounded within [�i; �i] (�i � 0 and�i � 0)

if and only if at all times, the following inequality holds:

�i � Vfinal � Vi � �i (1)

For instance, in the stock quotes service, if we want to bound the error observed by users on

server1 within �1 cent/share from the accurate quote, we can set �1 = �1, �1 = 1. Similarly,

we say the relative error(RE) is bounded within [
i; �i] (
i � 0 and 0 � �i � 1) if an only if:


i � 1�
Vi

Vfinal
� �i (2)

In the stock quotes example, we can bound the stock quotes error on server1 within �1% by

setting 
1 = �0:01 and �1 = 0:01. For relative error, we assume Vi > 0; 1 � i � n.

Each server in the system has approximate knowledge of what writes other servers have

seen. We say that each server has its view of twn(i; j) and twp(i; j), for 1 � i � n; 1 � j � n.

The views are updated during write propagation. The actual update fashion and view freshness

depend on the write propagation method. For example, if we use unicast, then during each

write propagation, the two parties can inform each other of the writes they see. For anti-

entropy sessions, more e�cient view update mechanism can be used and details can be found

in [8]. The correctness of our algorithms does not depend on the freshness of the views, but

performance is a�ected.

We denote serverk's view of twn(i; j) and twp(i; j) as twnk(i; j) and twpk(i; j). Intuitively,

twnk(i; j) is the total negative weights of the writes that serverk believes that serveri sees

from serverj. During a view advance, serverk updates twnk(i; j) and twpk(i; j). Views are

conservative in that serverk will never assume that serveri sees a write that serveri actually

does not see. So we have the following properties for 1 � i; j; k � n:

twn(j; j) � twn(i; j) � twnk(i; j) � 0 (3)

twp(j; j) � twp(i; j) � twpk(i; j) � 0 (4)

3 Bounding Absolute Error Using Local Information

This section describes two di�erent algorithms for bounding AE. The idea is to bound the total

weights of writes accepted by one server but not seen by other servers. The �rst algorithm,

5



Split-Weight AE, bounds positive weights and negative weights separately. The second algo-

rithm, Compound-Weight AE, keeps track of the possible range of values on other servers and

allows negative weights and positive weights to o�set. Both algorithms require cooperation

of all servers in the system, that is, each server must help every other server to enforce its

bounds. For each algorithm, we discuss how serverj acts to bound the error for a single data

item on serveri.

3.1 Split-Weight AE

In this algorithm, each serverj maintains two local variables x and y for serveri; i 6= j. They

are used to record the total negative and positive weights of the writes accepted by serverj

but not seen by serveri. serverj uses its view to compute x and y. However, since the view

is conservative, x and y are also conservative.

Both variables x and y are originally zero and are updated in the following fashion:

1. When serverj accepts a new write W , if W:weight < 0, x = x +W:weight, else y =

y +W:weight.

2. When serverj advances its view, if twnj(i; j) and twpj(i; j) are updated to twn0

j(i; j)

and twp0

j(i; j) respectively, then x = x�(twn0

j(i; j)�twnj(i; j)) and y = y�(twp0

j(i; j)�

twpj(i; j)). Intuitively, this subtracts weights of the newly propagated writes from x and

y.

When serverj receives a write W from a client, it checks the conditions:

x+W:weight � �i=(n� 1); if W:weight < 0 (5)

y +W:weight � �i=(n� 1); if W:weight > 0 (6)

If the conditions do not hold, serverj must advance its view for serveri (potentially propa-

gating writes to serveri) before it can accept this write. At the extreme, if the conditions still

do not hold after propagating all writes to serveri, serverj must perform two-phase commit

with serveri for this new write.

Theorem 1 Split-Weight AE, if carried out by all servers in the system, bounds the absolute

error on each server.

Proof: From the way we update x, we know at any time on serverj ; 1 � j � n, x =

twn(j; j) � twnj(i; j). Checking condition (5) ensures that x � �i=(n� 1). Taking inequality

(3) into account, the error for serveri is:

Vfinal � Vi = (Vinit +

nX
j=1

(twn(j; j) + twp(j; j))) � (Vinit +

nX
j=1

(twn(i; j) + twp(i; j)))

=

nX
j=1

(twn(j; j) � twn(i; j)) +

nX
j=1

(twp(j; j) � twp(i; j))

6



�

nX
j=1

(twn(j; j) � twn(i; j)) �

nX
j=1

(twn(j; j) � twnj(i; j))

� (n� 1)� �i=(n� 1) = �i

In a similar fashion, it can be shown that Vfinal � Vi � �i. 2

Split-Weight AE is pessimistic, in the sense that serverj may propagate writes to serveri

when it is actually not necessary to bound the error. For example, the algorithm does not

consider the case where negative weights and positive weights may o�set each other. In our

simulation study (see section 6.2), we will quantify how pessimistic Split-Weight AE is under

di�erent workloads. However, this simple design enables several optimizations not applicable

to Compound-Weight AE (see Section 3.2). For example, in order to optimize the space

overhead, several data items may need to share the same x and y variables (see section 5.1).

