
Offering a Precision-Performance Tradeoff for Aggregation Queries
over Replicated Data∗

Chris Olston, Jennifer Widom
Stanford University

{olston, widom}@db.stanford.edu

Abstract

Strict consistency of replicated data is infeasible or not required by many distributed applications,
so current systems often permit stale replication, in which cached copies of data values are allowed to
become out of date. Queries over cached data return an answer quickly, but the stale answer may be
unboundedly imprecise. Alternatively, queries over remote master data return a precise answer, but with
potentially poor performance. To bridge the gap between these two extremes, we propose a new class of
replication systems called TRAPP (Tradeoff in Replication Precision and Performance). TRAPP sys-
tems give each user fine-grained control over the tradeoff between precision and performance: Caches
store ranges that are guaranteed to bound the current data values, instead of storing stale exact values.
Users supply a quantitative precision constraint along with each query. To answer a query, TRAPP
systems automatically select a combination of locally cached bounds and exact master data stored re-
motely to deliver a bounded answer consisting of a range that is no wider than the specified precision
constraint, that is guaranteed to contain the precise answer, and that is computed as quickly as possible.
This paper defines the architecture of TRAPP replication systems and covers some mechanics of caching
data ranges. It then focuses on queries with aggregation, presenting optimization algorithms for answer-
ing queries with precision constraints, and reporting on performance experiments that demonstrate the
fine-grained control of the precision-performance tradeoff offered by TRAPP systems.

1 Introduction

Many environments that replicate information at multiple sites permit stale replication, rather than enforc-

ing exact consistency over multiple copies of data. Exact (transactional) consistency is infeasible from a

performance perspective in many large systems, for a variety of reasons as outlined in [GHOS96], and for

many distributed applications exact consistency simply is not a requirement.

The World-Wide Web is a very general example of a stale replication system, where master copies of

pages are maintained on Web servers and stale copies are cached by Web browsers. In the Web architecture,

reading the stale cached data kept by a browser has significantly better performance than retrieving the

master copy from the Web server (accomplished by pressing the browser’s “refresh” button), but the cached

copy may be arbitrarily out of date. Another example of a stale replication system is a data warehouse,

where we can view the data objects at operational databases as master copies, and data at the warehouse (or

at multiple “data marts”) as stale cached copies. Querying the cached data in a warehouse is typically much

faster than querying the master copies at the operational sites.
∗This work was supported by the National Science Foundation under grant IIS-9811947, by NASA Ames under grant NCC2-

5278, and by a National Science Foundation graduate research fellowship.

1

1.1 Running Example

As a scenario for motivation and examples throughout the paper, we will consider a simple replication

system used for monitoring a wide-area network linking thousands of computers. We assume that each node

(computer) in the network tracks the average latency, bandwidth, and traffic level for each incoming network

link from another node. Administrators at monitoring stations analyze the status of the network by collecting

data periodically from the network nodes. For each link Ni → Nj in the network, each monitoring station

will cache the latest latency, bandwidth, and traffic level figures obtained from node Nj . Administrators

want to ask queries such as:

Q1 What is the bottleneck (minimum bandwidth link) along a path N1 → N2 → · · · → Nk?

Q2 What is the total latency along a path N1 → N2 → · · · → Nk?

Q3 What is the average traffic level in the network?

Q4 What is the minimum traffic level for fast links (i.e., links with high bandwidth and low latency)?

Q5 How many links have high latency?

Q6 What is the average latency for links with high traffic?

While administrators would like to obtain current and precise answers to these kinds of queries, collect-

ing new data values from each relevant node every time a query is posed would take too long and might

adversely affect the system. Requiring that all nodes constantly send their updated values to the monitors

is also expensive and generally unnecessary. This paper develops a new approach to replication and query

processing that allows the user to control the tradeoff between precise answers and high performance. In our

example, the latency, bandwidth, and traffic level figures at each monitor are cached as ranges, rather than

exact values, and nodes send updates only when an exact value moves outside of a cached range. Queries

such as Q1–Q6 above can be executed over the cached ranges and themselves return a range that is guaran-

teed to contain the current exact answer. When an administrator poses a query, he can provide a precision

constraint indicating how wide a range is tolerable in the answer.

For example, suppose the administrator wishes to sample the peak latency periodically in some critical

area, in order to decide how much money should be invested in upgrading the network. To make this

decision, the administrator does not need to know the precise peak latency at each query, but may wish to

obtain an answer to within 5 milliseconds of precision. Our system automatically combines cached ranges

with precise values retrieved from the nodes in order to answer queries within the specified precision as

quickly as possible.

1.2 Precision-Performance Tradeoff

In general, stale replication systems potentially offer the user two modes of querying. In the first mode,

which we call the precise mode, queries are sent to the sources to get a precise (up-to-date) answer but

with potentially poor performance. Alternatively, in what we call the imprecise mode, queries are executed

over cached data to get an imprecise (possibly stale) answer very quickly. In imprecise mode, usually no

guarantees are given as to exactly how imprecise the answer is, so the user is left to guess the degree of

2

precision

pe
rf

or
m

an
ce

Using cached (stale) data

Using source (fresh) data

(a) In current replication systems

precision

pe
rf

or
m

an
ce

Using a combination of
cached and source data

(b) In TRAPP systems

Figure 1: Precision-performance tradeoff.

imprecision based on knowledge of data stability and/or how recently caches were updated. Figure 1(a)

illustrates the precision-performance tradeoff between these two extreme query modes.

The discrepancy between the extreme points in Figure 1(a) leads to a dilemma: answers obtained in

imprecise mode without any precision guarantees may be unacceptable, but the only way to obtain a guar-

antee is to use precise mode, which can place heavy load on the system and lead to unacceptable delays.

Many applications actually require a level of precision somewhere between the extreme points. In our run-

ning example (Section 1.1), an administrator posing a query with a quantitative precision constraint like

“within 5 milliseconds” should be able to find a middle ground between sacrificing precision and sacrificing

performance.

To address this overall problem, we propose a new kind of replication system, which we call TRAPP

(Tradeoff in Replication Precision and Performance). TRAPP supports a continuous, monotonically de-

creasing tradeoff between precision and performance, as characterized in Figure 1(b). Each query can be

accompanied by a custom precision constraint, and the system answers the query by combining cached and

source data so as to optimize performance while guaranteeing to meet the precision constraint. The extreme

points of our system correspond to the precise and imprecise query modes defined above.

1.3 Overview of Approach

In addition to introducing the overall TRAPP architecture, in this paper we focus on a specific TRAPP repli-

cation system called TRAPP/AG, for queries with aggregation over numeric (real) data. The conventional

precise answer to a query with an outermost aggregation operator is a single real value. In TRAPP/AG,

we define a bounded imprecise answer (hereafter called bounded answer) to be a pair of real values LA and

HA that define a range [LA,HA] in which the precise answer is guaranteed to lie. Precision is quantified as

the width of the range (HA − LA), with 0 corresponding to exact precision and ∞ representing unbounded

imprecision. A precision constraint is a user-specified constant R ≥ 0 denoting the maximum acceptable

range width, i.e., 0 ≤ HA − LA ≤ R.

To be able to give guaranteed bounds [LA,HA] as query answers, TRAPP/AG requires cooperation

between data sources and caches. Specifically, let us suppose that when a source refreshes a cache’s value

for a data object O, along with the current exact value for O the source sends a range [L,H] called the bound

of O. (We actually cover a more general case where the bound is a function of time.) The source guarantees

3

link latency bandwidth traffic refresh weights

from to cached precise cached precise cached precise cost W W′ W ′′

1 N1 N2 [2, 4] 3 [60, 70] 61 [95, 105] 98 3 2 10 29.5

2 N2 N4 [5, 7] 7 [45, 60] 53 [110, 120] 116 6 2 10 2

3 N3 N4 [12, 16] 13 [55, 70] 62 [95, 110] 105 6 15 41.5

4 N2 N3 [9, 11] 9 [65, 70] 68 [120, 145] 127 8 25 2

5 N4 N5 [8, 11] 11 [40, 55] 50 [90, 110] 95 4 3 20 36.5

6 N5 N6 [4, 6] 5 [45, 60] 45 [90, 105] 103 2 2 15 31.5

Figure 2: Sample data for network monitoring example.

that the actual value for O will stay in this bound, or if the value does exceed the bound then the source will

immediately send a new refresh. Thus, the cache stores the bound [L,H] for each data object O instead of

an exact value, and the cache can be assured that the current master value of O is within the bound. When

the cache answers a query, it can use the bound values it stores to compute an answer, also expressed in

terms of a bound.

The small table in Figure 2 shows sample data cached at a network monitoring station (recall Section

1.1), along with the current precise values at the network nodes. The weights may be ignored for now. Each

row in Figure 2 corresponds to a network link between the link from node and the link to node. Recall that

precise master values for latency, bandwidth, and traffic for incoming links are measured and stored at the

link to node. In addition, for each link, the monitoring station stores a bounded value for latency, bandwidth,

and traffic. The cache can use these bounded values to compute bounded answers to queries.

Suppose a bounded answer to a query with aggregation is computed from cached values, but the answer

does not satisfy the user’s precision constraint, i.e., the answer bound is too wide. In this case, some data

must be refreshed from sources to improve precision. We assume that there is a known quantitative cost

associated with refreshing data objects from their sources, and this cost may vary for each data item (e.g.,

in our example it might be based on the node distance or network path latency). We show sample refresh

costs for our example in Figure 2. Our system uses optimization algorithms that attempt to find the best

combination of cached bounds and master values to use in answering a query, in order to minimize the cost

of refreshing while still guaranteeing the precision constraint. In this way, TRAPP/AG offers a continuous

precision-performance tradeoff: Relaxing the precision constraint of a query enables the system to rely more

on cached data, which improves the performance of the query. Conversely, tightening the constraint causes

the system to rely more on master data, which degrades performance but yields a more precise answer.

