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Abstract

This paper presents a realistic teletra�c modeling framework for Personal Communications Services.

The framework captures complex human behaviors and has been validated through analysis of actual call

and mobility data. Using the proposed framework, a large-scale simulation was performed on a model

of the San Francisco Bay Area. Simulation results showing the performance of IS-41 are presented.

1 Introduction

The goal of Personal Communications Services (PCS) [3] is to provide integrated communications (e.g.,

voice, video, and data) between nomadic subscribers independent of time, locations, and mobility patterns.

The market for various wireless communications services is growing rapidly. In the United States, for

example, there are more than 30 million cellular customers and this number is continuing to grow at an

exponential rate. Other parts of the world, such as Europe and Asia, are experiencing the same tremendous

growth in the demands for wireless communications services. There is evidence supporting this growth from

the widespread use of the European Global System for Mobile Communications (GSM) and the reported

explosive growth of the Japanese Personal HandyPhone System (PHS). It is, therefore, not far-fetched to

envision a future PCS network that needs to support a large number of mobile subscribers scattered over

a vast geographical region | a continent, or perhaps the world!

Teletra�c models are an invaluable tool for network planning and design. They are useful in areas

such as network architecture comparisons, network resource allocations, and performance evaluations of

protocols. Traditional tra�c models have been developed for wireline networks. These models predict

the aggregate tra�c going through telephone switches. As such, they do not include subscriber mobility

or callee distributions and therefore need modi�cations to be applicable for modeling PCS tra�c. Since

a general model for PCS tra�c does not yet exist, most researchers resort to adding their own ad-hoc

mobility models to the traditional wireline models. These ad-hoc mobility models seldom re
ect actual

movement patterns. They will unlikely be able to describe adequately the range of subscriber behaviors

that will appear on a PCS network | one that covers a large geography. Mobility models are required

to describe movement behavior at di�erent scales. Another aspect of the ad-hoc approach is that callee

distribution is usually neglected. Callee distribution is an important modeling aspect and we will show

evidence supporting this in our simulation results.

In this paper, we discuss the PCS tra�c modeling framework that was developed for our research in

data management for wireless communications networks. Our tra�c models are based on call tra�c data,

airplane passenger tra�c data, and personal transportation surveys. We have developed a call tra�c model

�Research partially supported by the Center for Telecommunications and the Center for Integrated Systems at Stanford

University, and by equipment grants from Digital, IBM, and Paci�c Bell Corporations.
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that takes into account callee distributions. Using techniques and results from transportation research, we

have developed three mobility models to characterize movements at di�erent scales: within a metropolitan

area, within a national area, and at the international level. Another unique aspect of our framework

is that it models time-varying behavior which allows for investigations into transient, peak, and average

performance. Unlike other synthetic models, we expect that our framework can provide a platform for

generating realistic simulation results. Based on our framework, we have developed a large scale software

simulator, Pleiades. Using Pleiades, we illustrate the importance of our models for data management

research by comparing them with other simpler models commonly used. We also present simulation results

on the performance of IS-41, the current data management standard in the United States, using our models

for the San Francisco Bay Area. Finally, based on this modeling research, we have generated the Stanford

University Mobile Activity TRAces (SUMATRA). Our aim is for these traces to be used widely for

wireless research and serve as a common platform for comparing research results. SUMATRA is available

for the general community on the world wide web at http://db.stanford.edu/sumatra.

2 Motivation

Our motivation for PCS tra�c modeling research comes from our work in scalable and e�cient data

management schemes for wireless communications networks. PCS presents many challenging problems in

data management [10, 12, 32]. The PCS network stores important per-user information, such as current

location, authentication information, and billing information, in user pro�les. Data management refers to

accessing and maintaining the information in user pro�les. For example, during call setup, among other

tasks, the network needs to access the callee's pro�le for location information and the caller's pro�le for

authentication information. Also, the network registers user movements by updating location information

in user pro�les. The performance of any data management scheme is a function of the underlying database

architecture, protocol, and algorithms. Performance variables of interest are: pro�le lookup and update

response times, memory cost, and system equipment cost. Previous studies [20, 21] have shown that for

projected numbers of PCS subscribers, existing data management standards, IS-41 [6, 22] and GSM [23],

will incur a large increase in database loads over the current levels. In recent years, many sophisticated

data management schemes [13, 14, 15, 26] have been proposed to reduce pro�le lookup and update response

times and signaling tra�c. These methods utilize techniques such as data replication and caching. It is

beyond the scope of this paper to discuss these schemes. However, it is important to note that actual

performance of these proposals depends strongly on subscriber behavior. In other words, the merits of

caching and data replication schemes are functions of mobility and calling patterns. As a result, tra�c

models based on realistic calling and mobility patterns are a critical aspect of performance evaluation.

