Scalable Update Propagation in Epidemic
Replicated Databases

Michael Rabinovich, Narain Gehani, and Alex Kononov

AT&T Bell Laboratories
600 Mountain Ave,
Murray Hill, NJ 07974

Abstract. Many distributed databases use an epidemic approach to
manage replicated data. In this approach, user operations are executed
on a single replica. Asynchronously, a separate activity performs periodic
pair-wise comparison of data item copies to detect and bring up to date
obsolete copies. The overhead due to comparison of data copies grows
linearly with the number of data items in the database, which limits the
scalability of the system.

‘We propose an epidemic protocol whose overhead is linear in the number
of data items being copied during update propagation. Since this number
is typically much smaller than the total number of data items in the
database, our protocol promises significant reduction of overhead.

1 Introduction

Data replication is often used in distributed systems to improve system availabil-
ity and performance. Examples of replicated systems abound and include both
research prototypes (e.g., [5, 14]) and commercial systems (e.g., [8, 10]).

Many of these systems use an epidemic [4] approach to maintain replica
consistency. In this approach, user operations are performed on a single replica.
Asynchronously, a separate activity (termed anti-entropy in [4]) compares version
information (e.g., timestamps) of different copies of data items and propagates
updates to older replicas.

Epidemic protocols exhibit several desirable properties: user requests are ser-
viced by a single (and often a nearby) server; update propagation can be done
at a convenient time (i.e., during the next dial-up session); multiple updates can
often be bundled together and propagated in a single transfer.

A significant problem with existing epidemic protocols is the overhead im-
posed by anti-entropy. This overhead includes periodic pair-wise comparison of
version information of data item copies to decide which copy is more recent. It
therefore grows linearly with the number of data items in the system. This limits
the scale the system can achieve without significant performance degradation.

It might appear that a simple solution to this problem exists where each
server would accumulate its updates and periodically push them to all other
replicas, without any replica comparison. However, the following dilemma arises.
If recipients of the updates do not forward them further to other nodes, then full
responsibility for update propagation lies with the originating server. A failure
of this server during update propagation may leave some servers in an obsolete
state for a long time, until the originating server is repaired and completes the

propagation. On the other hand, forwarding updates by servers to each other
would create a lot of redundant traffic on the network.

In this paper, we propose a different solution to the anti-entropy overhead
problem. We present a protocol that, like existing epidemic protocols, per-
forms periodic comparison of version information of replicas to determine which
replicas are out-of-date. Unlike existing epidemic protocol, our protocol detects
whether update propagation between two replicas of the whole database is needed
in constant time, independently of the number of data items in the database.
Moreover, when update propagation is required, it is done in time that is linear
in the number of data items to be copied, without comparing replicas of every
data item. Typically, the number of data items that are frequently updated (and
hence need to be copied during update propagation) is much less than the total
number of data items in the database. Thus, our protocol promises significant
reduction of overhead.

Our protocol is based on wversion vectors, first proposed in [12] to detect
inconsistencies between replicas of a data item and widely used for various pur-
poses in distributed systems. In existing replicated systems based on version
vectors, a server i associates a wersion vector with every data item replica x;
stored on this server. This vector (described formally later in the paper) records
in its j-th component the number of updates originally performed by server j
and reflected in z;. By comparing the version vectors of two copies of a data
item, the system can tell which of the two is more recent. Therefore, the older
replica can catch up, e.g., by copying the newer replica. As other existing epi-
demic protocols, version vector-based protocols impose significant overhead on
the system due to pair-wise comparison of version information (version vectors
in this case) of data item replicas.

The initial idea behind our protocol is simple: associate version vectors with
the entire database replicas, instead of (or, in fact, in addition to) replicas of
individual data items. Then, perform anti-entropy between replicas of entire
databases. Anti-entropy would compare the version vectors of two database repli-
cas to detect in constant time whether update propagation between replicas of
any data item in the database is required, and if so, infer which data items must
be copied by looking at these version vectors and database logs.

There are two main challenges in implementing this idea. First, our goal
to limit update propagation time dictates that only a constant number of log
records per data item being copied can be examined or sent over the network.
However, the number of log records is normally equal to the number of updates
and can be very large. This problem required an interesting mechanism for log
management.

The second problem is due to the mismatch between managing version vectors
at the granularity of entire database replicas and maintaining replica consistency
at the granularity of individual data items. Specifically, our idea implies that
update propagation is always scheduled for all data items in the database at once.
In contrast, existing version vector-based protocols allow update propagation to
be scheduled differently for each individual data item. While it is not feasible
to provide different schedules for each data item in the database, the ability to,
say, reduce the update propagation time for some key data items is important.
Thus, we must allow nodes to obtain a newer version of a particular data item at
any time, in addition to normally scheduled update propagation. We call these
data items, obtained by direct copying outside the normal update propagation

procedure, out-of-bound data items. OQut-of-bound data violates certain ordering
properties of updates on a node, which are essential for the correctness of our
protocol.