1.4 Contributions

The specific contributions of this paper are the following:

• We define the architecture of TRAPP replication systems, which offer each user fine-grained control

over the tradeoff between precision and performance, and propose a method for determining bounds.

4

•• We specify how to compute the five standard relational aggregation functions over bounded data

values, considering queries with and without selection predicates, and with joins.

• We present algorithms for finding the minimum-cost set of tuples to refresh in order to answer an

aggregation query with a precision constraint, with and without selection predicates. (Joins are dis-

cussed but optimal algorithms are not provided.) We analyze the complexity of these algorithms, and

in the cases where they are exponential we suggest approximations.

• We have implemented all of our algorithms and we present some initial performance results.

Many details and proofs of our results are provided in the appendices, but the material in the appendices is

not needed to fully understand the contributions and techniques of the paper.

2 Related Work

There is a large body of work dedicated to systems that improve query performance by giving approximate

answers. Early work in this area is reported in [Mor80]. Most of these systems use either precomputation

(e.g., [PG99]), sampling (e.g., [HH97]), or both (e.g., [GM98]) to give an answer with statistically estimated

bounds, without scanning all of the input data. By contrast, TRAPP systems may scan all of the data (some

of which may be bounds rather than exact values), to provide guaranteed rather than statistical results.

In the multi-resolution relational data model [RFS92], data objects undergo various degrees of lossy

compression to reduce the size of their representation. By reading the compressed versions of data objects

instead of the full versions, the system can quickly produce approximate answers to queries. By contrast, in

TRAPP systems performance is improved by reducing the number of data objects read from remote sources,

rather than by reducing the size of the data representation.

The previous work perhaps most similar to the TRAPP idea is Quasi-copies [ABGMA88] and Moving

Objects Databases [WXCJ98]. Like TRAPP systems, these two systems are replication schemes in which

cached values are permitted to deviate from master values by a bounded amount. However, unlike in TRAPP

systems, these systems cannot answer queries by combining cached and master data, and thus there is no

way for users to control the precision-performance tradeoff. Instead, the bound for each data object is

set independently of any query-based precision constraints. In Quasi-copies, bounds are set statically by

a system administrator. In Moving Objects Databases, bounds are set to maximize a single metric that

combines precision and performance, eliminating user control of this tradeoff. Furthermore, neither of these

systems support aggregation queries.

The Demarcation Protocol [BGM92] is a technique for maintaining arithmetic constraints in distributed

database systems. TRAPP systems are somewhat related to this work since the bound of a data value forms

an arithmetic constraint on that value. However, the Demarcation Protocol is not designed for modifying

arithmetic constraints the way TRAPP systems update bounds as needed. Furthermore, the Demarcation

Protocol does not deal with queries over bounded data.

The APPROXIMATE approach [JV96] produces bounded answers to aggregation queries with selec-

tion predicates when time does not permit the selection predicate to be evaluated on all tuples. However,

5

APPROXIMATE does not deal with queries over bounded data.

In Divergence Caching [HSW94], a bound is placed on the number of updates permitted to the master

copy of a data object before the cache must be refreshed, but there are no bounds on data values themselves.

Another body of work that deals with imprecision in information systems is Information Quality (IQ)

research, e.g., [NLF99]. IQ systems quantify the accuracy of data at the granularity of an entire data server.

Since no bounds are placed on individual data values, queries have no concrete knowledge about the preci-

sion of individual data values from which to form a bounded answer. Therefore, IQ systems cannot give a

guaranteed bound on the answer to a particular query.

Finally, data objects whose values are ranges can be considered a special case of constrained values in

Constraint Databases [KKR90, BK95, BSCE99]. However, most work on constraint databases addresses

selection queries and focuses on more general classes of constraints such as polynomial and boolean con-

straints. We are not aware of any work on aggregation in constraint databases. Furthermore, no work in

constraint databases that we know of considers constrained values as cached approximations of exact values

stored elsewhere.

3 TRAPP System Architecture

The overall architecture of a TRAPP system is illustrated in Figure 3. Data Sources maintain the exact

value Vi of each data object Oi, while Data Caches store bounds [Li,Hi] that are guaranteed to contain the

exact values. Source values may appear in multiple caches (with possibly different bounds), and caches may

contain bounded values from multiple sources. A user submits a query to the Query Processor at a local

data cache, along with a precision constraint. To answer the query while guaranteeing the constraint, the

query processor may need to send query-initiated refresh requests to the Refresh Monitor at one or more

sources, which responds with new bounds. The Refresh Monitor at each source also keeps track of the

bounds for each of its data objects in each relevant cache. (In some applications a source may provide a

large number of objects to multiple caches, in which case compression techniques can be used to store the

tracking information efficiently.) The Refresh Monitor is responsible for detecting whenever the value of

a data object exceeds the bound in some cache, and sending a new bound to the cache (a value-initiated

refresh).

When the cached bound of a data object is refreshed by its source, some cost is incurred. We consider

the general case where each object has its own cost to refresh, although in practice it is likely that the cost

of refreshing an object depends only on which source it comes from. (It also may be possible to amortize

refresh costs for a set of values, as discussed in Section 8.) These costs are used by our algorithms that

choose tuples to refresh in order to meet the precision constraint of a query at minimum cost.

The TRAPP architecture as presented in this paper makes some simplifying assumptions. First, al-

though object insertions or deletions do not occur on a regular basis in our example application, insertions

and deletions are handled but they must be propagated immediately to all caches. (Section 8.3 discusses

how this limitation might be relaxed.) Second, the level of precision offered by our system does not account

for elapses of time while sending refresh messages or while processing a single query. We assume that the

time to refresh a bound is small enough that the imprecision introduced is insignificant. Furthermore, we

6

V = 3
V = 5

1

2

Refresh Monitor

User

constraint
precision

query +

Query Processor

Data
Caches

bounded

Sources
Data

query-
initiated

answer

refresh
request

refresh

[L , H] = [2, 6]

2

1 1

[L , H] = [5, 9]2

Figure 3: TRAPP system architecture.

assume that value-initiated refreshes do not occur during the time an individual query is being processed.

Addressing these issues is a topic for future work as discussed in Section 8.4.

Next, in Section 3.1 we discuss in more detail the mechanics of bounded values and refreshing. Then

in Section 3.2 we generalize bound functions to be time-varying functions. In Section 4 we discuss the

execution of aggregation queries in the TRAPP/AG system, before presenting our specific optimization

algorithms for single-table aggregation queries in Sections 5 and 6. In Section 7 we present some preliminary

results for aggregation queries with joins.

3.1 Refreshing Cached Bounds

The master copy of each data object Oi resides at a single source, and for TRAPP/AG we assume it is a

single real value, which we denote Vi. Caches store a range of possible values (the bound) for each data

object, which we denote [Li,Hi]. When a source sends a copy of data object Oi to a cache (a refresh event

at time Tr), in addition to sending Oi’s current precise value, which we denote Vi(Tr), it sends a bound

[Li,Hi].
As discussed earlier, refreshes occur for one of two reasons. First, if the master value of a data object

exceeds its bound stored in some cache (i.e., at current time Tc, Vi(Tc) < Li or Vi(Tc) > Hi), then the

source is obligated to refresh the cache with the current precise value Vi(Tc) and a new bound [Li,Hi]—a

value-initiated refresh. Second, a query-initiated refresh occurs if a query being executed at a cache requires

the current exact value of a data object in order to meet its precision constraint. In this case, the source will

send Vi(Tc) along with a new bound to the cache, and the precise value Vi(Tc) can be used in the query.

3.2 Bounds as Functions of Time

Section 3.1 presented a simple approach where the bound of each data object Oi is a pair of endpoints

[Li,Hi]. A more general and accurate approach is to parameterize the bound by time: [Li(T),Hi(T)]. In

other words, the endpoints of the bound are functions of time T . These functions have the property that

7

refresh
initiated
query-

refresh
initiated
value-

(τ)Hi

(τ)iL

time τ
va

lu
e

(τ)Vi

Figure 4: Bound [Li(T),Hi(T)] over time, overlaid with precise value Vi(T).

Li(Tr) = Hi(Tr) = Vi(Tr), where Tr is the refresh time. That is, the bound at the time of refresh has zero

width and both endpoints equal the current value. As time advances past Tr, the endpoints of the bound

diverge from Vi(Tr) such that the bound contains the precise value at all times Tc ≥ Tr: Li(Tc) ≤ Vi(Tc) ≤
Hi(Tc). Eventually, when another refresh occurs, the source sends a new pair of bound functions to the

cache that replaces the old pair. Figure 4 illustrates the bound [Li(T),Hi(T)] of a data object Oi over time,

overlaid with its precise value Vi(T).
All of the subsequent algorithms and results in this paper are independent of how bounds are selected

and specified. In fact, in the body of the paper we assume that any time-varying bound functions have

been evaluated at the current time Tc, and we write [Li,Hi] to mean [Li(Tc),Hi(Tc)]. Also, we write Vi

to mean the exact value at the current time: Vi(Tc). We have done some preliminary work investigating

appropriate bound functions, and have deduced that in the absence of additional information about update

behavior, appropriate functions are those that expand according to the square-root of elapsed time. That

is: Hi(T) − Li(T) ∝
√
T − Tr, where Tr is the time of the most recent refresh. The proportionality

parameter, which determines the width of the bound, is chosen at run-time. The interested reader is referred

to Appendix A for details.

4 Query Execution for Bounded Answers

Executing a TRAPP/AG query with a precision constraint may involve combining precise data stored on

remote sources with bounded data stored in a local cache. In this section we describe in general how

bounded aggregation queries are executed, and we present a cost model to be used by our algorithms that

choose cached data objects to refresh when answering queries. For the remainder of this paper we assume the

relational model, although TRAPP/AG can be implemented with any data model that supports aggregation

of numerical values.