3 PCS Network Architecture

In a PCS network, mobile subscribers communicate through portable handsets. The basic network archi-

tecture is shown in Figure 1. It consists of a set of radio ports (i.e., basestations) connected to a �xed

wireline network through mobile switching centers (MSC). Radio ports are the communication service

points for the portable handsets within their coverage areas. MSC's are the hardware interface between a

group of radio ports and the wireline network. Databases of user pro�les are also connected to the wireline

network. The detailed operations of these databases and the connectivity between them are determined by

the data management scheme. Communications take place by establishing call connections through radio

ports, MSC's, and the wireline network.

2



established connection

wireless link

wire communication link

Database

mobile unit

wireline network

Mobile Switching Center

radio port

X
Z

A

A

B

A
B

X
Y

B

A

Figure 1: PCS Network Architecture

4 PCS Tra�c Modeling Framework

We have developed a general modeling framework for our data management research. The framework

includes the modeling of call and movement tra�c, data management activities, and the signaling network.

In this paper , we focus on the call and mobility tra�c models. Interested readers can refer to [17, 18] for

details of the general modeling framework. The tra�c modeling framework is composed of the following

objects.

Site represents a geographical area. All Site objects together de�ne the physical geography for subscriber

movements.

User represents a human subscriber.

The framework can also be divided into the following components: Topology Model, Call Model, and

Movement Model. The Topology Model speci�es the geographical topology or connectivities between

Sites. The Call Model and Movement Model describe, respectively, how Users make calls to one another

and how they move through the geography de�ned by the Topology Model. In our framework, we have

decided to independently model call and movement behaviors. Correlations between call and movement

activities are indirectly modeled through our time-of-day tra�c analysis.

4.1 Call Model

Our call model generates call tra�c for each individual user. The model is divided into two parts: the Call

Tra�c Model and the Callee Distribution Model. We have corroborated our models using encrypted

call tra�c data [28] from our local university telephone exchange. This exchange serves the entire campus

including university o�ces, student housing, and faculty and sta� residential households.

4.1.1 Call Tra�c Model

The call tra�c model describes how often individual users place calls to other users and characterizes

the duration of each call. Very little is known about the tra�c characteristics of future PCS networks.

However, on �xed telephone networks, tra�c is modeled accurately. Reference [8] gives an overview of

existing call tra�c models. For current telephone usage, according to [21], the mean call arrival rate and

the mean call duration during busy hours are 2.8 calls/hour and 2.6 min/call, respectively. Our call tra�c

model generates call arrivals (i.e., calls initiated) for di�erent classes of tra�c and models time-varying

user behavior. Each call tra�c class is characterized by its probability of occurrence, call arrival rate,

mean call duration, and distribution.
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We have investigated time-of-day call tra�c volume patterns because we need to use corresponding

mobility patterns in performance evaluations. Figure 2 shows the tra�c volume patterns derived from our

N
um

be
r 

of
 c

al
ls

Clock Time [24 hr.]

Ave. hourly call volume over 9 months

0 2 4 6 8 14 20

200
400
600
800

1000
1200
1400
1600
1800
2000

1012 1618 2224

Weekday
7 day avg.
Weekend

Figure 2: Average Number of Call Arrivals Per Hour

call tra�c data in [28]. We have examined averages over all days, weekdays (Mondays { Fridays), and

weekends (Saturdays and Sundays). We observe that there are essentially three periods of call activity

during a typical weekday. The �rst corresponds to the late night period (12 a.m.{7 a.m.) when there is very

little activity. The second is the peak period which spans the regular business hours (8 a.m.{4 p.m.). The

last period corresponds to the o�-peak period during the evening hours. One observation is that volume

changes abruptly during the morning transition, but the evening transition is much more gradual. These

patterns along with call arrival rates in [21] provide guidelines for us when specifying the parameters in

our Call Tra�c Model.