We deal with this problem by treating out-of-bound data completely differ-
ently from the rest of the data. When a node copies a data item out of bound,
it does not modify its database version vector or database logs. Instead, it cre-
ates parallel data structures: an auziliary data item and an auxiliary log. The
node then uses the auxiliary copy for servicing user operations and requests for
out-of-bound copying of this data item from other nodes. At the same time,
the node uses the “regular” copy of the data item for scheduled update prop-
agation activity. In addition, a special intra-node update propagation procedure
ensures that updates from the auxiliary log are eventually applied to the regular
copy without violating the update orderings required by the protocol. When the
regular copy catches up with the auxiliary copy, the latter is discarded.

This separation of out-of-bound and “regular” data is achieved at the expense
of additional costs, both in storage for keeping auxiliary data and in processing
time for intra-node update propagation. Thus, the assumption behind our pro-
tocol is that the number of out-of-bound data items is small relative to the total
number of data items.

A secondary contribution of this paper is that it explicitly specifies cor-
rectness criteria for update propagation, separately from correctness criteria for
database transactions. This allows formal reasoning about correct propagation
independently from the data consistency guarantees provided by the system.

2 The System Model

We assume a collection of networked servers that keep databases, which are col-
lections of data items. A database can be replicated (as a whole) on multiple
servers. We will refer to an instance of a database (data item) kept on an in-
dividual server as a replica or copy of the database (data item). For simplicity,
we will assume that there is a single database in the system. When the system
maintains multiple databases, a separate instance of the protocol runs for each
database.

Different replicas of a data item are kept consistent using an epidemic proto-
col: user operations are serviced by a single server; asynchronously, updates are
propagated throughout the network by an anti-entropy process. In addition to
periodically scheduled update propagation, a server may obtain a newer replica
of a particular data item at any time (out-of-bound), for example, on demand
from the user.

Update propagation can be done by either copying the entire data item, or
by obtaining and applying log records for missing updates. For instance, among
commercial systems, Lotus Notes uses whole data item copying, while Oracle
Symmetric Replication copies update records. The ideas described in this paper
are applicable for both these methods. We chose whole data copying as the
presentation context in this paper.

The protocol is targeted towards applications where the number of data
items copied during update propagation is small compared to the total number
of data items. In other words, the fraction of data items updated on a database
replica between consecutive update propagations is in general small. Another

assumption for the workload is that relatively few data items are copied out-of-
bound.

We do not make any assumptions about the level of replica consistency guar-
anteed by the system. The system may enforce strict consistency, e.g., by using
tokens to prevent conflicting updates to multiple replicas. (In this approach,
there is a unique token associated with every data item, and a replica is required
to acquire a token before performing any updates.) Or, the system may use an op-
timistic approach and allow any replica to perform updates with no restrictions.
In the latter approach, when conflicting updates are discovered, they are resolved
in an application-specific manner (which often involves manual intervention).!

Neither do we assume anything about the transactional model supported by
the system. The system may use two-phase locking [2] on an individual server
while relying on optimism for replica consistency. The system can also choose to
provide guaranteed serializability of transactions by executing on top of a pes-
simistic replica control protocol. (See [2] for the serializability theory in replicated
systems.) Finally, the system may not support any notion of multi-data-item
transactions at all (like Lotus Notes, [9]).

Finally, to simplify the presentation, we assume that the set of servers across
which a database is replicated is fixed.

2.1 Correctness Criteria

We assume that actions performed by individual nodes are atomic. In particular,
any two updates or an update and a read on the same data item replica are
executed in some serial order. Thus, all updates reflected in a replica form a
serial history h = {op1, ...,0py}, according to the order in which these updates
executed.

To reason about correctness of update propagation, we need a few definitions.

Definition 1 Inconsistent data item replicas. Let x4 and zp be two repli-
cas of a data item z. x4 and xp are called inconsistent or in conflict if there
are updates op; and op; such that x4 reflects update op; but not op;, while zp
reflects op; but not op;.

Definition 2 Older and newer data item replicas. x4 is called older or less
recent than zp (and zp is called newer or more recent than x4) if the update
history of x4 is a proper prefix of the update history zp. A replica of a data
item is called obsolete if there is a newer replica of the same data item in the
system.

We assume the following correctness criteria for update propagation.

1. Inconsistent replicas of a data item must be eventually detected.

2. Update propagation cannot introduce new inconsistency. In other words,
data item replica z; should acquire updates from z; only if z; is a newer
replica.

3. Any obsolete data item replica will eventually acquire updates from a newer
replica. In particular, if update activity stops, all data item replicas will
eventually catch up with the newest replica.

! 'We do not get into the discussion of tradeoffs between optimistic and pessimistic
replica management. The ideas we present here are equally applicable to both
approaches.

3 Background: Version Vectors

Version vectors were proposed in [12] to detect inconsistency among replicas
in distributed systems, and have been widely used for various purposes in dis-
tributed systems. We describe some existing applications of version vectors in
the review of related work (Section 8).