3.2 Compound-Weight AE

In Compound-Weight AE, each serverj maintains three local variables z, min and max for

serveri; i 6= j. Intuitively, z is the total weights of the writes accepted by serverj but not

seen by serveri, in serverj 's view. However, since a view can be stale, serveri may actually

see more writes than serverj believes. So we use min/max to record the minimum/maximum

possible total weights of those writes that serveri can see but is not in serverj's view. Both

values are conservative, however, serverj can only use these conservative values without having

global knowledge. We will show later that this algorithm makes optimal decisions, given only

local information.

All variables z, min and max are originally zero and are updated in the following fashion:

1. When serverj accepts a new write W , z = z +W:weight. If z < min, then min = z. If

z > max, then max = z.

2. When serverj advances its view for serveri, serverj �rst sets all three variables to zero

and then re-scans the write log corresponding to the unseen part of the write log as

if the writes were newly submitted from clients. In this way, z, min and max are re-

established for this new view. Rescanning the write log whenever serverj advances its

view appears redundant, but is actually necessary for correctness.

When serverj receives a write W from a client, it checks the following conditions:

z +W:weight�max � �i=(n� 1) (7)

z +W:weight�min � �i=(n� 1) (8)

If the condition does not hold, serverj must advance its view for serveri (potentially propa-

gating writes to serveri) before it can accept this write.

Theorem 2 Compound-Weight AE, if carried out by all servers in the system, bounds the

absolute error on each server.

7



Proof: At any time, z = (twn(j; j) + twp(j; j)) � (twnj(i; j) + twpj(i; j)) and z � max �

�i=(n � 1); z �min � �i=(n � 1). The algorithm ensures that max is the largest z serverj
has observed since last view advance. This is also the largest possible total weighted writes

serveri can see from serverj after last view advance. So we have:

max � (twn(i; j) + twp(i; j)) � (twnj(i; j) + twpi(i; j))

(twn(j; j) + twp(j; j)) � (twn(i; j) + twp(i; j))

= (twn(j; j) + twp(j; j) � (twnj(i; j) + twpj(i:j))�

(twn(i; j) + twp(i; j)� (twnj(i; j) + twpi(i; j))

� z �max � �i=(n� 1)

Similarly, we can prove (twn(j; j)+twp(j; j))�(twn(i; j)+twp(i; j)) � �i=(n�1). From these

two inequalities, as in the proof for Theorem 1, it can be shown that �i � Vfinal � Vi � �i. 2

As opposed to Split-Weight AE, Compound-Weight AE makes the optimal decision that

can be made without global knowledge on whether to propagate writes. In other words,

�i=(n� 1) � (twn(j; j) + twp(j; j)) � (twn(i; j) + twp(i; j)) � �i=(n� 1) (9)

holds if and only if conditions (7) and (8) hold. Theorem 2 states the \if" part and we now

informally prove the \only if" part by contradiction. If condition (7) or (8) does not hold,

without loss of generality, suppose z�max � �i=(n�1). It is possible that serveri sees a pre�x

of severj 's write log that corresponds to max. In that case, we have (twn(i; j) + twp(i; j)) �

(twnj(i; j) + twpj(i; j)) = max. Using the same approach in the proof of Theorem 2, we can

show (twn(j; j) + twp(j; j)) � (twn(i; j) + twp(i; j)) = z �max < �i=(n � 1), which violates

inequality (9). Thus conditions (7) and (8) are both su�cient and necessary conditions for

(9).

4 Bounding Relative Error Using Local Information

The basic idea of our relative error bounding algorithm, Inductive RE, is to transform the

relative error into absolute error. Here we should emphasize that Vfinal may not be known by

any server. So one naive way is to transform de�nition (2) to 
i=(1� 
i)� Vi � Vfinal � Vi �

�i=(1 � �i) � Vi. By setting �i = 
i=(1 � 
i) � Vi and �i = �i=(1 � �i) � Vi, we can apply

either of the previous algorithms to enforce the inequality. However, since Vi changes over

time, serveri must constantly update �i and �i and inform other servers in the system. This

requires that a consensus algorithm be run among all servers whenever Vi decreases. As a

result, the performance could degrade signi�cantly.