4.1.2 Callee Distribution Model

The callee distribution model characterizes how the callee is generated for each call. It is an important

modeling issue because of its e�ect on performance evaluation, especially for schemes with caching or data

replication.

We have developed a callee distribution model that models the behavior of each individual caller. It

accounts for such real life behaviors as users calling a group of people (e.g., business associates and friends

etc.) more frequently. In our model, each user is associated with its own callee list. When a call is generated

for a user, the callee is selected either randomly from all users or from among the user's callee list according

to a speci�ed probability distribution. To obtain reasonable parameters, we have investigated empirical

probability distributions using the notion of callee rank. The rank k callee of a caller is the caller's kth

most frequently called person within a reference period. For each caller i in [28], we calculate the call

probability to the rank r callee (P̂ i
r) over the periods of 1 day, 1 week, and 1 month. We observe that the

mean call probability to the rank r callee, �Pr, can be modeled using a power or generalized Zipf's law at all

three reference time periods: �Pr '
A
rp
, where A is the scaling parameter and p is the exponent parameter.

Table 1 shows the �tted parameters and mean square errors of the �ts. Figure 3 and Figure 4 are linear

and log-log plots of �Pr versus callee rank for the three reference periods.

We have investigated distributions around �Pr because we want to include in our model callers that

deviate from the \average" behavior. Figure 5 shows the distributions of �rst rank call probabilities (P̂ i
1)

derived from [28] for the three reference periods. We modeled each empirical distribution with a truncated
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Time Scale A p mean sq. error

1 Day 0.778 2.61 0.000010

1 Week 0.574 1.84 0.000028

1 Month 0.383 1.34 0.000030

Table 1: Fitted Power Law Parameters
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Figure 3: Mean Call Probability vs. Callee Rank
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Figure 4: Log-Log Plot of Mean Call Probability vs. Callee Rank

0

0.1

0.2

Call Probability
0.40.20 0.6 0.8 1

Day

P
ro

b.
 o

f O
cc

ur
re

nc
e

0

0.1

0.2

Call Probability
0.40.20 0.6 0.8 1

Week

P
ro

b.
 o

f O
cc

ur
re

nc
e

0

0.1

0.2

Call Probability
0.40.20 0.6 0.8 1

Month

P
ro

b.
 o

f O
cc

ur
re

nc
e

Figure 5: Distributions of Call Probabilities to First Rank Callee (for three reference time periods)
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Figure 6: Cumulative Distribution of Call Probabilities to First Rank Callee

normal distribution. Figure 6 shows the cumulative distributions of P̂ i
1 and their �ts to our model. For the

higher rank call probabilities, we looked at the relative probabilities to the rank r callee, P̂ i
r=P̂

i
r�1; r > 1. By

characterizing the relative probabilities, we can then obtain higher rank call probabilities using a recursive

procedure. We also modeled the distributions of P̂ i
r=P̂

i
r�1 by truncated normal distributions. Figure 7

shows graphically the cumulative distributions of relative call probabilities for a few higher rank cases and
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Figure 7: Cumulative Distribution of Relative Call Probabilities to Higher Rank Callees

their �ts to our model.

We have implicitly assumed in our call model that callee distributions are not dependent on call arrival

characteristics. We have veri�ed this assumption by observing that low correlation exists between callers'

average call arrival rates and their observed call probabilities. Table 2 summarizes this result in terms of

correlation coe�cients between average call arrival rates of users over the reference time periods and their

respective call and relative call probabilities.
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Time

period P̂1 P̂2=P̂1 P̂3=P̂2

1 Month -0.0009 0.0014 0.0018

1 Week 0.0016 0.0004 0.0003

1 Day 0.0033 -0.0011 -0.0027

Table 2: Correlation between Average Call Arrival Rates and Call Probabilities

4.2 Mobility Models

Before discussing the mobility models we developed, we �rst review the common approaches to modeling

human movements.

Fluid Model In a 
uid model [8, 19, 21], tra�c 
ow is conceptualized as the 
ow of a 
uid. It describes

macroscopic movement behavior. One of the simplest 
uid models describes the amount of tra�c


owing out of a region to be proportional to the population density within the region, the average

velocity, and the length of the region boundary. For a circular region with a population density of

�, an average velocity of v, and region diameter of L, the average number of site crossings per unit

time, N , is:

N = ��Lv (1)

One of the limitations of this model is that it describes aggregate tra�c and therefore is hard to

apply to situations where individual movement patterns are desired, for example when evaluating

network protocols or data management schemes with caching. Another limitation comes from the

fact that since average population density and average velocity are used, this model is more accurate

for regions containing a large population such as the case in [21].