Consider a set of servers, {1,...,n}, that keep copies of a data item z. Denote
x; to be the copy of x kept by server i. Every server ¢ maintains a version vector
v;(z) associated with its copy of z. This version vector has an entry (an integer
number) v;;(x) for each server j that keeps a copy of the data item.

The rules for maintaining version vectors are as follows. Upon initialization,
every component of the version vector of every replica of the data item is 0.

When a server ¢ performs an updates of data item z;, it increments its “own”
entry (i.e., vy (x)) in its version vector for x;.

When server ¢ obtains missing updates for z from a server j (either by copying
the whole data item or by obtaining log records for missing updates), ¢ modifies
vi(z) by taking the component-wise maximum of v;(z) and v;(z): v}f¥(z) =
max (v, vjk), (1 <k <n).

The following fact about version vectors has been shown [11].

Theorem 3. At any time, vij(x) = u if and only if i’s replica of x reflects the
first u updates that were made to this data item on server j.

In particular, these corollaries hold:

1. If two copies of the same data item have component-wise identical version
vectors, then these copies are identical.

2. For two replicas of the data item, x; and z; and some server k, let vy, < vj
and vj; — vir = u. Then, x; has seen u fewer updates performed on server
k and reflected on x;. Moreover, these missing updates are the last updates
from server k that were applied to z;.

3. A copy «; is older than a copy «; iff (a) version vector v;(z) is component-
wise smaller or equal to v;(z), and (b) at least one component of v;(x) is
strictly less than the corresponding component of v;(x). (v;j(x) is said to
dominate v;(x) in this case).

4. Copies z; and z; are inconsistent iff there exist k and [such that v, (z) <
vjk(x) and vy (x) > vji(x). We will call two version vectors with this property
inconsistent version vectors.

Indeed, this means that z; has seen some updates (made on server [) that
z; has not received; at the same time, z; has not seen some updates made
on server k and reflected in ;.

Given these facts, update propagation can be done by periodically comparing
version vectors of pairs of data item replicas and either doing nothing (if both
replicas have identical version vectors), or bringing the older replica up-to-date,
or flagging a conflict.

4 Data Structures

This section describes the data structures and some utility functions used by the
protocol. This is followed by the description of the protocol in the next section.

Consider a system with n nodes replicating a database. As before, every node
i maintains an item version vector (IVV) for every data item z; in 4’s replica of
the database. Additional data structures are described in the rest of this section.

4.1 Database Version Vectors

Our protocols associate version vectors with entire replicas of databases. These
version vectors are referred to as database version vectors, or DBV'V, as opposed
to data item version vectors, or IVV, described in Section 3. DBVYV is similar in
many ways to IVV, except its components record the total number of updates
performed on corresponding servers to all data items in the database replica.

More formally, node i keeps a database version vector V; with n components,
where n is the number of nodes maintaining a replica of the database, with the
following maintenance rules.

1. Initially, all components of V; are 0.

2. When node ¢ performs an update to any data item in the database, it incre-
ments its component in the database version vector: V?e% = Vo4 + 1.

3. When a data item z is copied by i from another node j, i’s DBVV is modified
to reflect the extra updates seen by the newly obtained copy of the data
item: Vew = Vold 4 (v (z) — va(z)), 1 <1 < n, where vgm () is the mth
component of the IVV associated with data item x on node k.

To get an intuition behind the last rule, consider an arbitrary node I. z;
has seen v;;(z) updates originally performed by [, and z; has seen vj;;(z) such
updates. Our protocol will copy z from j to ¢ only if z; is more recent. Thus,
vi(z) < wj(x), and the additional number of updates seen by z; that were
originated on ! is (v;;(z) —vi(z)). Once i copies the value of z;, the total number
of updates originated on [and seen by all data items in 4’s database increases by
this amount. Therefore, component V;; of ith DBVV must increase accordingly.

4.2 The Log Vector

Node ¢ maintains a log vector of updates, L;. Each component, L;;, records
updates performed by node j (to any data item in the database) that are reflected
on node ¢. The order of the records in L;; is the same as the order in which j
performed the updates.

Records are added to the log when node ¢ performs updates to non out-of-
bound data items. New records can also be added to the log when they are
obtained from the source node during update propagation.

A log record has a form (x, m), where z is the name of the updated data item,
and m is the value of Vj; that node j had at the time of the update (including
this update). Recall from Section 4.1 that Vj; counts updates performed by j.
So, m gives the sequence number of the update on node j. Note that log records
only register the fact that a data item was updated, and not information to re-do
the update. Thus, these records are very short.

The key point is that, from all updates performed by j to a given data item
that 7 knows about, only the record about the latest update to this data item is
retained in L;;. Hence, when a new record (z,m) is added to L;;, the existing
record referring to the same data item is discarded.

j

T e

(a) The structure of log component L jj .

/_\
BN EIEN AR~ NI E
x_

(b) The structure of L ; i after adding record (x,5).

Fig. 1. The structure of a log component.