For now we consider single-table TRAPP/AG queries of the following form. Joins are addressed in

Section 7.

8

SELECT AGGREGATE(T.a) WITHIN R
FROM T
WHERE PREDICATE

AGGREGATE is one of the standard relational aggregation functions: COUNT, MIN, MAX, SUM, or

AVG. PREDICATE is any predicate involving columns of table T and possibly constants. R is a nonnegative

real constant specifying the precision constraint, which requires that the bounded answer [LA,HA] to the

query satisfies 0 ≤ HA − LA ≤ R. If R is omitted then R =∞ implicitly.

To compute a bounded answer to a query of this form, TRAPP/AG executes several steps:

1. Compute an initial bounded answer based on the current cached bounds and determine if the precision

constraint is met. If not:

2. An algorithm CHOOSE REFRESH examines the cache’s copy of table T and chooses a subset of

T ’s tuples TR to refresh. The source for each tuple in TR is asked to refresh the cache’s copy of that

tuple.

3. Once the refreshes are complete, recompute the bounded answer based on the cache’s now partially

refreshed copy of T .

Our CHOOSE REFRESH algorithm ensures that the answer after step 3 is guaranteed to satisfy the preci-

sion constraint.

Sections 5 and 6 present details based on each specific aggregation function, considering queries with

and without selection predicates. For each type of aggregation query we address the following two problems:

• How to compute a bounded answer based on the current cached bounds. This problem corresponds to

steps 1 and 3 above.

• How to choose the set of tuples to refresh. This problem corresponds to step 2 above. A CHOOSE

REFRESH algorithm is optimal if it finds the cheapest subset TR of T ’s tuples to refresh (i.e., the

subset with the least total cost) that guarantees the final answer to the query will satisfy the precision

constraint for any precise values of the refreshed tuples within the current bounds.

We are assuming that the cost to refresh a set of tuples is the sum of the costs of refreshing each member

of the set, in order to keep the optimization problem manageable. This simplification ignores possible

amortization due to batching multiple requests to the same source. Also recall that we assume a separate

refresh cost may be assigned to each tuple, although in practice all tuples from the same source may incur

the same cost.

Note that the entire set TR of tuples to refresh is selected before the refreshes actually occur, so the

precision constraint must be guaranteed for any possible precise values for the tuples in TR. A different

approach is to refresh tuples one at a time (or one source at a time), computing a bounded answer after each

refresh and stopping when the answer is precise enough. See Section 8.2 for further discussion.

9

5 Aggregation without Selection Predicates

This section specifies how to compute a bounded answer from bounded data values for each type of ag-

gregation function, and describes algorithms for selecting refresh sets for each aggregation function. For

now, we assume that any selection predicate in the TRAPP/AG query involves only columns that contain

exact values. Thus, in this section we assume that the selection predicate has already been applied and the

aggregation is to be computed over the tuples that satisfy the predicate. TRAPP/AG queries with selec-

tion predicates involving columns that contain bounded values are covered in Section 6, and joins involving

bounded values are discussed in Section 7.

Suppose we want to compute an aggregate over column T.a of a cached table T . The value of T.a for

each tuple ti is stored in the cache as a bound [Li,Hi]. While computing the aggregate, the query processor

has the option for each tuple ti of either reading the cached bound [Li,Hi] or refreshing ti to obtain the

master value Vi. The cost to refresh ti is Ci. The final answer to the aggregate is a bound [LA,HA].

5.1 Computing MIN with No Selection Predicate

Computing the bounded MIN of T.a is straightforward:

[LA,HA] = [min
ti∈T
(Li),min

ti∈T
(Hi)]

The lowest possible value for the minimum (LA) occurs if for all ti ∈ T , Vi = Li, i.e., each value is at the

bottom of its bound. Conversely, the highest possible value for the minimum (HA) occurs if Vi = Hi for

all tuples. Returning to our example of Section 1.1, suppose we want to find the minimum bandwidth link

along the path N1 → N2 → N4 → N5 → N6, i.e., query Q1. Applying the bounded MIN of bandwidth to

tuples T = {1, 2, 5, 6} in Figure 2 yields [40, 55].
Choosing an optimal set of tuples to refresh for a MIN query with a precision constraint is also straight-

forward, although the algorithm’s justification and proof of optimality is nontrivial (see Appendix B).

The CHOOSE REFRESHNO SEL/MIN algorithm chooses TR to be all tuples ti ∈ T such that Li <

mintk∈T (Hk) − R, where R is the precision constraint, independent of refresh cost. That is, TR con-

tains all tuples whose lower bound is less than the minimum upper bound minus the precision constraint.

If B-tree indexes exist on both the upper and lower bounds,1 the set TR can be found in time less than

O(|T |) by first using the index on upper bounds to find mintk∈T (Hk), and then using the index on lower

bounds to find tuples that satisfy Li < mintk∈T (Hk)− R. Without these two indexes, the running time for

CHOOSE REFRESHNO SEL/MIN is O(|T |).
Consider again our example query Q1, which finds the minimum bandwidth along path N1 → N2 →

N4 → N5 → N6. CHOOSE REFRESHNO SEL/MIN with R = 10 would choose to refresh tuple 5, since

it is the only tuple among {1, 2, 5, 6} whose low value is less thanmintk∈{1,2,5,6}(Hk)−R = 55−10 = 45.
After refreshing, tuple 5’s bandwidth value turns out to be 50, so the new bounded answer is [45, 50].

The MAX aggregation function is symmetric to MIN. See Appendix C.1 for details.
1Section 8.3 briefly discusses indexing time-varying range endpoints, a problem on which we are actively working.

10

5.2 Computing SUM with No Selection Predicate

To compute the bounded SUM aggregate, we take the sum of the values at each extreme:

[LA,HA] = [
∑

ti∈T

Li,
∑

ti∈T

Hi]

The smallest possible sum occurs when all values are as low as possible, and the largest possible sum occurs

when all values are as high as possible. In our running example, the bounded SUM of latency along the

path N1 → N2 → N4 → N5 → N6 (query Q2) using the data from Figure 2 is [19, 28].

The problem of selecting an optimal set TR of tuples to refresh for SUM queries with precision con-

straints is better attacked as the equivalent problem of selecting the tuples not to refresh: TR = T − TR.

We first observe that HA − LA =
∑

ti∈T Hi −
∑

ti∈T Li =
∑

ti∈T (Hi − Li). After refreshing all tu-

ples tj ∈ TR, we have Hj − Lj = 0, so these values contribute nothing to the bound. Thus, after re-

fresh,
∑

ti∈T (Hi − Li) =
∑

ti∈TR
(Hi − Li). These equalities combined with the precision constraint

HA − LA ≤ R give us the constraint
∑

ti∈TR
(Hi − Li) ≤ R. The optimization objective is to satisfy

this constraint while minimizing the total cost of the tuples in TR. Observe that minimizing the total cost

of the tuples in TR is equivalent to maximizing the total cost of the tuples not in TR. Therefore, the op-

timization problem can be formulated as choosing TR so as to maximize
∑

ti∈TR
Ci under the constraint

∑
ti∈TR

(Hi − Li) ≤ R.

It turns out that this problem is isomorphic to the well-known 0/1 Knapsack Problem [CLR90], which

can be stated as follows: We are given a set S of items that each have weight Wi and profit Pi, along with

a knapsack with capacity M (i.e., it can hold any set of items as long as their total weight is at most M).

The goal of the Knapsack Problem is to choose a subset SK of the items in S to place in the knapsack

that maximizes total profit without exceeding the knapsack’s capacity. In other words, choose SK so as

to maximize
∑

i∈SK
Pi under the constraint

∑
i∈SK

Wi ≤ M . To state the problem of selecting refresh

tuples for bounded SUM queries as the 0/1 Knapsack Problem, we assign S = T , SK = TR, Pi = Ci,

Wi = (Hi − Li), and M = R.

Unfortunately, the 0/1 Knapsack Problem is known to be NP-Complete [GJ79]. Hence all known ap-

proaches to solving the problem optimally, such as dynamic programming, have a worst-case exponential

running time. Fortunately, an approximation algorithm exists that, in polynomial time, finds a solution hav-

ing total profit that is within a fraction ε of optimal for any 0 < ε < 1 [IK75]. The running time of the

algorithm is O(n · log n) + O((3ε)
2 · n). We use this algorithm for CHOOSE REFRESHNO SEL/SUM.

Adjusting parameter ε in the algorithm allows us to trade off the running time of the algorithm against the

quality of the solution.

In the special case of uniform costs (Ci = Cj for all tuples ti and tj), all knapsack objects have the

same profit Pi, and the 0/1 Knapsack Problem has a polynomial algorithm [CLR90]. The optimal answer

then can be found by “placing objects in the knapsack” in order of increasing weight Wi until the knapsack

cannot hold any more objects. That is, we add tuples to TR starting with the smallest Hi − Li bounds until

the next tuple would cause
∑

ti∈TR
(Hi − Li) > R. If an index exists on the bound width Hi − Li (see

Section 8.3), this algorithm can run in sublinear time. Without an index on bound width, the running time

of this algorithm is O(n · log n), where n = |T |.

11

CHOOSE REFRESH timese
co

nd
s

120
100

80
60
40
20
0

total refresh cost

approximation parameter ε

to
ta

lc
os

t

0.10.080.060.040.020

360

350

340

330

Figure 5: CHOOSE REFRESHNO SEL/SUM time and refresh cost for varying ε.

Consider again query Q2 that asks for the total latency along path N1 → N2 → N4 → N5 → N6.

Figure 2 shows the correspondence between our problem and the Knapsack Problem by specifying the

knapsack “weight” W = H − L for the latency column of each tuple in {1, 2, 5, 6}. Using the exponential

(optimal) knapsack algorithm to find the total latency along path N1 → N2 → N4 → N5 → N6 with

R = 5, tuples 2 and 5 are “placed in the knapsack” (whose capacity is 5), leaving TR = {1, 6}. The bounded

SUM of latency after refreshing tuples 1 and 6 is [21, 26].