Inductive RE is based on the observation that for any j, Vj was properly bounded before

the invocation of the algorithm and is an approximation of Vfinal. So serverj may use Vj as

an approximate norm to bound 
i and �i. Transforming the de�nition of RE, we have:


i � 1� Vi=Vfinal � �i ()

�
Vfinal � Vi � 
i � Vfinal
Vfinal � Vi � �i � Vfinal

8



We know that 
j � 1� Vj=Vfinal, so Vfinal � Vj=(1� 
j). The following two inequalities are

su�cient conditions for the above two inequalities:

Vfinal � Vi �

i

1� 
j
� Vj

Vfinal � Vi �
�i

1� 
j
� Vj

The left-hand side expressions can be evaluated using only local information. So in order to

bound relative error for serveri, serverj only needs to apply Split-Weight AE or Compound-

Weight AE and use 
i=(1 � 
j) � Vj as �i and �i=(1 � 
j) � Vj as �i. Note that since �i

and �i change with Vj , whenever Vj changes, the limits should be recomputed and re-checked.

However, no consensus algorithms are necessary because Vj is local.

Theorem 3 Inductive RE, if carried out by all servers in the system, bounds the relative error

on each server.

Proof: De�ne a step to be a server accepting a write or propagating writes to another

server. Use mathematical induction on the number of steps. First of all, the condition 
i �

1� Vi=Vfinal � �i holds for all servers when the system starts. By applying the algorithm for

bounding absolute error at step m+ 1, serverj ensures

twn(j; j) + twp(j; j)� (twn(i; j) + twp(i; j)) �

i

(1� 
j) � (n� 1)
� Vj

twn(j; j) + twp(j; j)� (twn(i; j) + twp(i; j)) �
�i

(1� 
j) � (n� 1)
� Vj

From induction hypothesis, Vfinal � Vj=(1� 
j). So

twn(j; j) + twp(j; j)� (twn(i; j) + twp(i; j)) � 
i=(n� 1)� Vfinal

twn(j; j) + twp(j; j)� (twn(i; j) + twp(i; j)) � �i=(n� 1)� Vfinal

Taking all servers into account, Vfinal � Vi � 
i � Vfinal and Vfinal � Vi � �i � Vfinal hold

for serveri 1 � i � n. It then follows that 
i � 1� Vi=Vfinal � �i holds for all servers at step

m+ 1. 2

5 Optimizing for Scalability

5.1 Reducing Space Overhead

We have discussed how to bound AE and RE for a single data item. The algorithms incur a per

data item space overhead of O(n), where n is the number of servers. If we simply use multiple

instances of the algorithms, the size of the data structure maintained by the algorithms can

be n times the size of the database itself. In the case where a database has tens of thousands

of data items, this high space overhead is prohibitive.

To reduce space overhead, we assume that for all data items, serveri has the same �i and

�i (or 
i and �i), otherwise the space needed simply for storing �i and �i will grow linearly

9



with the number of data items. The application may still use several di�erent �is(�is) for

di�erent data items by using multiple instances of our algorithm. We reduce space overhead

by exploiting the fact that during write propagation, writes to all data items on a server are

propagated to another server. So we only need to maintain information for those data items

accessed between two write propagations. We also take advantage the possible locality among

the writes accepted by a server. For \hot" data items, we maintain accurate information

needed by the algorithms. For data items seldom accessed, we allow them to share the same

data structure and maintain conservative information.

We use a hashtable to store the variables needed by our algorithms. Each server maintains

one hashtable for every other server in the system. The hashtables are used to maintain the

information on \hot" data items. Whenever serverj receives a writes on data item D, it

uses D as a key to create or update variables in the hashtables. The total space used by the

hashtable is bounded. In the case where a hashtable becomes full, we created a shared entry

for all other data items without a hashtable entry. On each write propagation, the hashtable

and the shared entry corresponding to the receiving server are cleared and the space is freed.

Care must be taken when maintaining the shared entry. For Split-Weight AE, the shared

entry simply consists of two variables x and y, which are updated in the same way as normal

hashtable entries. For Compound-Weight AE, it is di�cult to maintain a shared entry for

multiple data items, so we use Split-Weight AE for that shared entry and Compound-Weight

AE for hashtable entries. In Inductive RE, the shared entry must also record the smallest Vj

of the data items using that entry, so that the computed �i and �i values are tight. Using

shared entries may result in over-pessimistic behavior, since weights accumulated on multiple

items are considered on a single item. However, a server can improve performance at the cost

of larger hashtables. Thus, our design allows a server to trade space for performance.

Some simple analysis can provide us with intuition on how much space overhead the

optimization can reduce. Suppose the database consists of 100,000 data items and the space

needed for our algorithms is (16 � n)bytes per data item, where n is the number of servers.

With 100 servers, the space overhead will be around 160MBytes if we simply use 100,000

instances of our algorithms. On the other hand, with our optimization, if on average there

are 50 data items accessed between two write propagations and we do not bound the size

of hashtables, the overhead will be cut down to about 80KBytes without performance being

a�ected.

5.2 Reducing Computational Overhead

In our algorithms, a server needs to update one hashtable for every other server in the system

when accepting a write. The updating operations are on the critical path and if there are a

large number of servers, the overhead of updating n hashtables on each write can be high. In

this section, we discuss how to reduce this computational overhead.