Markovian Model The Markovian (or random walk) model [1] describes individual subscriber move-

ments. In this model, a subscriber will either remain within a region or move to an adjacent region

according to a transition probability distribution. One of the limitations of this approach is that

there is no concept of trips or consecutive movements through a series of regions. Trip is again

an important modeling aspect when considering replication and caching data management schemes

mentioned previously.

Gravity Model Gravity models have been used to model human movement behavior in transportation

research. They have been applied to regions of varying sizes, from city models [2, 11] to national

and international models [7, 27]. There are many variations among the gravity models and it is not

possible to describe all of them here. In its simplest form, the amount of tra�c Ti;j moving from

region i to region j is:

Ti;j = Ki;jPiPj (2)

where Pi is the population in region i, and fKi;jg are parameters that have to be calculated for all

possible region pairs (i,j). In this form, the model describes aggregate tra�c and therefore su�ers

from some of the same limitations as the Fluid Model. However, a variation of this model can be

applied to describe individual movements directly if we interpret Pi as the \attractivity" of region i

and Ti;j as the probability of movements between i and j. In this approach, the parameters fPig also

have to be calculated from tra�c data in addition to fKi;jg. The advantage of the gravity model

is that frequently visited locations can be modeled easily since they are simply regions with large
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attractivity. The main di�culty with applying the gravity model is that many parameters have to

be calculated and therefore it is hard to model a geography with many regions.

Mobility Traces Mobility traces indicate current movement behavior and are more realistic than mobility

models. However, traces for large population sizes and large geographical area are hard to come by.

Researchers in the wireless local area network area, for example in [29], have collected movement

traces for performance evaluation purposes. However, because of their applications, these traces are

usually restricted to within an in-building environment or a small region. Also, they are generated

from a small section of the population. For our mobility research, we have focused on larger areas,

such as for a metropolitan area, because we feel that it is at this level where there will be signi�cant

network and database activities. Another limitation of mobility traces is that without a mathematical

framework it is di�cult to use them to predict future behavior for network planning purposes. In

contrast, the other models described above can, for example, be used to predict movement behavior

as population increases.

Our mobility model characterizes user movements within the geography de�ned by our Topology Model.

We have developed a hierarchy of mobility models for movements at di�erent scales: Metropolitan Mobility

Model, National Mobility Model, and International Mobility Model. The Metropolitan Mobility Model

describes subscriber movements within a metropolitan area. It is a generalized version of the Markovian

Model that includes varying trip lengths and velocities. The National and International Mobility Models

describe aggregate movement behavior at the national and international levels, and are variations of the

gravity model discussed above. All these models have been derived using actual tra�c data and o�cial

transportation surveys.

4.2.1 Metropolitan Mobility Model (METMOD)

The Metropolitan Mobility Model (METMOD) describes subscriber movements within a metropolitan

area. It is a detailed model that includes the Markovian model as a special case. Each Site object is used

to describe a small region of a metropolitan area. The geographical connectivity between Sites is modeled

by the Topology Model described previously. Furthermore, probabilities for moving into adjacent Sites

are speci�ed by the movement connectivity matrix. Each element (i; j) in the matrix is the conditional

probability that during a move a subscriber in site i will move into site j. Our model generates movement

trips corresponding to di�erent classes of mobility behavior: simple move, roundtrip move, return home

move, and stationary move. Each of the movement classes is characterized by its probability of occurrence,

mean velocity and distribution, mean number of site crossings and distribution. Return home movements

are important when studying data management schemes with home location registers (such as IS-41 and

GSM). Roundtrip movements are important when studying schemes with caching or data replication.

We have investigated actual human movement behavior using survey results from [5, 9, 16] and actual

movement statistics from [24]. Figure 8 is a summary of the time-of-day tra�c volume patterns we obtained

from [9, 24]. From the data in [9], we have derived statistics (see Table 3) relating to mode of transportation,

travel distance, and travel time statistics for various movement types and their percentages of occurrence.