To do this efliciently, all records in L;; are organized in a doubly linked list
(see Figure 1). An array of pointers P(z) is associated with every data item z;.
Its component P; contains the pointer to the existing record in L;; referring to
2. When a new record (z,m) is added, the following AddLogRecord procedure is
executed:

AddLogRecord(node number j, record e = (z,m)):
The new record e is linked to the end of log L;;;
The old log record referring to the same data item is located in constant
time using pointer P;(z) and un-linked from the log;
Pointer Pj(x) is updated to point to the newly added record.

Note that every log L;; may contain at most one record per data item in the
database. Thus, the total number of records in the log vector is bounded by nNV,
where n is the number of servers and NNV is the number of data items.

4.3 Auxiliary Data Items and IVVs

When a data item z is copied out-of-bound (i.e., outside the normal update prop-
agation), a separate auziliary copy of this data item, z' is created. A auxiliary
copy has its own version vector, which is called auxiliary IVV.

SendPropagation(s, V;):
if V; dominates or equals V; {
send “you-are-current” message to ¢ and exit;

fork=1ton {
if (Vie > Vi) {
D;, = Tail of Ljj, containing records (z, m) such that m > Vi;
else
Dy = NULL;
}

send D and a set S of data items referred to by records in D to 4;
end

Fig. 2. The SendPropagation procedure.

Node i performs all updates to = on its auxiliary copy, while update prop-
agation continues using regular copies. When regular copies “catch up” with
auxiliary copies, the latter are discarded.

4.4 The Auxiliary Log

The auziliary log, AUX;, is used to store updates that i applies to out-of-bound
data items. Records in the auxiliary log are of the form (m,z,v;(x), op), where
z is the name of the data item involved, v;(z) is the IVV that the auxiliary copy
of z had at the time the update was applied (ezcluding this update) and op is
the operation executed (e.g., the byte range of the update and the new value of
data in the range). Thus, unlike records in the log vector, auxiliary log records
contain information sufficient to re-do the update, and hence they can be much
bigger. However, these records are never sent between nodes.

The auxiliary log must be able to support efficiently (in constant time) a
function Farliest(x) that returns the earliest record in AL; referring to data
item z. Also, we must be able to remove in constant time a record from the
middle of the log. These requirements can be easily satisfied with a list structure
of the auxiliary log. The details are straightforward and are omitted.

We will often refer to auxiliary data items, their IVVs, and the auxiliary log
as auxiliary data structures, as opposed to the rest of the node state, which will
be called regular data structures.

5 The Protocol
The protocol consists of procedures executed when a node performs an update,
when it propagates updates from another node j, and when it copies a later

version of a data item from another node (out-of-bound copying).

5.1 TUpdate Propagation

AcceptPropagation(D, S):
for every z; in S {

if v; (z) dominates v;(z) {
adopt z; from S as a new regular copy z;;
vi(z) = v;(2);

else
declare z; and x; inconsistent;
remove records referring to « from D;

}

}
for each tail Dy from D {
for every record r from Dy, (going from the head of Dy, to tail) {
AddLogRecord(k,r);

end

Fig. 3. The AcceptPropagation procedure.

Update propagation is done between a recipient node i and a source node j
using exclusively regular data structures, regardless of prior out-of-bound copy-
ing that might have taken place between the two nodes. For instance, if i had
previously copied a newer version of data item z from j as an out-of-bound
data and its regular copy of z is still old, will be copied again during update
propagation.?

When node 4 performs update propagation from node j, the following steps

are executed:
(1) 7 sends V; to j. In response, j executes SendPropagation procedure in Figure
2. In this procedure, j compares the received version vector with Vj. If V; dom-
inates or equals Vj, there is no need for update propagation, and the protocol
terminates.

Otherwise, j builds a tail vector, D, whose kth component contains log
records of updates performed by node k that node ¢ missed, and list S of data
items referred to by these records. Note that only regular (non-auxiliary) copies
of data items are included into S. j then sends D and S to ¢. In addition, with
every data item z in S, j includes its IVV v; ().

(2) When ¢ receives the response from j with D and S, it executes AcceptPropa-
gation in Figure 3. It goes through data items from S. For every such data item
xj, i compares z;’s version vector, v;(x), with the version vector of its local copy
of z, v;(x).

If vj(z) dominates v;(x), i adopts the received copy and modifies V; according
to the DBVV maintenance rule 3. Otherwise, ¢ alerts the system administrator
that copies z; and z; are inconsistent and removes all log records referring to z
from all log tails in D (preserving the order of the remaining records). Note that

2 In other words, out-of-bound copying never reduces the amount of work done during
update propagation.

IntraNodePropagation:
for every data item z copied during execution of AcceptPropagation {
if auxiliary copy of z, x}, exists {
let e = Earliest(z);
let ve(z) and ope be version vector and update operation from e;
while e # NULL and v;(z) = ve(x) {
apply ope to z;;
vi(z) = vii + 15
Vie=Vi+ 1
append log record (z, Vi;) to Lii;
remove e from AUX;;
e = Earliest(z)
let ve(z) and ope be version vector and update operation from e;

}
if e = NULL {
if v;(x) dominates or is equal to v;(z') {
remove auxiliary copy x};
}
else
if v;(z) conflicts with ve(z) {
declare that there exist inconsistent replicas of x;

Fig. 4. The IntraNodePropagation procedure.

we do not consider the case when v;(z) dominates v;(z) because this cannot
happen (see Section 7).