The �rst possible optimization is to collapse the hashtables for multiple servers. We can

10



group together servers with similar bounds, and enforce the tightest bounds for a group of

servers. The servers in the group can then share a single hashtable. Once again, a server can

trade space for performance by using smaller groups. Note that this optimization also reduces

the space overhead.

Another optimization is to use a cache, so that in most cases, we only need to update the

cache rather than n hashtables. We only discuss how to use a cache for bounding error with

Split-Weight AE. The data structures in Compound-Weight AE make it di�cult to utilize a

cache.

For bounding absolute error, each cache entry maintains the following information:

item: database item

x: total negative weights of newly accepted writes since entry creation

y: total positive weights of newly accepted writes since entry creation

limitx: the limit for x

limity: the limit for y

serverx: the server whose limit we use for this entry's limitx

servery: the server whose limit we use for this entry's limity

To create a cache entry for data item D, we scan all hashtables, and set

limitx = maxf�i=(n� 1)� x j x in the hashtable entry for Dg

limity = minf�i=(n� 1)� y j y in the hashtable entry for Dg

The variables x and y are set to zero. On each cache hit, we check x +W:weight � limitx

(if W:weight < 0) or y +W:weight � limity (if W:weight > 0). As long as the condition

holds, we only need to update x or y in the cache entry, rather than updating all hashta-

bles. If the condition does not hold, we writeback the cache entry to the hashtables, and

potentially perform compulsory write propagation. After that, we can establish a new cache

entry for the data item with new limitx and limity values. The cache must be 
ushed when-

ever serveri; 1 � i � n changes �i or �i. We consider this an infrequent operation, so the

performance penalty will not be excessive.

A further optimization is to use a linked list for each cache entry. The �rst node in the

list has the tightest limitx and limity, the second node has the second tightest values and so

on. When x or y reaches limitx or limity, we remove the �rst node and update the hashtable

corresponding to serverx and servery. In this way, we can avoid scanning all hashtables to

�nd the next tightest limits. However, after updating the hashtables for serverx and servery,

we still need to go through the linked list to see whether serverx or servery now has tighter

limits than nodes in the list.

A cache \snapshot" must be made on write propagation. This snapshot is used in the

future to create a \di�" when we write back a cache entry. The x and y in the snapshot are

subtracted from the cache entry being written back, before the cache entry is added up to the

hashtable entry.

11



Applying the cache idea to bounding relative error is subtle. Since the computed �i and

�i changes with Vj , in order to choose safe limitx and limity, we must decouple the limits

from Vj. Recall the conditions we want to enforce are:

x � 
i=(1� 
j)� Vj = si � Vj (10)

y � �i=(1� 
j)� Vj = ti � Vj (11)

Let the current value of x, y and Vj be x0, y0 and Vj0, respectively. We have Vj = (Vj0 �

x0 � y0) + x+ y. Use this equation to substitute Vj in (10) and (11), we have:

x � si � ((Vj0 � x0 � y0) + x+ y)

y � ti � ((Vj0 � x0 � y0) + x+ y)

Solve these two inequalities and choose a rectangular solution area, we have su�cient condi-

tions for (10) and (11):

x �
si

1� si
� (Vj0 � x0 � y0)

y �
ti

(1� ti)(1� si)
� (Vj0 � x0 � y0)

Using these two conditions, we can now set:

limitx = maxfsi=(1� si)� (Vj0 � x0 � y0)� x0 j x0 in the hashtable entry for Dg

limity = minfti=((1� ti)(1� si))� (Vj0 � x0 � y0)� y0 j y0 in the hashtable entry for Dg

Vj0 only changes when serverj accepts writes from other servers. In that case, the cache

should be 
ushed.

Once again, we use some simple analysis to intuitively understand the bene�ts of using a

cache. Suppose there are 100 servers and it takes 0.1ms to update a hashtable or cache entry.

Without optimization, the updating operation will add around 10ms to the latency of each

write. If we use a cache and if on average we can use cache for 90% of the writes, the overhead

is reduced to about 1.09ms per write.

6 Performance Study

6.1 Performance Analysis

In this section, we compare our approach to a standard two-phase commit protocol in terms

of throughput and latency. Our algorithms and two-phase commit protocol treat reads in the

same way, so we are mainly interested in the performance for writes and we only consider write

workloads. We assume the database consists of a single data item. To simplify discussion, all

servers are assumed to have the same bounds, i.e. �i and �i. We also assume that the workload

is evenly distributed among the n servers. We do not consider background write propagation

or indirect view advance, both of which will improve the performance of our algorithms.