In our movement model, we then represent each trip purpose in Table 3 as a movement class with their

appropriate mean move velocity and distance.

We have applied METMOD to a geographical model of the San Francisco Bay Area. Simulation results

from this model are presented in the Simulation Results section.
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Trip Purpose % of

Trips

Average Trip

Length (mi)

Average Veloc-

ity (mi/hr)

To/From Work 20.2 10.65 31.3

Work-Related 1.4 28.20 81.3

Personal 52.9 6.74 28.3

Social/Other 25.3 11.53 39.2

Vacation 0.2 218.22 261.5

Table 3: Movement Statistics

9



4.2.2 National Mobility Models (NATMOD)

The National Mobility Model (NATMOD) characterizes movement behavior between metropolitan areas

in the United States. Each Site object now represents a metropolitan area. NATMOD characterizes tra�c

volume 
owing between two Sites as a function of the population in each Site and the distance separating

them.

We have obtained domestic air passenger tra�c data [4] maintained by the Department of Transporta-

tion. The data analyzed contain domestic air passenger origin and destination tra�c between all major

U.S. commercial airports for two three-month periods (10/91-12/91 and 10/93-12/93). Our assumption is

that commercial 
ights are the major mode of transportation between metropolitan areas.

Using dataset [4], we have derived tra�c volume between the ten largest metropolitan areas in the

United States. These metropolitan areas are chosen from their population in 1995 [30]. We model the

tra�c volume using a variation of the gravity model. Instead of developing a detailed gravity model that

could model the tra�c very accurately, our approach is to �nd a su�ciently accurate model with a small

number of parameters to allow e�cient simulation. In order to do this, we have assumed symmetric tra�c


ow, i.e., the tra�c volumes between any two metropolitan areas are the same along both directions. We

note that, for our data in the year 1991, there is an average of less than 2% 
uctuation between the two

tra�c directions. Another interpretation of this is that we are modeling only the average tra�c volume

between two regions. We have experimented with many di�erent variations of the gravity model. The

following model gave the best results.

T �i;j =
mimjPiPj

d

i+
j
i;j

(3)

where T �i;j is equal to 0:5(Ti;j + Tj;i) and Ti;j is the tra�c between region i and region j, Pi is the reported

population for region i, and di;j is the distance between the largest airports in regions i and j. fmig and

f
ig are parameters that have to be calibrated. Comparing to Equation 2 in Section 4.2, we note that the

product (mi=d

i
i;j mj=d


j) is equivalent to Ki;j. With the assumption of symmetric tra�c 
ow, we were able

to separate the dependence of Ki;j to i and j, and obtain a model that has 2NR parameters where NR is the

number of regions. We calculated the parameters fmig and f
ig twice. For the �rst calculation, we used the

three months of movement data in 1991 and population estimates for the metropolitan areas in 1991 [30].

We performed the second calculation using tra�c and population data in 1993. Both calculations were

done by minimizing the mean normalized root-mean-square (RMS) di�erence using the simplex method.

Mathematically speaking, if T �i;j is the actual average tra�c 
ow between region i and region j and T̂ �i;j is

the average tra�c 
ow predicted by the calibrated model, then the normalized RMS di�erence, erms
i , is:

erms
i =

vuut 1

NR

X
j

(
T̂ �i;j � T �i;jP

j T
�

i;j

)2 (4)

where NR is the total number of regions. We note that T �i;j = T �j;i and T �i;i = 0, and similar relations also

hold for T̂ �i;j. The mean normalized RMS di�erence is the average of erms
i . Table 4 shows the calculated

parameters for each region and their erms
i . Columns 2 to 4 show results from the �rst calculation, while

columns 5 to 7 show results from the second calculation. For all these results, fdi;jg are measured in miles

and the values of fT �i;jg and fPig are measured in number of persons and thousands of persons, respectively.

The two sets of parameters in Table 4 indicate how much the model parameters can vary over time.