5.2.1 Performance Experiments

CHOOSE REFRESHNO SEL/SUM uses the approximation algorithm from [IK75] to quickly find a cheap

set of tuples TR to refresh such that the precision constraint is guaranteed to hold. We implemented the

algorithm and ran experiments using 90 actual stock prices that varied highly in one day. The high and

low values for the day were used as the bounds [Li,Hi], the closing value was used as the precise value

Vi, and the refresh cost Ci for each data object was set to a random number between 1 and 10. Running

times were measured on a Sun Ultra-1 Model 140 running SunOS 5.6. In Figure 5 we fix the precision

constraint R = 100 and vary ε in the knapsack approximation in order to plot CHOOSE REFRESH time

and total refresh cost of the selected tuples. Smaller values for ε increase the CHOOSE REFRESH time

but decrease the refresh cost. However, since the CHOOSE REFRESH time increases quadratically while

the refresh cost only decreases by a small fraction, it is not in general advantageous to set ε below 0.1 (which

comes very close to optimal) unless refreshing is extremely expensive.

In Figure 6 we fix the approximation parameter ε = 0.1 and vary R in order to plot precision (precision

constraint R) versus performance (total refresh cost) for our CHOOSE REFRESHNO SEL/SUM algorithm.

This graph, a concrete instantiation of Figure 1(b), clearly shows the continuous, monotonically decreasing

tradeoff between precision and performance that characterizes TRAPP systems.

12

SUM with different values for R (ε = 0.1)

precision constraint R

pe
rf

or
m

an
ce

(r
ef

re
sh

co
st

)

140 120 100 80 60 40 20 0

4000

3000

2000

1000

0

Figure 6: Precision-performance tradeoff for CHOOSE REFRESHNO SEL/SUM.

5.3 Computing COUNT with No Selection Predicate

When no selection predicate is present, computing COUNT amounts to computing the cardinality of the

table. Since we currently require all insertions and deletions to be propagated immediately to the data caches

(Section 3), the cardinality of the cached copy of a table is always equal to the cardinality of the master copy,

so there is no need for refreshes.

5.4 Computing AVG with No Selection Predicate

When no selection predicate is present, the procedure for computing the AVG aggregate is as follows. First,

compute COUNT , which as discussed in Section 5.3 is simply the cardinality of the cached T . Then,

compute the bounded SUM as described in Section 5.2 with R = R ·COUNT to produce [LSUM ,HSUM].
Finally, let:

[LA,HA] = [
LSUM

COUNT
,
HSUM

COUNT
]

Since the bound width HA − LA = HSUM−LSUM
COUNT , by computing SUM such that HSUM − LSUM ≤

R · COUNT , we are guaranteeing that HA − LA ≤ R, and the precision constraint is satisfied. The

running time is dominated by the running time of the CHOOSE REFRESHNO SEL/SUM algorithm, which

is given in Section 5.2.

Consider query Q3 from Section 1.1 to compute the average traffic level in the entire network, and

let precision constraint R = 10. We first compute COUNT = 6, and then compute SUM with R =
R · COUNT = 10 · 6 = 60. The column labeled W ′ in Figure 2 shows the knapsack weight assigned

to each tuple based on the cached bounds for traffic. Using the optimal Knapsack algorithm, the SUM

computation will cause tuples 5 and 6 to be refreshed, resulting in a bounded SUM of [618, 678]. Dividing

by COUNT = 6 gives a bounded AVG of [103, 113].

13

(bandwidth > 50) ∧ (latency < 10) latency > 10 traffic > 100
before refresh after refresh before refresh after refresh before refresh after refresh

1 T+ T+ T− T− T ? T−

2 T ? T+ T− T− T+ T+

3 T− T− T+ T+ T ? T+

4 T ? T+ T ? T− T+ T+

5 T ? T− T ? T+ T ? T−

6 T ? T− T− T− T ? T+

Figure 7: Classification of tuples into T−, T ?, and T+ for three selection predicates.

6 Modifications to Incorporate Selection Predicates

When a selection predicate involving bounded values is present in the query, both computing bounded

aggregate results and choosing refresh tuples to meet the precision constraint become more complicated.

This section presents modifications to the algorithms in Section 5 to handle single-table aggregation queries

with selection predicates. We begin by introducing techniques common to all TRAPP/AG queries with

predicates, regardless of which aggregation function is present.

Consider a selection predicate involving at least one column of T that contains bounded values. The

system can partition T into three disjoint sets: T−, T ?, and T+. T− contains those tuples that cannot

possibly satisfy the predicate given current bounded data. T+ contains tuples that are guaranteed to satisfy

the predicate given current bounded data. All other tuples are in T?, meaning that there exist some precise

values within the current bounds that will cause the predicate to be satisfied, and other values that will cause

the predicate not to be satisfied. The process of classifying tuples into T−, T ?, and T+ when the selection

predicate involves at least one column with bounded values is detailed in Appendix D. The most interesting

aspect is that filters over T that find the tuples in T+ and T ? can always be expressed as simple predicates

over bounded value endpoints, and all of our algorithms for computing bounded answers and choosing tuples

to refresh examine only tuples in T+ and T ?. Therefore, the classification can be expressed as SQL queries

and optimized by the system, possibly incorporating specialized indexes as discussed in Section 8.3.

For examples in the remainder of this section we refer to Figure 7, which shows the classification for

three different predicates over the data from Figure 2, both before and after the exact values are refreshed.

6.1 Computing MIN with a Selection Predicate

When a selection predicate is present, the bounded MIN answer is:

[LA,HA] = [min
ti∈T+∪T ?

(Li), min
ti∈T+

(Hi)]

In the “worst case” for LA, all tuples in T? satisfy the predicate (i.e., they turn out to be in T+), so the

smallest lower bound of any tuple that might satisfy the predicate forms the lower bound for the answer.

In the “worst case” for HA, tuples in T ? do not satisfy the predicate (i.e., they turn out to be in T−),

14

so the smallest upper bound of the tuples guaranteed to satisfy the predicate forms the only guaranteed

upper bound for the answer. In our running example, consider query Q4: find the minimum traffic where

(bandwidth > 50) ∧ (latency < 10). The result using the data from Figure 2 and classifications from

Figure 7 is [90, 105].

CHOOSE REFRESHMIN chooses TR to be exactly the tuples ti ∈ T+ ∪ T ? such that Li <

mintk∈T+(Hk) − R. This algorithm is essentially the same as CHOOSE REFRESHNO SEL/MIN, and

is correct and optimal for the same reason (see Appendix B). The only additional case to consider is that

refreshing tuples in T? may move them into T−. However, such tuples do not contribute to the actual MIN,

and thus do not affect the bound of the answer [LA,HA]. Hence, the precision constraint is still guaranteed

to hold. As with CHOOSE REFRESHNO SEL/MIN the running time for CHOOSE REFRESHMIN can

be sublinear if B-tree indexes are available on both the upper and lower bounds. Otherwise, the worst-case

running time for CHOOSE REFRESHMIN is O(n).
For our query Q4 with precision constraint R = 10, CHOOSE REFRESHMIN chooses TR = {5, 6},

since tuples 5 and 6 may pass the selection predicate and their low values are less thanmintk∈T+(Hk)−R =
105 − 10 = 95. After refreshing, tuples 5 and 6 turn out not to pass the selection predicate, so the bounded

MIN is [95, 105].

The MAX aggregation function is symmetric to MIN. See Appendix C.2 for details.

6.2 Computing SUM with a Selection Predicate

To compute SUM in the presence of a selection predicate:

[LA,HA] = [
∑

ti∈T+

Li +
∑

ti∈T ?∧Li<0

Li,
∑

ti∈T+

Hi +
∑

ti∈T ?∧Hi>0

Hi]

The “worst case” for LA occurs when all and only those tuples in T? with negative values for Li satisfy the

selection predicate and thus contribute to the result. Similarly, the “worst case” for HA occurs when only

tuples in T? with positive values for Hi satisfy the predicate.

The CHOOSE REFRESHSUM algorithm is similar to CHOOSE REFRESHNO SEL/SUM, which

maps the problem to the 0/1 Knapsack Problem (Section 5.2). The following two modifications are re-

quired. First, we ignore all tuples ti ∈ T−. Second, for tuples ti ∈ T ?, we set Wi to one of three possible

values. If Li ≥ 0, let Wi = Hi − 0 = Hi. If Hi ≤ 0, let Wi = 0− Li = −Li. Otherwise, let Wi = (Hi − Li)
as before. The idea is that we want to effectively extend the bounds for all tuples in T? to include 0, since it

is possible that these tuples are actually in T− and thus do not contribute to the SUM (i.e., contribute value

0). In the knapsack formulation, to extend the bounds to 0 we need to adjust the weights as specified above.

6.3 Computing COUNT with a Selection Predicate

The bounded answer to the COUNT aggregation function in the presence of a selection predicate is:

[LA,HA] = [|T+|, |T+|+ |T ?|]

15

For example, consider query Q5 from Section 1.1 that asks for the number of links that have latency > 10.
Figure 7 shows the classification of tuples into T−, T ?, and T+. Since |T+| = 1 and |T ?| = 2, the bounded

COUNT is [1, 3].

The CHOOSE REFRESHCOUNT algorithm is based on the fact that HA − LA = |T ?|, and that

refreshing a tuple in T? is guaranteed to remove it from T?. Given these two facts, the optimal CHOOSE

REFRESHCOUNT algorithm is to let TR be the �|T ?| − R� cheapest tuples in T?. Using a B-tree index

on cost, this algorithm runs in sublinear time. Otherwise, the worst-case running time for CHOOSE

REFRESHCOUNT requires a sort and is O(n · log n).
Consider again query Q5 and suppose R = 1. Since |T?| = 2, CHOOSE REFRESHCOUNT selects

TR = {5}, which is the �|T?| − R� = �2 − 1� = 1 cheapest tuple in T?. After updating this tuple (which

turns out to be in T+), the bounded COUNT is [2, 3].