12



notation meaning Case 1 Case 2

n number of servers 10 20

tapply CPU time to apply a write to database 3ms 3ms

tcheck time to check limits and update n hashtables 2ms 4ms

in error bounding algorithms

tdelay round-trip message delay in write propagation 200ms 500ms

tsetup CPU time on one replica for TCP connection setup 10ms 10ms

tsend CPU time to send one write 1ms 1ms

trecv CPU time to receive one write 1ms 1ms

tlock average CPU time to acquire (potentially remote) lock in 2ms 2ms

two-phase commit protocol

Li random variable, the length of an epoch on serveri N/A N/A

error bounding algorithms

Qi random variable, queuing delay on serveri 100ms 100ms

in error bounding algorithms and two-phase commit

Table 1: Symbols and Default Values used in the Analysis

We �rst describe the terms and notations used in our analysis, as summarized in Table

1. We consider two sets of parameters. Case 1 corresponds to a replicated network service

distributed across the country, while Case 2 models an international replicated network service.

An epoch on serveri for serverj is the period on serveri between two write propagations to

serverj . Note that according to this de�nition, on serveri, an epoch for serverj may overlap

with an epoch for serverk. We de�ne the length of an epoch as the number of writes accepted

by a server directly from clients during that epoch.

The performance of the algorithms is dependent on the characteristics of the workload,

such as the weight of each write and the inter-arrival time between writes. To make our

analysis generally applicable, we abstract the workload characteristics with two high-level

random variables Li and Qi (see Table 1). Our goal is to cover the workload spectrum by

choosing di�erent distributions for Li and Qi. To gain understanding of what distributions

we can expect in real world cases, we perform simulations for several workloads (see Section

6.2).

We now analyze the throughput of our algorithms. The analysis is applicable to all three

algorithms, since the di�erence among them is captured in Li and Qi. A write that does not

incur write propagation is processed locally, consuming local CPU time tcheck + tapply. Since

we assume all servers have the same limit and no background write propagation, if a write

on serveri exceeds the limit for serverj , it must exceed the limits for all other servers. In

that case, serveri must perform compulsory write propagations to (n� 1) other servers in the

system. Our assumption also means that the epochs on serveri for di�erent servers match

and have the same length. So for a write that triggers write propagation, the local CPU time

13



consumed is:

tcheck + (n� 1)tsetup + (n� 1)Li � tsend + tapply

This write also consumes tsetup + Li � trecv + Li � tapply CPU time on every other server in

the system. Thus, the aggregate system CPU time consumed by this write is:

tcheck + (n� 1)tsetup + (n� 1)Li � tsend + tapply + (n� 1)(tsetup + Li � trecv + Li � tapply) =

tcheck + tapply + 2(n� 1)tsetup + (n� 1)Li � (tsend + trecv + tapply)

On average, for every E(Li) writes accepted by serveri, where E(Li) is the expectation of

Li, (E(Li)� 1) writes can be processed locally and the last write triggers write propagation.

So the average system CPU time consumed per epoch is:

(E(Li)� 1)(tcheck + tapply) + tcheck + tapply + 2(n� 1)tsetup + (n� 1)E(Li)(tsend + trecv + tapply)

Since we assume all servers have the same limit, Li and Lj have the same distribution for all

i and j. Also note that there are n servers in the system, we have the system throughput:

Throughput =
n�E(Li)

E(Li)(tcheck + tapply) + 2(n� 1)tsetup + (n� 1)E(Li)(tsend + trecv + tapply)

=
n

tcheck + ntapply + 2(n� 1)tsetup=E(Li) + (n� 1)tsend + (n� 1)trecv
(12)

The above analysis does not consider the possibility of merging writes during propagation.

As we mentioned in Section 2, in many cases, it is possible to merge multiple writes into

one write in order to save communication overhead. In the extreme, all writes accepted by

a server during an epoch can be merged together during write propagation. We present the

throughput of our algorithms for this particular case:

Throughput =
n�E(Li)

E(Li)(tcheck + tapply) + 2(n� 1)tsetup + (n� 1)(tsend + trecv + tapply)
(13)

In standard two-phase commit protocol, each write must be propagated to all other servers

before it can commit, so the throughput for two-phase commit is:

Throughput =
n

tlock + ntapply + 2(n� 1)tsetup + (n� 1)tsend + (n� 1)trecv
(14)

Figure 1 shows the throughput of our algorithms versus two phase commit as a function of

E(Li). The key \No WM" stands for error bounding algorithms without write merging, \WM"

stands for error bounding algorithms with write merging, and \TC" stands for two-phase

commit protocol. We plot the graphs for E(Li) 2 [1; 5]. By de�nition, E(Li) is greater than

1. Since our algorithms perform better as E(Li) increases, the graphs are conservative by not

considering larger E(Li), which we expect to be common for many applications. As expected,

the error bounding algorithms have considerably higher throughput than a two-phase commit

protocol by reducing wide-area communication. As E(Li) increases, the throughput of the

error bounding algorithms also increases, and in the write merging case, the increase is almost