We have examined whether the parameter variations are signi�cant. Table 5 shows the results. Column 2

reports the the change in erms
i if we were to predict 1991 tra�c using the calculated parameters for 1993

and the 1991 population �gures. Similarly, column 3 shows the change in erms
i when we use the calculated

parameters for 1991 to predict the 1993 tra�c. We observe that the changes in ferms
i g are small.
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1st. Calc. (1991) 2nd Calc. (1993)

Regions ln(Ki) 
i erms
i ln(Ki) 
i erms

i

New York + area -10.7 -0.0629 0.0142 -11.1 -0.124 0.0150

L.A. + area -7.55 0.351 0.0082 -7.06 0.435 0.0116

Chicago Metro. -8.57 0.145 0.0171 -8.70 0.104 0.0182

Wash. + Balt. -7.69 0.305 0.0162 -8.28 0.205 0.0182

S.F. + Bay area -6.61 0.393 0.0140 -6.88 0.369 0.0171

Philadelphia + area -11.8 -0.154 0.0739 -11.8 -0.177 0.0639

Boston + area -6.75 0.455 0.0201 -6.47 0.490 0.0167

Detroit + area -6.87 0.504 0.0148 -7.53 0.395 0.0165

Dallas + area -8.71 0.0758 0.0207 -9.76 -0.0646 0.0235

Houston + area -2.93 0.987 0.0167 -0.194 1.13 0.0197

Table 4: NATMOD Calculated Parameter Values and Residues

1991 Tra�c 1993 Tra�c

Regions e
rms;1993
i � e

rms;1991
i e

rms;1991
i � e

rms;1991
i

New York + area 0.0030 0.0046

L.A. + area 0.012 0.0076

Chicago Metro. -0.0002 0.0038

Wash. + Balt. 0.0075 0.0069

S.F. + Bay area 0.0091 0.0076

Philadelphia + area -0.0088 0.0087

Boston + area -0.0025 0.0033

Detroit + area -0.0003 0.0010

Dallas + area 0.0037 -0.0001

Houston + area 0.0094 -0.0028

Table 5: NATMOD Sensitivity to Parameter Variations
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Kj

Countries 1990 1991 1992 1993 1994

Canada 0.103 0.0918 0.0935 0.0950 0.0924

United Kingdom 0.0351 0.0321 0.0368 0.0390 0.0395

Japan 0.0146 0.0143 0.0154 0.0152 0.0155

Mexico 0.0199 0.0198 0.0197 0.0196 0.0203

Germany 0.0121 0.0117 0.0132 0.0136 0.0132

France 0.0121 0.0109 0.0127 0.0123 0.0130

Netherlands 0.0216 0.0233 0.0259 0.0310 0.0342

South Korea 0.0072 0.0073 0.0083 0.0089 0.0097

Dom. Republic 0.0511 0.0438 0.0477 0.0500 0.0504

Jamaica 0.1511 0.1374 0.1314 0.1431 0.1466

Table 6: INTMOD Calculated Parameters for 1990 - 1994

The signi�cance of NATMOD is that it is a realistic and reasonable model for movements between

metropolitan areas. We have shown parameter values and their ranges for current inter-metropolitan

movements. In addition, we have also shown that NATMOD is relatively insensitive to parameter variations

and therefore is reasonable to be used in estimating tra�c volumes in the future or for other geography.

Another interesting aspect of NATMOD is that it associates only two parameters, mi and 
i, per Site and

therefore permitting more convenient and e�cient simulations.

4.2.3 International Mobility Model (INTMOD)

The International Mobility Model (INTMOD) characterizes movement behavior between the U.S. and ten

other countries. Each Site object in INTMOD represents a country. From [25] we obtained air passenger

departure and arrival tra�c between U.S. and other countries from 1990 to 1994. We also used a variant

of the gravity model following the same methodology as in NATMOD. However, in this case, due to the

limited amount of data, a fully-interconnected movement model between all country pairs is not possible.

We have tried to model movements between USA and other countries using the following model.

T �j = KjPusaPj (5)

T �j is the average tra�c 
ow between USA and country j, Kj is the calculated parameter for country

j, and Pj is the population of country j (Pusa is the USA population). T �j is found by averaging over

the arrival and departure tra�c. From [30], we obtained �ve years of population �gures and proceed to

determine parameters for these �ve years. We note that because of the simpler model, Kj is simply equal

to T �j =PusaPj and hence there is no residue. Table 6 shows the calculated parameters. We also investigated

how the accuracy of this model changes over time. Table 7 shows the normalized RMS di�erence when we

use the 1990 parameters to predict tra�c between 1991 to 1994.

Compared to NATMOD, the INTMOD gravity model is missing the inverse dependence to distance.