6.4 Computing AVG with a Selection Predicate

6.4.1 Computing the Bounded Answer

Computing the bounded AVG when a predicate is present is somewhat more complicated than computing

the other aggregates. With a predicate, COUNT is a bounded value as well as SUM, so it is no longer a

simple matter of dividing the endpoints of the SUM bound by the exact COUNT value (as in Section 5.4).

To compute the lower bound on AVG, we start by computing the average of the low endpoints of the T+

bounds, and then average in the low endpoints of the T? bounds one at a time in increasing order until the

point at which the average increases. Computing the upper bound on AVG is the reverse. For example,

consider query Q6 from Section 1.1 that asks for the average latency for links having traffic > 100. To

compute the lower bound, we start by averaging the low endpoints of T+ tuples 2 and 4, and then average

in the low endpoints of T? tuples 1 and then 6 to obtain a lower bound on average latency of 5. We stop at

this point since averaging in further T? tuples would increase the lower bound. Appendix E formalizes this

computation, which has a worst-case running time of O(n · log n).
A looser bound for AVG can be computed in linear time by first computing SUM as [LSUM ,HSUM]

and COUNT as [LCOUNT ,HCOUNT] using the algorithms from Sections 6.2 and 6.3, then setting:

[LA,HA] = [min(
LSUM

HCOUNT
,
LSUM

LCOUNT
),max(

HSUM

LCOUNT
,
HSUM

HCOUNT
)]

In our example, [LSUM ,HSUM] = [14, 55] and [LCOUNT ,HCOUNT] = [2, 6]. Thus, the linear algorithm

yields [2.3, 27.5]. Notice that this bound is indeed looser than the [5, 11.3] bound achieved by the O(n·log n)
algorithm above.

6.4.2 Choosing Tuples to Refresh

CHOOSE REFRESHAVG is our most complicated scenario. Details are provided in Appendix F. Here we

give a very brief description.

Our CHOOSE REFRESHAVG algorithm uses the fact that a loose bound on AVG can be achieved

as a function of the bounds for SUM and COUNT, as in the linear algorithm in Section 6.4.1 above. We

16

choose refresh tuples that provide bounds for SUM and COUNT such that the bound for AVG as a function

of the bounds for SUM and COUNT meets the precision constraint. This interaction is accomplished by

using a modified version of the CHOOSE REFRESHSUM algorithm that understands how the choice of

refresh tuples for SUM affects the bound for COUNT. This algorithm sets a precision constraint for SUM

that takes into account the changing bound for COUNT to guarantee that the overall precision constraint on

AVG is met. CHOOSE REFRESHAVG preserves the Knapsack Problem structure. Therefore, choosing

refresh tuples for AVG can be accomplished by solving the 0/1 Knapsack Problem, and it has the same

complexity as CHOOSE REFRESHNO SEL/SUM (see Section 5.2).

In our example query Q6 above, if we set R = 2 then CHOOSE REFRESHAVG chooses a knapsack

capacity of M = 4 and assigns a weight to each tuple as shown in the column labeled W′′ in Figure 2.

The knapsack optimally “contains” tuples 2 and 4. After refreshing the other tuples TR = {1, 3, 5, 6}, the

bounded AVG is [8, 9].

7 Aggregation Queries with Joins

Computing the bounded answer to an aggregation query with a join expression (i.e., with multiple tables

in the FROM clause) is no different from doing so with a selection predicate: in most SQL queries, a

join is expressed using a selection predicate that compares columns of more than one table. Our method

for determining membership of tuples in T+, T ?, and T− applies to join predicates as well as selection

predicates. As before, the classification can be expressed as SQL queries and optimized by the system to

use standard join techniques, possibly incorporating specialized indexes as discussed in Section 8.3.

On the other hand, choosing tuples to refresh is significantly more difficult in the presence of joins.

First, since there are several “base” tuples contributing to each “aggregation” (joined) tuple, we can choose

to refresh any subset of the base tuples. Each subset might shrink the answer bound by a different amount,

depending how it affects the T+, T ?, T− classification combined with its effect on the aggregation column.

Second, since each base tuple can potentially contribute to multiple aggregation tuples, refreshing a base

tuple for one aggregation tuple can also affect other aggregation tuples. These interactions make the problem

quite complex. We have considered various heuristic algorithms that choose tuples to refresh for join queries.

Currently, we are investigating the exact complexity of the problem and hope to find an approximation

algorithm with a tunable ε parameter, as in the approximation algorithm for CHOOSE REFRESHSUM.

8 Status and Future Work

We have implemented all of the bounded aggregation functions and CHOOSE REFRESH algorithms pre-

sented in this paper, and implementation of the source-cache cooperation discussed in Sections 3.1 and 3.2 is

underway. In addition to testing our algorithms in a realistic environment, we plan to study how the choice

of bound width (Section 3.2 and Appendix A) affects the refresh frequency, and we plan to investigate

alternative methods of choosing bound functions.

This paper represents our initial work in TRAPP replication systems, so there are numerous avenues

for future work. We divide the future directions into four categories: additional functionality (Section 8.1),

17

choosing tuples to refresh (Section 8.2), improving performance (Section 8.3), and real-time and availability

issues (Section 8.4).

8.1 Additional Functionality

• Expanding the class of aggregation queries we consider. We want to devise algorithms for other

aggregation functions, such as MEDIAN (for which we have preliminary results [FMP+00]) and

TOP-n. In addition, we would like to extend our results to handle grouping on bounded values, en-

abling GROUP-BY and COUNT UNIQUE queries. We would also like to handle nested aggrega-

tion functions such as MAX(AVG), which requires understanding how the precision of the bounded

results of the inner aggregate affects the precision of the outer aggregate.

•• Looking beyond aggregation queries. We believe that the TRAPP idea can be expanded to encom-

pass other types of relational and non-relational queries having different precision constraints. In our

running example (Section 1.1), suppose we wish to find the lowest latency path in the network from

node Ni to node Nj . A precision constraint might require that the value corresponding to the answer

returned by TRAPP (i.e., the latency of the selected path) is within some distance from the value of

the precise best answer.

• Allowing users to express relative instead of absolute precision constraints. A relative precision

constraint might be expressed as a constant P ≥ 0 that denotes an absolute precision constraint of

2 · A · P , where A is the actual answer. The difficulty is that A is not known in advance. Based on

the bound on A derived in the first pass from cached data alone, it is possible to find a conservative

absolute precision constraint R ≤ 2 ·A · P to use in our algorithms. However, it might be possible to

redesign our algorithms to perform better with relative bounds.

• Considering probabilistic precision guarantees. TRAPP systems as defined in this paper improve

performance by providing bounded answers, while offering absolute guarantees about precision. As

discussed in Section 2, other approaches improve performance by giving probabilistic guarantees

about precision. An interesting direction is to combine the two for even better performance: provide

bounded answers with probabilistic precision guarantees.

• Considering applying our TRAPP ideas to multi-level replication systems, where each data ob-

ject resides on one source and there is a hierarchy of data caches. Refreshes would then occur

between a cache and the caches or sources one level below, with a possible cascading effect. A current

example of such a scenario is Web caching systems (e.g., Inktomi Traffic Server [Ink99]), which reside

between Web servers and end-user Web browsers.

• Extending data visualization techniques to take advantage of TRAPP. We are currently investigat-

ing ways to extend data visualization systems (e.g., [OWA+98]) to display images based on bounded

data instead of precise data, perhaps by drawing fuzzy regions to indicate uncertainty. A visualiza-

tion in a TRAPP setting could be modeled as a continuous query in which precision constraints are

formulated in the visual domain and upheld by TRAPP.

18

8.2 Choosing Tuples to Refresh

• Adapting our CHOOSE REFRESH algorithms to take refresh batching into account. If multiple

query-initiated refreshes are sent to the same source, the overall cost may be less than the sum of the

individual costs. We would like to adapt our CHOOSE REFRESH algorithms to take into account

such cases where refreshing one tuple reduces the cost of refreshing other tuples. In fact, the same

adaptation may help us develop CHOOSE REFRESH algorithms for queries involving join and

group-by expressions. In both of these cases, refreshing a tuple for one purpose (one group or joined

tuple) may reduce the subsequent cost for another purpose (group or joined tuple).

•• Considering iterative CHOOSE REFRESH algorithms. Rather than choosing a set of tuples in

advance that guarantees adequate precision regardless of actual exact values, we could refresh tuples

iteratively until the precision constraint is met. In addition to developing the alternative suite of

algorithms, it will be interesting to investigate in which contexts an iterative method is preferable to

the batch method presented in this paper. Also, we could use an iterative method to give bounded

aggregation queries an “online” behavior [HAC+99], where the user is presented with a bounded

answer that gradually refines to become more precise over time. In this scenario, the goal is to shrink

the answer bound as fast as possible.

8.3 Improving Performance

• Delaying the propagation of insertions and deletions to data caches. We are currently investigating

ways in which discrepancies in the number of tuples can be bounded, and the computation of the

bounded answer to a query can take into account these bounded discrepancies. Sources will then no

longer be forced to send a refresh every time an object is inserted or deleted.

•• Investigating specialized bound functions suitable for update patterns with known properties.

The bound function shape we suggested in this paper (Section 3.2) is based on the assumption that no

information about the update pattern is available.

• Considering ways to amortize refresh costs by refresh piggybacking and pre-refreshing. When a

(value- or query-initiated) refresh occurs, the source may wish to “piggyback” extra refreshes along

with the one requested. These extra refreshes would consist of values that are likely to need refreshing

in the near future, e.g., if the precise value is very close to the edge of its bound. The amount of

refresh piggybacking to perform would depend on the benefit of doing so versus the added overhead.