14



40

60

80

100

120

140

160

180

200

1 1.5 2 2.5 3 3.5 4 4.5 5

Throughput(writes/sec) in Case 1 (Domestic)

E(Li)

No WM
WM
TC

40

60

80

100

120

140

160

180

200

1 1.5 2 2.5 3 3.5 4 4.5 5

Throughput(writes/sec) in Case 2 (International)

E(Li)

No WM
WM
TC

Figure 1: Throughput of Error Bounding Algorithms vs. Two-phase Commit

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 1.5 2 2.5 3 3.5 4 4.5 5

Latency(sec) in Case 1 (Domestic)

E(Li)

No WM
WM
TC

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 1.5 2 2.5 3 3.5 4 4.5 5

Latency(sec) in Case 2 (International)

E(Li)

No WM
WM
TC

Figure 2: Latency of Error Bounding Algorithms vs. Two-phase Commit

linear. The performance improvement, however, does not come without cost. Larger E(Li)

can sometimes only be gained by tolerating larger numerical error (see Section 6.2). Thus,

the gains available to a network service depends upon the magnitude of the numerical error

it is willing to tolerate.

Having compared the throughput, we now analyze the latency of the system. In our

algorithms, the latency of a write that does not incur write propagation is Qi+ tcheck+ tapply.

If a write incurs write propagation, the latency (no write merging) is:

Qi + tcheck + (n� 1)tsetup + (n� 1)Li � tsend + tapply + tdelay

Using the same approach in the throughput analysis, we have the latency in the error bounding

algorithms as:

Latency = Qi + tcheck + tapply + (n� 1)tsend +
(n� 1)tsetup + tdelay

E(Li)
(15)

15



1
1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

0 1 2 3 4 5

E(Li)

�i=(n� 1)

Split-Weight

3333
33
3
3

3

3

3

3
3

Compound-Weight

++++
++

++

+

+

+

+

+

Figure 3: Split-Weight AE vs.

Compound-Weight AE (Weight �

U(-1, 3))

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5

E(Li)

�i=(n� 1)

Split-Weight

333333
33

3

3

3

3

3
Compound-Weight

+++++++
+

+

+

+

+
+

Figure 4: Split-Weight AE vs.

Compound-Weight AE (Weight �

U(-2, 2))

Again, if we consider the possibility of writes merging and in the extreme case where all

writes can be merged, the latency will be:

Latency = Qi + tcheck + tapply +
(n� 1)tsetup + (n� 1)tsend + tdelay

E(Li)
(16)

The average latency in two-phase commit protocol is:

Latency = Qi + tlock + (n� 1)tsetup + (n� 1)tsend + tdelay + tapply (17)

Figure 2 shows the latency of the error bounding algorithms versus two-phase commit

as a function of E(Li). The keys have the same meaning as in Figure 1. We can see that

the error bounding algorithms have smaller latency than the two-phase commit protocol.

Furthermore, the latency in our algorithms decreases rapidly as E(Li) increases. However, as

with throughput, the performance improvement comes at the cost of data accuracy.

6.2 Simulation Results

In this section, we use simulation to determine a range of typical values for E(Li) based on

the distribution of the weight of individual writes. Although numerous factors a�ect E(Qi),

it is determined by E(Li) to a large extent. Thus we believe studying E(Li) can give us

insight into E(Qi) as well. The simulation results on E(Li) also quantify the performance

di�erence between Split-Weight AE and Compound-Weight AE. As mentioned earlier, the

latter is optimal while the former is better suited for optimizations. The resulting di�erent

E(Li) and E(Qi) values in the two algorithms directly a�ect system performance.

E(Li) is uniquely determined by the distribution of the weights of writes. We consider

two di�erent distributions for the weights: uniform distribution and normal distribution. The

16



1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 1 2 3 4 5

E(Li)

�i=(n� 1)

Split-Weight

3333
33
33

3

3

3

3

3
Compound-Weight

+++++
+++

+

+

+

+
+

Figure 5: Split-Weight AE vs.

Compound-Weight AE (Weight �

N(1, 2))

1

2

3

4

5

6

7

0 1 2 3 4 5

E(Li)

�i=(n� 1)

Split-Weight

33333
33
3

3

3

3

3

3
Compound-Weight

+++++
+++

+

+

+

+

+

Figure 6: Split-Weight AE vs.

Compound-Weight AE (Weight �

N(0, 2))

weights in the �rst workload are uniformly distributed within [�1; 3], while those in the sec-

ond are uniformly distributed within [�2; 2]. We denote the distributions by U(�1; 3) and

U(�2; 2), respectively. For normal distribution, we consider weights conforming to N(1; 2)

and N(0; 2). Each workload consists of one million writes and we measure the average epoch

length as a function of �i=(n � 1). The bound �i is set to ��i in our simulation. Figures 3,

4, 5 and 6 summarize the simulation results.