Finally, 1 appends log tails from the tail vector to the corresponding logs of
its log vector, using the AddLogRecord procedure from Section 4.2.

Note that removing records that refer to conflicting data items from the tail
vector may be an expensive operation. However, this is done only if conflicts are
found (which is supposed to be an extraordinary event).

(3) ¢ performs intra-node update propagation on Figure 4 to see if any updates
accumulated in the auxiliary log can be applied to regular data item.

For every data item z copied in step 2, if auxiliary copy =’ exists, ¢ compares
the IVV of the regular copy, v;(x), with the IVV stored in record Earliest(z),
the earliest auxiliary log record referring to x.

If both are identical, the operation from this record is applied to the regular
copy. All actions normally done when a node performs an update on the regular
copy of a data item are executed: vy (x) and Vj; are incremented by 1, and a
log record (z,V;;) is appended to L;;. Finally, the auxiliary record Earliest(z) is
removed from auxiliary log.

If v;(z) and the IVV of the Farliest(z) record conflict, there exist inconsistent
copies of z, and conflict is declared.?

% In fact, the nodes where inconsistent replicas reside can be pinpointed: if the above

The whole process is repeated until either the next earliest auxiliary record
has version vector that dominates or conflicts v;(z), or until the auxiliary log
contains no more records referring to z. (v;(xz) can never dominate a version
vector of an auxiliary record.) In the latter case, the final comparison of the
regular and auxiliary IVVs is done to see whether the regular copy of x has
caught up with the auxiliary copy. If so, the auxiliary copy of x can be deleted.
(We do not check here whether or not the regular and auxiliary IVVs conflict,
deferring conflict detection to the AcceptPropagation procedure.)

5.2 Out-of-bound Data Copying

A node 7 in our protocol can obtain a newer version of an individual data item
from any server j at any time. This can be done in addition to regular update
propagation of Section 5.1 that causes all data at the recipient node to catch
up with the data at the source. As already mentioned, data items obtained by
direct copying, outside the normal update propagation procedure, are called
out-of-bound data items.

Upon receiving an out-of-bound request for data item z, j sends the auxil-
iary copy z; (if it exists), or the regular copy z; (otherwise), together with the
corresponding IVV (auxiliary or regular). Auxiliary copies are preferred not for
correctness but as an optimization: the auxiliary copy of a data item (if exists)
is never older than the regular copy.

When i receives the response, it compares the received IVV, v;(z), with its
local auxiliary IVV (if auxiliary copy zj exists) or regular IVV (otherwise). If
v;j(z) dominates, then the received data is indeed newer. Then, ¢ adopts the
received data item and IVV as its new auxiliary copy and auxiliary IVV. If
v;j(x) is the same as or dominated by the local IVV (auxiliary or regular, as
explained above), the received data item is actually older than the local copy; i
then takes no action. If the two IVVs conflict, inconsistency between copies of x
is declared.

Note that no log records are sent during out-of-bound copying, and the aux-
iliary log of the recipient is not changed when the old auxiliary copy of z is
overwritten by the new data.

5.3 Updating

When a user update to data item x arrives at node ¢, i performs the operation
using auxiliary data structures (if the auxiliary copy of z exists), or regular data
structures (otherwise). In the first case, 1 applies the update to the auxiliary
copy ', appends a new record (z,v;(z'), update) to the auxiliary log, and then
modifies the auxiliary IVV: v;;(2') = vy (2') + 1.

In the second case, i applies update to the regular copy x; modifies IVV of
the regular copy and DBVV: vy (x) = v;;(z) +1, Vi; = Vi; + 1; and then appends
a log record (z, Vi;) to Ly;.

version vectors conflict in components k& and /, then nodes k& and | have inconsistent
replicas of z.

6 Performance

The procedure AddLogRecord is executed in the protocol only when the data item
x mentioned in the record being added is accessed anyway. Thus, the location of
P(z) is known to AddLogRecord for free, and the procedure computes in constant
time.

The additional work done by the protocol in the procedure for updating a
data item (beyond applying the update itself) takes constant time.

For the rest of this section, we assume that the number of servers is fixed
and the size of data items is bounded by a constant. With these assumptions,
out-of-bound copying is done in constant time (again, beyond accessing the data
items themselves).

Now consider update propagation. In the SendPropagation procedure, com-
puting tails Dy, is done in time linear in the number of records selected. Since
only the records corresponding to updates missed by the recipient are selected,
each Dy, is computed, at worst, in time linear to the number of data items to
be sent (denoted as m). Thus, the total time to compute D is O(nm), where
n is the number of servers. Under the assumption that n is fixed, the time to
compute D is linear in m.