Additionally, it might be beneficial to perform pre-refreshing, by sending unnecessary refreshes when

system load is low that may be useful in future processing.

• Investigating storage, indexing, and query processing issues over bounded values. We are cur-

rently designing and evaluating schemes for indexing bounds that are functions of time with a square-

root shape, as discussed in Section 3.2. Also, we plan to weigh the advantages of using functions for

bounds versus potential indexing improvements when bounds are constants. We also plan to study

19

ways in which cached data objects stored as pairs of bound functions might be compressed. Without

compression, caches must store two values for each data object (Appendix A), and sources must trans-

mit these two values for each tuple being refreshed. Furthermore, the Refresh Monitor at each source

must keep track of the bound functions for each remotely cached data object. Compression issues

can be addressed without affecting the techniques presented in this paper: our CHOOSE REFRESH

algorithms are independent of which bound functions are used or how they are represented, and we

have not yet focused on query processing issues.

8.4 Real-time and Consistency Issues

• Handling refresh delay. Since message-passing over a network is not instantaneous, in a value-

initiated refresh there is some delay between the time a master value exceeds a cached bound and the

time the cache is refreshed. Consequently, a cached bound can be “stale” for a short period of time.

One way to avoid this problem is by pre-refreshing a value when it is close to the edge of its bound.

•• Evaluating concurrency control solutions. If value-initiated refreshes are permitted to occur during

the CHOOSE REFRESH computation or while a query is being evaluated (or in between), the an-

swer could reflect inconsistent data or could fail to satisfy the precision constraint. One solution is to

implement multiversion concurrency control [BHG87], which would permit refreshes to occur at any

time, while still allowing each in-progress query to read data that was current when the query started.

Acknowledgments

We thank Hector Garcia-Molina, Taher Haveliwala, Rajeev Motwani, and Suresh Venkatasubramanian for

useful discussions. We also thank Joe Hellerstein and some anonymous referees for helpful comments on

an initial draft. Finally, we thank Sergio Marti for useful discussions about network monitoring.

References

[ABGMA88] R. Alonso, D. Barbara, H. Garcia-Molina, and S. Abad. Quasi-copies: Efficient data shar-
ing for information retrieval systems. In Proceedings of the International Conference on
Extending Database Technology, pages 443–468, Venice, Italy, March 1988.

[BGM92] D. Barbara and H. Garcia-Molina. The Demarcation Protocol: A technique for maintaining
linear arithmetic constraints in distributed database systems. In Proceedings of the Inter-
national Conference on Extending Database Technology, pages 373–387, Vienna, Austria,
March 1992.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.

[BK95] A. Brodsky and Y. Kornatzky. The LyriC language: Querying constraint objects. In Proceed-
ings of the ACM SIGMOD International Conference on Management of Data, pages 35–46,
San Jose, California, May 1995.

20

[BSCE99] A. Brodsky, V. E. Segal, J. Chen, and P. A. Exarkhopoulo. The CCUBE constraint object-
oriented database system. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 577–579, Philadelphia, Pennsylvania, June 1999.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press,
Cambridge, Massachusetts, 1990.

[FMP+00] T. Feder, R. Motwani, R. Panigrahy, C. Olston, and J. Widom. Computing the median with
uncertainty. In Proceedings of the 32nd ACM Symposium on Theory of Computing, Portland,
Oregon, May 2000.

[GHOS96] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication and a solution. In
Proceedings of the ACM SIGMOD International Conference on Management of Data, pages
173–182, Montreal, Canada, June 1996.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, New York, New York, 1979.

[GKP89] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A Foundation for
Computer Science. Addison-Wesley, Reading, Massachusetts, 1989.

[GM98] P. B. Gibbons and Y. Matias. New sampling-based summary statistics for improving ap-
proximate query answers. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 331–342, Seattle, Washington, June 1998.

[HAC+99] J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V. Raman, T. Roth, and P. Haas.
Interactive data analysis with CONTROL. IEEE Computer, August 1999.

[HH97] J. M. Hellerstein and P. J. Haas. Online aggregation. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 171–182, Tucson, Arizona, May
1997.

[HSW94] Y. Huang, R. Sloan, and O. Wolfson. Divergence caching in client-server architectures. In
Proceedings of the Third International Conference on Parallel and Distributed Information
Systems, pages 131–139, Austin, Texas, September 1994.

[IK75] O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and sum of
subset problems. Journal of the ACM, 22(4):463–468, October 1975.

[Ink99] Inktomi. Inktomi traffic server, 1999. http://www.inktomi.com/products/network/traffic/
product.html.

[JV96] N. Jukic and S. Vrbsky. Aggregates for approximate query processing. In Proceedings of
ACMSE, pages 109–116, April 1996.

[KKR90] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query languages. In Proceed-
ings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
pages 299–313, Nashville, Tennessee, April 1990.

[Lip79] W. Lipski, Jr. On semantic issues connected with incomplete information databases. ACM
Transactions on Database Systems, 4(3):262–296, September 1979.

[Mor80] J. P. Morgenstein. Computer based management information systems embodying answer
accuracy as a user parameter. Ph.D. thesis, U.C. Berkeley Computer Science Division, 1980.

21

[NLF99] F. Naumann, U. Leser, and J. Freytag. Quality-driven integration of heterogeneous informa-
tion systems. In Proceedings of the Twenty-Fifth International Conference on Very Large
Data Bases, Edinburgh, U.K., September 1999.

[OWA+98] C. Olston, A. Woodruff, A. Aiken, M. Chu, V. Ercegovac, M. Lin, M. Spalding, and M. Stone-
braker. DataSplash. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, pages 550–552, Seattle, Washington, June 1998.

[PG99] V. Poosala and V. Ganti. Fast approximate query answering using precomputed statistics. In
Proceedings of the IEEE International Conference on Data Engineering, page 252, Sydney,
Australia, March 1999.

[RFS92] R. L. Read, D. S. Fussell, and A. Silberschatz. A multi-resolution relational data model. In
Proceedings of the Eighteenth International Conference on Very Large Data Bases, pages
139–150, Vancouver, Canada, August 1992.

[WXCJ98] O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving objects databases: Issues and
solutions. In Proceedings of the Tenth International Conference on Scientific and Statistical
Database Management, pages 111–122, Capri, Italy, July 1998.

22

A Choosing Good Bound Functions

Returning to the issues alluded to in Section 3.2, we now briefly discuss how good bound functions are

selected. To make the problem of choosing good bound functions more manageable, we separate it into

two subproblems: (1) choosing the overall shape of the bound functions, which we will determine statically

and call f(T); and (2) choosing a width parameter of the bound for each data object, which is done by the

sources at run-time. Assuming we choose a monotonically increasing function of time f(T), for data object

Oi we let lower bound Li(T) = Vi(Tr)−Wi ·f(T −Tr) and upper bound Hi(T) = Vi(Tr)+Wi ·f(T −Tr),
with the width parameter Wi ≥ 0 chosen by a run-time algorithm. Now that we have decomposed the overall

problem into two subproblems, we are faced with the tasks of selecting a function f(T) (the shape) and an

algorithm for choosing Wi (the width parameter).

Notice that representing pairs of bound functions this way has the added benefit that they can be encoded

by two numbers: the current value Vi(Tr) and the width parameter Wi, which are transmitted from a source

to a cache at refresh time. In addition, the cache must be able to compute T −Tr, i.e., the elapsed time since

the refresh. If the message-passing delay is non-negligible, then the source must transmit the refresh time

Tr along with Vi(Tr) and Wi, and clocks must be synchronized within a negligible threshold.

In terms of shape, i.e., function f(T), in the absence of more information we can model the changing

value of a data object as a random walk in one dimension. This model is natural for common settings

where updates tend to be small increments or decrements to the current value (“escrow transactions”). In the

random walk model the value either increases or decreases by a constant amount s at each time step. After

T steps, the probability distribution of the value is a binomial distribution with variance s2 · T [GKP89].

Chebyshev’s Inequality [GKP89] gives an upper bound on the probability P that the value is within any

distance k from the starting point: P ≤ T · (sk)2. Therefore, with any fixed probability P (say 90%), k ≤
(s√

P
)·
√
T , so the value is within (s√

P
)·
√
T units of the starting point. Thus the function of time that bounds

the value with probability P is proportional to
√
T . In other words, as the value varies over time, a tight

bound has approximately the shape of the square-root function.2 So, we use f(T) =
√
T for the shape of

our bound functions. Thus, bound functions are of the form [Vi(Tr)−Wi ·
√
T − Tr, Vi(Tr)+Wi ·

√
T − Tr].

The curves in Figure 4 illustrate square-root functions with varying widths.

Now we sketch a dynamic algorithm to choose a bound width parameter Wi that attempts to minimize

the number of refreshes. To avoid value-initiated refreshes (due to updates to the master value), the bound

should be wide enough to make it unlikely that the value will exceed the bound. On the other hand, to avoid

query-initiated refreshes (due to precision constraints of queries), the bound should be as narrow as possible.

Unfortunately, since decreasing the chance of one type of refresh increases the chance of the other, it is not

obvious how best to choose a bound width Wi that minimizes the total probability that a refresh will be

required.

Since both of the factors that affect the choice of bound width—the variation of data values (which
2Intuitively, it makes sense that the result should be a function with a negative second derivative. Note that initially, when

T is small, it is not unlikely for a randomly varying value to move several steps in the same direction, so the function increases

rapidly. However, as T grows large, it becomes less likely that the value will continue to move in the same direction, so the function

increases less dramatically.

23

causes value-initiated refreshes) and the precision requirements of user queries (which cause query-initiated

refreshes)—are difficult to predict, we propose an adaptive algorithm that adjusts Wi as conditions change.