The �gures show that in most cases, E(Li) increases roughly linearly with �i=(n� 1). For

Compound-Weight AE in Figures 4 and 6, E(Li) increases faster than linearly. As we expect,

E(Li) in Compound-Weight AE is always bigger than that in Split-Weight AE. The di�erence

is not so obvious when the distribution is biased toward positive weights and becomes clearer

when the distribution is symmetric.

To consider the applicability of these distributions to real-world applications, we consider

the load balancing example discussed in Section 1. Suppose there are 5 front ends, updating

the load information about several back end servers. Each front end records the rate at which

it forwards requests to each server, and uses this information to update the estimated number

of requests processed per second by the back end servers. Suppose this request rate 
uctuates,

but remains roughly stable over the long term. So the mean of the weights of the writes is

roughly zero in this case. Suppose the probability of a 
uctuation of load by a certain amount

conforms to N(0; 2). Then according to Figure 6, if the front ends are willing to tolerate �12

requests/sec on the estimated load of the back end servers, �i=(n�1) = 3 and E(Li) is roughly

3:2 in Split-Weight AE or 3:5 in Compound-Weight AE. With more front ends, for instance,

10 front ends, we have to tolerate larger error, i.e. �24 requests/sec on the estimated load in

order to obtain the same E(Li). However, this is inherent to the case where updates can be

accepted from multiple locations.

17



7 Related Work

Alonso et. al.[2] propose four coherent conditions in the context of \quasi-copy" caching.

One of the four conditions is \arithmetic condition," which speci�es the allowed numerical

error. Since in quasi-copy caching only the master database may accept updates, maintaining

arithmetic condition is a trivial problem. Relative to this e�ort, we de�ne numerical error for

replicated databases and discuss algorithms for bounding the error if updates may be accepted

by more than one replicas.

Bounding numerical error in a replicated database is closely related to maintaining in-

tegrity constraints in distributed databases. In [6], strong theoretical conclusions are made

on how to decompose an arbitrary global constraint into a number of local constraints and

communication constraints. The conclusions form the basis of the demarcation protocol[3],

which applies a number of optimizations to the special case of linear arithmetic inequalities.

Bounding numerical error is intrinsically enforcing an inequality. However, we exploit three

special properties in this problem, which makes our algorithms practical and e�cient for nu-

merical error bounding. First of all, in the error bounding problem, the copies of a data item

are inter-related. For example, if we want to bound the AE on server1, it is not necessary to

limit V1 and our algorithms do not limit it. But the demarcation protocol will have to put a

limit on every variable present in the inequality. Secondly, in our algorithms, view advance is

automatically incorporated and there is no need to explicitly re-adjust limits for local values.

On the other hand, the demarcation protocol does not exploit the fact that servers may have

knowledge of what writes other servers have seen. In other word, limits re-adjustments are

always done explicitly. Also, because the demarcation protocol cannot exploit the fact that

copies are brought to eventual consistency through write propagation, it is di�cult to design

e�cient limit re-adjustment policies for it. The third property we utilize is that during a write

propagation, all write are propagated and all limits can be reset. This allows us to optimize

the space overhead using hashtables. The demarcation protocol requires space for at least n

limits for each data item, which limits its scalability.

Gupta et.al. [10] describe an algorithm to verify a global constraint using only local

information. In the case of a tuple insertion, the algorithm uses other \covering tuples"

already in the tuple space to prove that the constraint is not a�ected by the new tuple. The

technique cannot be applied to bounding numerical error, since no \covering tuple" can be

obtained when users update a numerical data item.

In Section 5.2, we discussed how to e�ciently check n conditions given a new write. This

is a special case of how to e�ciently check local integrity constraints given an update to the

database. The general problem has been very well studied[4, 5, 11]. However, most of the

study[5, 11] concentrates on how to �lter those local constraints that are una�ected by the

update. Others[4] only consider a particular class of local constraints and updates. Thus none

of the techniques is applicable to our case. The n conditions we intend to check are all linear

conditions, so the techniques[1, 12, 9] developed in computation geometry are also related.

18



But since in our case, the linear conditions change frequently, the cost of reconstructing the

data structures in [1, 9] will easily exceed the bene�ts.

8 Conclusion

In this paper, we argue for e�ciently bounding numerical error to support replicated network

services. Two algorithms, Split-Weight AE and Compound-Weight AE, are proposed to bound

absolute error. They can be combined to achieve good performance and low space overhead.

Our Inductive RE bounds relative error by transforming it into absolute error and then apply

Split-Weight/Compound-Weight AE. Exploiting the fact that Vj is an approximation of Vfinal,

we are able to perform the transformation through induction and use only local information.