An interesting question is time to compute set S, which is the union of data
items referenced by records in Dy, 1 < k < n.

To compute S in O(m), we assume that every data item x has a flag IsSe-
lected. The location of this flag is recorded in the control state associated with
z. As already mentioned, whenever a log record z is added to the log, the corre-
sponding data item is accessed. Then, the location of x’s IsSelected flag can be
added to the log record at the constant cost.

Then, when SendPropagation procedure adds a log record to Dy, the IsSe-
lected flag of the corresponding data item x is accessed in constant time. If its
value is “NO”, the data item is added to S and x’s IsSelected flag is flipped to
“YES”. The next time a record referencing z is selected (for a different tail D;),
it will not be added to S. Once computation of D is complete, S will contain
the union of data items referenced in records from Dy,.

Now, for every data item z in S, its IsSelected flag is flipped back to “NO”.
This takes time linear in the number of data items in S.

Therefore, the total time to compute SendPropagation is O(m). In addition,
the message sent from the source of propagation to the recipient includes data
items being propagated plus constant amount of information per data item.
(This information includes the IVV of a data item and the log record of the last
update to the data item on every server; recall that regular log records have
constant size.)

Finally, the AcceptPropagation procedure, in the absence of out-of-bound
copying, takes O(m) time to compute (in addition to accessing data items to
adopt newer versions received). We conclude that in the common case, the total
overhead for update propagation is O(m).

The cost of IntraNodePropagation is clearly dominated by the cost of re-
applying updates accumulated by the auxiliary copy to the regular copy. This
cost is linear in the number of accumulated updates and, depending on the num-
ber of such updates, may be high. However, our protocol assumes that few data
items are copied out-of-bound. Then, even if overhead imposed by an out-of-
bound data item is high, the total overhead is kept low. (Note that IntraNode-

Propagation is executed in the background and does not delay user operations
or requests for update propagation or out-of-bound copying from other nodes.)

7 Proof of Correctness

Definition 4 Transitive update propagation. Node i is said to perform up-
date propagation transitively from j if it either performs update propagation
from j, or it performs update propagation from k after k performed update
propagation transitively from j.

Theorem 5. If update propagation is scheduled in such a way that every node
eventually performs update propagation transitively from every other node, then
correctness criteria from Section 2.1 are satisfied.

Proof. See [13].

8 Related work

In this section, we compare our work with existing approaches. Several epidemic
protocols have been proposed for replica management. The common feature of
existing systems is that they perform anti-entropy and maintain replica consis-
tency at the same data granularity level. Then, as the number of data items
grows and the overhead imposed by anti-entropy becomes too large, the existing
systems must either schedule anti-entropy less frequently, or increase the granu-
larity of the data (e.g., use a relation instead of a tuple as a granule) to reduce
the number of data items.

Neither option is too desirable: the first causes update propagation to be
less timely and increases the chance that an update will arrive at an obsolete
replica; the second increases the possibility of “false sharing” where replicas
are (needlessly) declared inconsistent while the offending updates were actually
applied to semantically independent portions of the data item.

Our protocol, on the other hand, decouples the data granularity used for anti-
entropy from the granularity used to maintain replica consistency. This enables
the system to perform anti-entropy efficiently at the granularity of the entire
database, while maintaining replica consistency at the granularity of individual
data items.

In the next subsection, we compare our approach with the Lotus Notes sys-
tem, a commercial epidemic system that is not based on version vectors. The
special attention we pay to show how a Lotus Notes-like system would benefit
from our approach is partially due to the wide usage of Lotus Notes in practice.
We then consider Oracle Symmetric Replication approach in Section 8.2, and
replicated database and file systems that employ version vectors in Section 8.3.

8.1 Lotus Notes Protocol

The Lotus Notes protocol [8] associates a sequence number with every data item
copy, which records the number of updates seen by this copy. Similar to our pro-
tocol, Lotus assumes that whole databases are replicated, so that anti-entropy
is normally invoked once for all data items in the database. Each server records

the time when it propagated updates to every other server (called the last prop-
agation time below).

Consider two nodes, 7 and j, that replicate a database. Let i invoke an in-
stance of anti-entropy to compare its replica of the database with that of server
j, and catch up if necessary. Anti-entropy executes the following algorithm.

1. When node j receives a request for update propagation from 4, it first verifies
if any data items in its replica of the database have changed since the last
update propagation from j to i. If no data item has changed, no further
action is needed. Otherwise, j builds a list of data items that have been
modified since the last propagation. The entries in the list include data item
names and their sequence numbers. j then sends this list to <.

2. i compares every element from the received list with the sequence number
of its copy of the same data item. 4 then copies from j all data items whose
sequence number on j is greater.