The strategy is as follows: First start with some value for Wi. Each time a value-initiated refresh occurs (a

signal that the bound was too narrow), increase Wi when sending the new bound. Conversely, each time a

query-initiated refresh occurs (a signal that the bound was too wide), decrease Wi. This strategy should find

a middle ground between very wide bounds that the value never exceeds yet are exceedingly imprecise, and

very narrow bounds that are precise but need to be refreshed constantly as the value fluctuates.

As future work, we plan to refine the details of the suggested technique and perform experiments to

determine how well it eventually balances the conflicting requirements of queries and updates. We also plan

to consider other bound functions for cases where update patterns are known and do not conform to the

random walk model.

B Proof of Correctness of CHOOSE REFRESHNO SEL/MIN

Recall from Section 5.1 that the CHOOSE REFRESHNO SEL/MIN algorithm chooses TR to be all tuples

ti ∈ T such that Li < mintk∈T (Hk) − R, where R is the precision constraint. To show that this choice

for TR is correct and optimal, we show that every tuple in TR must appear in every solution, and that this

solution is sufficient to guarantee the precision constraint. First, we show that every tuple in TR must appear

in every solution. Consider any ti ∈ TR and suppose we choose to refresh every tuple in T except ti. It is

possible that refreshing all other tuples tj results in Vj = Hj for each one (i.e., each precise value is at its

upper bound). In this case, after refreshing, our new bounded answer will be [LA,HA] where LA ≤ Li and

HA = mintk∈T (Hk). Since Li < mintk∈T (Hk) − R by the definition of TR, mintk∈T (Hk) − Li > R, so

HA − LA > R, and the precision constraint does not hold. Thus, every tuple in TR must be in any solution

to guarantee that the precision constraint will hold.

Next, we show that TR is sufficient to guarantee the precision constraint. Let Lp be mintk∈TR
(Lk),

where TR = T −TR. Note that for all ti ∈ TR, Li is within R ofmintk∈T (Hk), so we havemintk∈T (Hk)−
Lp ≤ R. After tuples in TR have been refreshed, mintk∈T (Hk) can only decrease, so we know HA −Lp ≤
R. After refreshing the tuples in TR, they will have a bound width of zero, i.e., Li = Hi = Vi. There are

thus two cases that can occur after the tuples ti ∈ TR have been refreshed. First, if any of the values Vi
are less than or equal to Lp, then we can compute an exact minimum. Otherwise, if all of the values Vi are

greater than Lp, then LA = Lp. Since HA − Lp ≤ R, it follows that HA − LA ≤ R.

C Computing MAX

C.1 Computing MAX with No Selection Predicate

The MAX aggregation function is symmetric to MIN. Thus:

[LA,HA] = [max
ti∈T

(Li),max
ti∈T

(Hi)]

24

and the CHOOSE REFRESHNO SEL/MAX algorithm chooses TR to be all tuples ti ∈ T such that Hi >

maxtk∈T (Lk) +R.

C.2 Computing MAX with a Selection Predicate

The MAX aggregation function is symmetric to MIN. Thus:

[LA,HA] = [max
ti∈T+

(Li), max
ti∈T+∪T ?

(Hi)]

and the CHOOSE REFRESHMAX algorithm chooses TR to be all tuples ti ∈ T+ ∪ T ? such that Hi >

maxtk∈T+(Lk) +R.

D Classifying Tuples by a Selection Predicate

The algorithms in Section 6 require that we first classify all tuples in T as belonging to one of T−, T+, or

T ?. Let P be the predicate in the user’s query, which we assume is an arbitrary boolean expression involving

binary comparisons. We define two transformations on predicate P . The Possible transformation yields an

expression that finds tuples that could possibly satisfy the predicate based on bounded values. The Certain
transformation yields an expression that finds tuples that are guaranteed to satisfy the predicate based on

bounded values. We can apply Certain(P) to find tuples in T+, and (Possible(P)∧¬Certain(P)) to find

tuples in T ?. All other tuples are in T−.

Since Certain(P) and Possible(P) are predicates to be evaluated on the tuples of table T , they must

be expressed in terms of constants, attributes whose values are exact, and endpoints (denoted min and

max) of attributes whose values are ranges. To handle expressions uniformly, we assume that all values

are ranges: in the case of a constant value K (respectively an attribute A whose value is exact), we let

Kmin = Kmax = K (respectively Amin = Amax = A). Figure 8 gives a set of translation rules—primarily

equivalences—specifying how boolean expressions are translated into Certain and Possible . These rules

are applied recursively to the query’s selection predicate P to obtain Certain(P) and Possible(P). Note

that disjunction for Certain and conjunction for Possible are implications rather than equivalences. Thus,

when we translate Possible(E1 ∧ E2) into Possible(E1) ∧ Possible(E2) we may classify a tuple into T?

when it should really be in T−. Also, when we translate Certain(E1∨E2) into Certain(E1)∨Certain(E2)
we may classify a tuple into T? when it should really be in T+. Cases where we misclassify tuples are ex-

tremely unusual (because they involve very special cases of correlation between subexpressions), and note

that these misclassifications affect only the optimality and not the correctness of our algorithms.

We now illustrate how to use the rules in Figure 8 to derive expressions for Certain(P) and Possible(P)
in terms of range endpoints. For the predicate P = (bandwidth > 50) ∧ (latency < 10), Certain(P)
becomes (bandwidthmin > 50) ∧ (latencymax < 10), and Possible(P) becomes (bandwidthmax >

50) ∧ (latencymin < 10). The column labeled “(bandwidth > 50) ∧ (latency < 10) before refresh” of

Figure 7 shows the resulting classification of tuples in our example data of Figure 2 into T−, T ?, and T+.

It turns out that this technique is part of a more general mathematical framework introduced in [Lip79]

for evaluating predicates over data objects that have a set of possible values (in our case, an infinite set of

25

expression E Possible(E) Certain(E)

[xmin, xmax] = [ymin, ymax] ⇔ (xmin ≤ ymax) ∧ (xmax ≥ ymin) ⇔ xmin = xmax = ymin = ymax

[xmin, xmax] < [ymin, ymax] ⇔ xmin < ymax ⇔ xmax < ymin

[xmin, xmax] ≤ [ymin, ymax] ⇔ xmin ≤ ymax ⇔ xmax ≤ ymin

¬E1 ⇔ ¬Certain(E1) ⇔ ¬Possible(E1)

E1 ∨ E2 ⇔ Possible(E1) ∨ Possible(E2) ⇐ Certain(E1) ∨ Certain(E2)

E1 ∧ E2 ⇒ Possible(E1) ∧ Possible(E2) ⇔ Certain(E1) ∧ Certain(E2)

Figure 8: Translation of range comparison expressions.

points along the range [Li,Hi]). The following relationships translate the notation used in this paper into

the notation from [Lip79]: T+ = ‖T‖∗, T ? = ‖T‖∗ − ‖T‖∗, T− = ‖T‖∗.

In general, the selection predicate does not influence the evaluation of the aggregate—as we have seen

in Section 6, the only information needed from the selection predicate is the classification of tuples into T+,

T−, and T ?. However, a slight refinement can be made if the selection predicate is over the same column

as the aggregation.3 In this special case, each tuple ti in T ? has a restriction on actual value Vi imposed

by the selection predicate, in addition to the bound [Li,Hi]. For example, bound [Li,Hi] = [3, 8] has an

additional restriction on Vi under the predicate < 5, if Vi is to contribute to the result. To take advantage

of this additional restriction, the bounds [Li,Hi] for tuples in T? can be shrunk before they are input to the

result computation or CHOOSE REFRESH algorithm. For example, if we are aggregating latency under

the predicate latency > 10, we can modify any lower bounds below 10 to 10 by using [max(Li, 10),Hi]
instead of [Li,Hi].

E Computing a Tight Bound for AVG with a Selection Predicate

To compute a tight bound for AVG with a selection predicate (recall Section 6.4.1), proceed as follows.

First, let SL =
∑

ti∈T+ Li and KL = |T+|, the sum and cardinality of the low values in T+. Then, let A

represent the tuples ti ∈ T ?, sorted in increasing order by Li. Let a be the first element of A. If La <
SL
KL

,

then add La to SL and 1 to KL. Advance a and continue this process until La ≥ SL
KL

. Similarly, let

SH =
∑

ti∈T+ Hi and KH = |T+|. Now, let A represent the tuples ti ∈ T ?, sorted in decreasing order by

Hi. Let a be the first element of A. If Ha >
SH
KH

, then add Ha to SH and 1 to KH . Advance a and continue

this process until Ha ≤ SH
KH

. Finally, let:

[LA,HA] = [
SL

KL
,
SH

KH
]

For example, consider query Q6 from Section 1.1 that asks for the average latency for links having

traffic > 100. First, we classify tuples into T−, T ?, and T+ as shown in Figure 7. Since T+ = {2, 4},

initially SL = 14 and KL = 2. A is [1, 6, 5, 3], which are the tuples in T? sorted in increasing order by
3More generally, the refinement applies if the selection predicate always restricts the value of the aggregation column. For

example, the predicate T.a < 5 ∧ T.b �= 2 always restricts the value of column T.a to be less than 5.

26

Li. First, we let a = 1, and since La = 2 < SL
KL

= 14
2 = 7, we set SL = SL + La = 14 + 2 = 16

and KL = KL + 1 = 2 + 1 = 3. Then, we let a = 6, and since La = 4 < SL
KL

= 16
3 = 5.3, we set

SL = SL+La = 16+ 4 = 20 and KL = KL+1 = 3+ 1 = 4. Next, we let a = 5, and note that La = 8 ≥
SL
KL
= 20

4 = 5, so we stop with SL = 20 and KL = 4. The computation of SH and KH proceeds similarly

to yield SH = 34 and KH = 3. These results give a bounded AVG of [SL
KL

, SH
KH
] = [204 ,

34
3] = [5, 11.3].

This algorithm for computing a tight bound for AVG has a running time of O(n · log n).

F Choosing Refresh Tuples for AVG with a Selection Predicate

Refer to Section 6.4.2 and note that we make use of the loose bound for AVG given in Section 6.4.1.