We propose two optimizations to scale the error bounding algorithms to thousands of data

items and hundreds of replicas. Through performance analysis and simulation, we show that

a replicated network service using our error bounding algorithms has superior performance in

terms of latency and throughput compared to a network service using traditional two-phase

commit protocol.

References

[1] Pankaj K. Agarwal, Lars Arge, Je� Erickson Paolo G. Fanciosa, and Je�rey Scott Vitter.

E�cient searching with linear constraints. In Proceedings of the 17th ACM Symposium

on Principles of Database Systems, 1998.

[2] Rafael Alonso, Daniel Barbara, and Hector Garcia-Molina. Data Caching Issues in an

Information Retrieval System. ACM Transactions on Database Systems, September 1990.

[3] Daniel Barbara and Hector Garcia-Molina. The demarcation protocol: a technique for

maintaining linear arithmetic constraints in distributed database systems. In Proceedings

of the International Conference on Extending Database Technology, 1992.

[4] Philip Bernstein, Barbara Blaustein, and Edmund Clarke. Fast maintenance of semantic

integrity assertions using redundant aggregate data. In Proceedings of the 6th Conference

on Very Large Data Bases, 1980.

[5] Peter O. Buneman and Eric K. Clemons. E�ciently monitoring relational databases.

ACM Transactions on Database Systems, September 1979.

[6] O.S.F. Carvalho and G. Roucairol. On the distribution of an assertion. In Proceedings of

the ACM Symposium on Principles of Distributed Computing, 1982.

[7] Ian Foster and Carl Kesselman. Globus: A Metacomputing Infrastructure Toolkit. In

International Journal of Supercomputer Applications, volume 11(2), pages 115{128, 1997.

19



[8] Richard Golding.Weak-Consistency Group Communication and Membership. PhD thesis,

University of California, Santa Cruz, December 1992.

[9] Jonathan Goldstein, Raghu Ramakrishnan, Uri Shaft, and Jie-Bing Yu. Processing

queries by linear constraints. In Proceedings of the Sixteenth ACM Symposium on Prin-

ciples of Distributed Computing, 1997.

[10] Ashish Gupta and Jennifer Widom. Local veri�cation of global constraints in distributed

databases. In Proceedings of the ACM SIGMOD Conference on Management of Data,

1993.

[11] Robert Kowalshi, Fariba Sadri, and Paul Soper. Integrity checking in deductive databases.

In Proceedings of the 13th Conference on Very Large Data Bases, 1987.

[12] Norbert Beckmannand Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The

R*-tree: an e�cient and robust access method for points and rectangles. In Proceedings

of the ACM SIGMOD Conference on Management of Data, 1990.

[13] Narayanan Krishnakumar and Arthur Bernstein. Bounded Ignorance in Replicated Sys-

tems. In Proceedings of the 10th ACM Symposium on Principles of Database Systems,

May 1991.

[14] Narayanan Krishnakumar and Arthur Bernstein. Bounded Ignorance: A Technique for

Increasing Concurrency in a Replicated System. ACM Transactions on Database Systems,

19(4), December 1994.

[15] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high availability using lazy

replication. ACM Transactions on Computer Systems, November 1992.

[16] Vivek S. Pai, Mohit Aron, Gaurav Banga, Michael Svendsen, Peter Druschel, Willy

Zwaenepoel, and Erich Nahum. Locality-aware request distribution in cluster-based net-

work servers. In Proceedings of the Eighth International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS-VIII), 1998.

[17] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. Demers. Flexible

update propagation for weakly consistent replication. In Proceedings of the 16th ACM

Symposium on Operating Systems Principles, 1997.

[18] Calton Pu and Avraham Le�. Epsilon-Serializability. Technical Report CUCS-054-90,

Columbia University, 1991.

[19] Calton Pu and Avraham Le�. Replication Control in Distributed System: an Asyn-

chronous Approach. Technical Report CUCS-053-90, Columbia University, January 1991.

20



[20] D. Terry, K. Petersen, M. Spreitzer, and M. Theimer. The Case for Non-transparent

Replication: Examples from Bayou. In IEEE Data Engineering, pages 12{20, December

1998.

[21] Amin Vahdat, Thomas Anderson, Michael Dahlin, Eshwar Belani, David Culler, Paul

Eastham, and Chad Yoshikawa. WebOS: Operating System Services for Wide-Area Appli-

cations. In Proceedings of the Seventh IEEE Symposium on High Performance Distributed

Systems, Chicago, Illinois, July 1998.

[22] David Wetherall. Active network vision and reality: lessions form a capsule-based system.

In Proceedings of the 17th ACM Symposium on Operating Systems Principles, 1999.

[23] Haifeng Yu and Amin Vahdat. Building replicated internet services using TACT: A toolkit

for tunable availability and consistency tradeo�s. In Second International Workshop on

Advanced Issues of E-Commerce and Web-based Information Systems, June 2000.

21