This algorithm may detect in constant time that update propagation is not
required, but only if no data item in the source database has been modified since
the last propagation with the recipient. However, in many cases, the source and
recipient database replicas will be identical even though the source database has
been modified since the last update propagation to the recipient. For instance,
after the last propagation between themselves, both nodes may have performed
update propagation from other nodes and copied some data modified there. Or,
the recipient database may have obtained updates from the source indirectly via
intermediate nodes.

In these cases, Lotus incurs high overhead for attempting update propa-
gation between identical database replicas. At the minimum, this overhead in-
cludes comparing the modification time of every data item in the source database
against the time of the last update propagation. Thus, it grows linearly in the
number of data items in the database.

In addition, the first step of the algorithm will result in a list of data items
that have been modified or obtained by j since the last propagation. This list
will be sent to i, who then will have to perform some work for every entry in
this list in step 2. All this work is overhead.

In contrast, the protocol proposed in this paper never attempts update prop-
agation between identical replicas of the database. It always recognizes that
two database replicas are identical in constant time, by simply comparing their
DBVVs.

Moreover, even when update propagation is required, our protocol does not
examine every data item in the database to determine which ones must be copied.
It makes this determination in time proportional to the number of data items
that must actually be copied.

Finally, Lotus update propagation protocol correctly determines which of two
copies of a data item is newer only provided the copies do not conflict. When a
conflict exists, one copy is often declared “newer” incorrectly. For example, if ¢
made two updates to z while j made one conflicting update without obtaining i‘s
copy first, z; will be declared newer, since its sequence number is greater. It will
override z; in the next execution of update propagation. Thus, Lotus protocol
does not satisfy the correctness criteria of Section 2.1.

8.2 Oracle Symmetric Replication Protocol

Oracle’s Symmetric Replication protocol [10] is not an epidemic protocol is a
strict sense. It does not perform comparison of replica control state to determine
obsolete replicas. Instead, it uses a simple approach outlined in the Introduction
of this paper. Every server keeps track of the updates it performs and periodically
ships them to all other servers. No forwarding of updates is performed.

In the absence of failures, this protocol exhibits good performance. However,
a failure of the node that originated updates may leave the system in a state
where some nodes have received the updates while others have not. Since no
forwarding is performed, this situation may last for a long time, until the server
that originated the update is repaired. This situation is dangerous, not only
because users can observe different versions of the data at the same time, but also
because it increases the opportunity for user updates to be applied to obsolete
replicas, thus creating update conflicts.

Our protocol has similar to Oracle performance of update propagation in the
absence of failures: it only copies those data items that need to be propagated,
executing no work per every data item in the database. However, our protocol
does not have the above-mentioned vulnerability to failures during update prop-
agation. If the node that originated updates fails during update propagation (so
that some but not all servers received new data), the system will discover this
during a periodic comparison of database version vectors on surviving nodes.
Then, the newer version of the data items will be forwarded from nodes that
obtained it before the failure to the rest of nodes.

The price our protocol pays for this, the periodic comparison of database
version vectors, is very small.

8.3 Protocols Using Version Vectors

To our knowledge, version vectors were first introduced in the Locus file system
[12] and have been used in several epidemic distributed database and file systems.
Version vectors have also been used to prevent out-of-order delivery of causally
related messages in a distributed system [3, 6].

The Ficus replicated file system [5] (a descendant of Locus) divides anti-
entropy activity into update notification and replica reconciliation processes.
Each node ¢ periodically notifies all other nodes about files updated locally.
Other nodes then obtain the new copy from i. This notification is attempted
only once, and no indirect copying from 4 via other nodes occurs.

Reconciliation then makes sure that updates have been properly propagated
by periodically comparing version vectors of different file replicas and detecting
obsolete or conflicting copies. Reconciliation is done on a per data item basis
and involves comparing version vectors of every file.

Thus, update propagation in Ficus involves examining the state of every data
item, which our protocol avoids. While overall performance of this system is less
affected by this than performance of Lotus Notes (since reconciliation may run
less frequently because most updates will be propagated by update notification
mechanism), our approach would still be beneficial by improving performance of
update propagation when it does run.

In Wuu and Berntein’s protocol [15], anti-entropy is done by nodes exchang-
ing gossip messages [9, 7]. A gossip message from j to ¢ contains log records of

updates that j believes are missed by i, and version vector information describ-
ing the state of j as well as the extent of j’s knowledge about the state of other
nodes in the system. The Two-phase Gossip protocol [7] improves [15] by send-
ing fewer version vectors in a gossip message. It also describes a more general
method for garbage-collecting log records. Agrawal and Malpani’s protocol [1]
decouples sending update logs from sending version vector information. Thus,
separate policies can be used to schedule both types of exchanges.

The important difference between our protocol and the three protocols above
is that the latter perform anti-entropy on the per data item basis, and each
invocation involves at least one comparison with the (old) version vector of the
recipient copy. Thus, their total overhead is at least linear in the total number
of data items.*

The protocol proposed in [9] uses version vectors to enforce causally mono-
tonic ordering of user operations on every replica. If an operation arrives out
of order, it is delayed until the previous operations arrive. A client stores the
version vector returned by last server it contacted and uses it to ensure causal
ordering of operations when it connects to different servers.