CHOOSE REFRESHAVG will guarantee that the precision constraint HA − LA ≤ R is satisfied with:

[LA,HA] = [min(
LSUM

HCOUNT
,
LSUM

LCOUNT
),max(

HSUM

LCOUNT
,
HSUM

HCOUNT
)]

Although it would be desirable to find a CHOOSE REFRESH algorithm that guarantees the precision

constraint is satisfied for the exact bound [LA,HA] = [SL
KL

, SH
KH
] described in Appendix E, we have not yet

succeeded in finding such an algorithm.

CHOOSE REFRESHAVG chooses a set of tuples TR such that after refreshing the tuples in TR and

computing [LSUM ,HSUM] and [LCOUNT ,HCOUNT],∆AVG = HAVG−LAVG = max(HSUM
LCOUNT

, HSUM
HCOUNT

)−
min(LSUM

HCOUNT
, LSUM

LCOUNT
) ≤ R. To make it possible to choose bounds for SUM and COUNT that will guar-

antee ∆AVG ≤ R, we must formulate ∆AVG as a function of ∆SUM = HSUM − LSUM and ∆COUNT
= HCOUNT − LCOUNT . Based on this function, CHOOSE REFRESHAVG chooses an “approximately

optimal” set of tuples TR to refresh that gives values for ∆SUM and ∆COUNT such that the precision

constraint ∆AVG ≤ R is guaranteed to be met.

The relationship between [LSUM ,HSUM], [LCOUNT ,HCOUNT], and ∆AVG is:

∆AVG ≤ RHS =
∆SUM + (max(HSUM ,−LSUM ,HSUM−LSUM)

LCOUNT
) ·∆COUNT

∆COUNT + LCOUNT

To show this inequality, we consider three cases. In case 1, if LSUM ≥ 0, ∆AVG ≤ HSUM
LCOUNT

− LSUM
HCOUNT

,

which gives:

∆AVG ≤ RHS 1 =
∆SUM + (HSUM

LCOUNT
) ·∆COUNT

∆COUNT + LCOUNT

In case 2, if HSUM ≤ 0, ∆AVG ≤ HSUM
HCOUNT

− LSUM
LCOUNT

, which gives:

∆AVG ≤ RHS 2 =
∆SUM + (−LSUM

LCOUNT
) ·∆COUNT

∆COUNT + LCOUNT

Otherwise, in case 3 (LSUM < 0 and HSUM > 0), ∆AVG ≤ HSUM
LCOUNT

− LSUM
LCOUNT

, which gives:

∆AVG ≤ RHS 3 =
∆SUM + (HSUM−LSUM

LCOUNT
) ·∆COUNT

∆COUNT + LCOUNT

27

All three cases are equivalent to RHS =
∆SUM+(

max(HSUM ,−LSUM ,HSUM−LSUM)

LCOUNT
)·∆COUNT

∆COUNT+LCOUNT
. In case 1,

RHS 1 = RHS since LSUM ≥ 0 implies max(HSUM ,−LSUM ,HSUM − LSUM) = HSUM . Similarly,

in case 2, RHS2 = RHS since HSUM ≤ 0 implies max(HSUM ,−LSUM ,HSUM − LSUM) = −LSUM . In

case 3, RHS3 = RHS since the SUM bound straddles 0, which implies max(HSUM ,−LSUM ,HSUM −
LSUM) = HSUM − LSUM .

Since our goal is to express ∆AVG as a function of ∆SUM and ∆COUNT , we must eliminate all

other values from the relationship:

∆AVG ≤
∆SUM + (max(HSUM ,−LSUM ,HSUM−LSUM)

LCOUNT
) ·∆COUNT

∆COUNT + LCOUNT

To do this elimination, we substitute conservative estimates for the values LSUM , HSUM , and LCOUNT .

Conservative estimates for these values are obtained by computing SUM and COUNT over the current

cached bounds as [L′
SUM ,H ′

SUM] and [L′
COUNT ,H

′
COUNT]. Since, when the refreshes are performed, these

bounds can shrink but not grow, L′SUM ≤ LSUM , H ′
SUM ≥ HSUM , and L′

COUNT ≤ LCOUNT . Therefore,

by examining the inequality relating [LSUM ,HSUM], [LCOUNT ,HCOUNT], and ∆AVG, it can be seen that

substituting L′
SUM for LSUM , H ′

SUM for HSUM , and L′
COUNT for LCOUNT makes the right-hand side

strictly larger, so it is still an upper bound on ∆AVG. This substitution results in:

∆AVG ≤ F(∆SUM ,∆COUNT) =
∆SUM + (max(H′

SUM ,−L′
SUM ,H′

SUM−L′
SUM)

L′
COUNT

) ·∆COUNT

∆COUNT + L′
COUNT

Now that we finally have F(∆SUM ,∆COUNT), an upper bound for ∆AVG as a function of ∆SUM
and ∆COUNT (since L′

SUM , H ′
SUM , and L′

COUNT are computed once and used as constants), we can

substitute this function for ∆AVG in the precision constraint. Recall that the precision constraint requires

that ∆AVG ≤ R. Substituting F(∆SUM ,∆COUNT) for ∆AVG gives F(∆SUM ,∆COUNT) ≤ R.

At this point, we have formulated the precision constraint in terms of only ∆SUM and ∆COUNT .

Rewriting the precision constraint in terms of ∆SUM gives:

∆SUM ≤ L′
COUNT · R− (max(H

′
SUM ,−L′

SUM ,H ′
SUM − L′

SUM)
L′

COUNT

−R) ·∆COUNT

This formulation of the precision constraint can be used in place of the original constraint ∆AVG ≤
R. Therefore, the CHOOSE REFRESHAVG algorithm is free to choose any values for ∆SUM and

∆COUNT that satisfy the reformulated precision constraint. We have thus reduced the task of choosing

refresh tuples for AVG to the task of choosing refresh tuples for SUM under this reformulated constraint.

Normally, to choose refresh tuples for SUM, we have the constraint ∆SUM ≤ RSUM . In this case, we

instead have the constraint ∆SUM ≤ L′COUNT · R − (max(H′
SUM ,−L′

SUM ,H′
SUM−L′

SUM)

L′
COUNT

− R) ·∆COUNT ,

so we let RSUM be the following function of ∆COUNT :

RSUM (∆COUNT) = L′
COUNT ·R− (max(H

′
SUM ,−L′

SUM ,H ′
SUM − L′

SUM)
L′

COUNT

−R) ·∆COUNT

To see how to choose refresh tuples for SUM when RSUM is a function of ∆COUNT , first recall that

the CHOOSE REFRESHSUM algorithm chooses refresh tuples for SUM by mapping it to the 0/1 Knap-

sack Problem, where the knapsack capacity M = RSUM . Therefore, for the CHOOSE REFRESHAVG

28

algorithm, we need to make the knapsack capacity a function of ∆COUNT . On the surface, it looks as

though this modification is not possible since there is no way to make the knapsack capacity a function

instead of a constant. Fortunately, making the knapsack capacity a function of ∆COUNT is possible to

fake. First, recall that ∆COUNT is equal to the number of tuples in T? that do not get refreshed (and thus

remain in T ? after the refreshes are performed). Also, recall that the set of items placed in the knapsack

corresponds to TR: the set of tuples that will not be refreshed. It follows that ∆COUNT is equal to the

number of T ? tuples in the knapsack. Therefore, when the knapsack is empty, ∆COUNT = 0 and thus the

initial knapsack capacity M = RSUM (0) = L′
COUNT · R. Furthermore, every time a T? tuple is added to

the knapsack, ∆COUNT increases by 1. Since the function RSUM (∆COUNT) is a line with (negative)

slope:

m = −(max(H
′
SUM ,−L′

SUM ,H ′
SUM − L′

SUM)
L′

COUNT

−R)

the capacity of the knapsack decreases by the amount −m every time a T? tuple is added to the knapsack.

Observe that decreasing the knapsack capacity when an item is added is equivalent to increasing the weight

of the item. Therefore, to simulate shrinking the knapsack by −m every time∆COUNT increases by 1, all

we have to do is add the quantity −m to the weight of each tuple in T?.

To summarize, the CHOOSE REFRESHAVG algorithm is exactly the same as the CHOOSE

REFRESHSUM algorithm (which maps to the 0/1 Knapsack Problem) with the following modifications:

M = L′
COUNT ·R, and for all tuples ti ∈ T ?, Wi =Wi+(

max(H′
SUM ,−L′

SUM ,H′
SUM−L′

SUM)

L′
COUNT

−R). The values

L′
SUM , H ′

SUM , and L′
COUNT are found by computing SUM and COUNT over the current cached bounds

as [L′
SUM ,H ′

SUM] and [L′
COUNT ,H

′
COUNT]. The running time of CHOOSE REFRESHAVG is dominated

by the running time of CHOOSE REFRESHSUM, which is given in Section 6.2.

F.1 Revisiting the Example of Section 6.4.2

Consider query Q6 that asks for the average latency for links having traffic > 100, with R = 2. First,

we classify tuples into T−, T ?, and T+, as shown in Figure 7. Then, we compute [L′
SUM ,H ′

SUM] =

[14, 55] and [L′
COUNT ,H

′
COUNT] = [2, 6]. We use these values to assign a weight to each tuple by

computing the weight used in the CHOOSE REFRESHSUM algorithm, and for tuples in T?, adding
max(H′

SUM ,−L′
SUM ,H′

SUM−L′
SUM)

L′
COUNT

− R = 55
2 − 2 = 25.5. The column labeled W ′′ in Figure 2 shows these

weights. Using the Knapsack Problem with M =L′COUNT ·R = 2·2 = 4, the knapsack optimally “contains”

tuples 2 and 4. After refreshing the other tuples TR = {1, 3, 5, 6}, the bounded AVG is [8, 9].

29