This approach was extended further in [14]. The protocol of [14] provides
more levels of consistency. It also allows to localize consistency control to an
individual session between a client and the system, independently of other ses-
sions.

These two protocols concentrate on taking advantage of weak-consistency
models to improve availability and performance of user operations. Anti-entropy
in these systems, as in other existing protocols, is done at the same data granular-
ity as consistency control.® Thus, the overhead for anti-entropy in these systems
grows, again, linearly with the total number of data items.

9 Conclusion

In this paper, we addressed the scalability issues in epidemic replicated databases.
The epidemic approach to replica management is attractive because user opera-
tions are serviced by a single (and often a nearby) server, update propagation can
be done at a convenient time (i.e., during the next dial-up session), and multiple
updates can often be bundled together and propagated in a single transfer.

However, existing epidemic protocols impose overhead that grows linearly
with the number of data items in the database. This limits the size of the
database that the system can handle without significant performance degra-
dation.

In contrast, the protocol proposed in this paper imposes overhead that is
linear in the number of data items that actually must be copied during update
propagation. Since this number is usually much lower than the total number
of data items in the database, our protocol promises significant reduction of
overhead.

* In fact, this overhead is even greater because these protocols compare the recipient
version vector with every record in the log to be sent. So the overhead is linear in
the number of data items plus the number of updates exchanged.

5 The protocol of [14] uses a database as the granule for consistency control; it does not
specify how anti-entropy is done. As already mentioned, doing consistency control at
a coarse granularity reduces overhead but increases the possibility of false sharing.

A secondary contribution of this paper is that it explicitly specified cor-
rectness criteria for update propagation, separately from correctness criteria for
database transactions. This allows one to reason formally about correct propa-
gation regardless of the data consistency guarantees provided by the system to
the users.

Finally, we showed how some commercial replicated databases could benefit
from our protocol and compared our approach with existing research proposals.

Acknowledgments

The authors thank Garret Swart for reading the paper and verifying its claims
about the Oracle replication scheme. We would also like to thank Julie Carroll,
Aaron Watters, and Stacey Marcella for their comments.

References

1. D. Agrawal and A. Malpani. Efficient dissemination of information in computer
networks. The Computer Journal, 6(34), pp. 534-541, 1991.

2. P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Re-
covery in Database Systems. Addison-Wesley, Reading, Mass., 1987.

3. K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic group
multicast. ACM Trans. on Comp. Sys. Vol. 9, No. 3, pp. 272-314, August 1991.

4. A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D.
Swinehart, and D. Terry. Epidemic algorithms for replicated database maintenance.
In Proc. of the 6th Symp. on Principles of Distr. Computing, pp. 1-12, 1987.

5. R. G. Guy, J. S. Heidemann, W. Mak, T. W. Page, G. J. Popek, G. J. Rothmeier.
Implementation of the Ficus replicated file system. In Proc. of Useniz Summer
Conf., pp. 63-71, 1990.

6. C. Fidge. Timestamps in message-passing systems that preserve the partial order-
ing. In Proc. of the 11th Australian Computer Science Conf., pp. 56-66, 1988.

7. A. Heddaya, M. Hsu, and W. Weihl. Two phase gossip: managing distributed event
histories. Information Sciences, 49, pp. 35-57, 1989.

8. L. Kawell Jr., S. Beckhardt, T. Halvorsen, R. Ozzie, and 1. Greif. Replicated doc-
ument management in a group communication system. Presented at the 2d Conf.
on Computer-Supported Cooperative Work. September 1988.

9. R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high availability using
lazy replication. ACM Trans. on Computer Systems, 4(10), pp. 360-391, November
1992.

10. Oracle 7 Distributed Database Technology and Symmetric Replication. Oracle
White Paper, April 1995.

11. D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker, E. Walton, J.
M. Chow, D. Edwards, S. Kiser, and C. Kline. Detection of mutual inconsistency in
distributed systems. IEEE Trans. on Software Eng. 9(3), pp. 240-246, May 1983.

12. G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin, and G. Thiel.
LOCUS: A network transparent, high reliability distributed system. In Proc. 8th
Symp. on Operating Systems Principles, pp. 169-177, 1981.

13. M. Rabinovich, N. Gehani, and A. Kononov. Scalable update propagation in epi-
demic replicated databases. AT&T Bell Labs Technical Memorandum 112580-
951213-11TM, December 1995.

14. D. Terry, A. Demers, K. Peterson, M. Spreitzer, M. Theimer, and B. Welch. Session
guarantees for weakly consistent replicated data. In Proc. of the Int. Conf. on
Parallel and Distributed Information Systems, 1994.

15. G. T. Wuu and A. J. Bernstein. Efficient solution to the replicated log and dictio-
nary problems. In Proc. of the 8d ACM Symp. on Principles of Distr. Computing,
pp. 233-242, 1984.

This article was processed using the IXTgX macro package with LLNCS style