One of the reasons for not using the same gravity model as NATMOD was explained previously by the

lack of tra�c data. Another justi�cation is that there is generally some amount of uncertainty in de�ning

distances between countries. De�ning the distance between USA and Canada, two large territories, is a

good example. In any case, our goal for INTMOD is to have a simple, easy to use, and realistic model

for international movement tra�c. Similar to NATMOD, we have presented current parameter values and
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Tra�c Year erms
usa

1990 0

1991 0.0109

1992 0.00900

1991 0.0102

1994 0.0125

Table 7: INTMOD Variations of erms
usa over Time

their ranges, and have shown that INTMOD parameters remain relatively constant over a period of �ve

years.

5 Simulation Results

We have developed a discrete event simulator, Pleiades, based upon the framework described above.

Pleiades contains several modules to emulate the functions of various data management schemes, such

as IS-41, GSM, and new novel proposals. The architecture of Pleiades is shown in Figure 9; further details

on Pleiades can be found in [17].

generator
event

handler
event

priority queue
earliest time first

output file

event

input script

Simulator

simulation
parameters

simulation
statistics

...

Figure 9: Simulator Architecture

We now show that our callee distribution and mobility models are critical to performance evaluation.

Table 8 shows three sets of simulation parameters for three di�erent models. The proposed callee model for

set 1 and 3 is our callee distribution described previously in Section 4.1.2. Tables 9 and 10 are summaries

of simulation results for two data management schemes, IS-41 and centralized database. In the centralized

database scheme, all user pro�les are stored in one single centralized database. If the caller and the callee

are not in the same registration zone, then a pro�le lookup is required at the centralized database. We

observe that using our proposed models, signi�cantly di�erent results were obtained in the key performance

measures. We note that, in the centralized database scheme, global average update rates are independent

of the models because we need to update the same number of pro�les per user movement.

Using Pleiades, we have investigated the performance of IS-41 on a geography that models the San

Francisco Bay Area, which is composed of four area codes. Figure 10 is a map of the Bay Area. Regions
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Parameter Set

Parameters 1 2 3

# users 16200

Geography 9x9 square grid

Callee Proposed Random Proposed

Model 8 callees 8 callees

Move 25% no move 25% no move

Model 25% simple 25% simple Markov

25% roundtrip 25% roundtrip

25% return home 25% return home

Table 8: Simulation Parameters for Model Comparisons

Perf. vars. Percentage Di�erence

(Global) Set 1 (Set2-Set1)/Set1 (Set3-Set1)/Set 1

ave. lookup 26.02 21.1% 18.2%

rates (per sec)

ave. update 42.74 � 0% 19.8%

rates (per sec)

ave. message 52.00 21.1% 34.5%

rates (per sec)

ave. msg-hop 112.9 49.8% 31.8%

count per sec

Table 9: Simulation Results and Percentage Di�erence for IS-41

Perf. vars. Percentage Di�erence

(Global) Set 1 (Set2-Set1)/Set1 (Set3-Set1)/Set 1

ave. lookup 20.65 17.0% 12.3%

rates (per sec)

ave. update 18.47 � 0% � 0%

rates (per sec)

ave. message 31.51 9.93% 46.7%

rates (per sec)

ave. msg-hop 68.54 40.4% 46.3%

count per sec

Table 10: Simulation Results and Percentage Di�erence for Centralized Database Scheme

14



corresponding to di�erent area codes are represented by di�erent shades in the �gure; bridges, ferries

and public transportation are also included. Figure 11 [31] is an overlay map that shows the relationship

between our simulation model and the actual geography of the Bay Area.

Figure 10: Map of the San Francisco Bay Area Figure 11: Overlay of Simulation and Network

Topologies

Figure 12 and Figure 13 show systemwide database and network activities throughout the simulation.

Each data point on these plots is calculated by averaging over the statistics collected from a �fteen minute

simulation window. Since there is over an order of magnitude di�erence between database read and write

activities, a log scale is used on the y-axis to aid in comparing their relative levels. We note that in the

following summary, peak lookup and update rates occur at di�erent times. This is revealed only through our

detailed time-varying models and suggests possible optimizations in the utilizations of network resources.

The following summarizes the results.

� We observe peak access rate for lookups at 4,746 TPS, for updates at 741 TPS, and their combined

total at 5,304 TPS. These peak rates occurred at 12:45 p.m., 3:15 p.m., and 1 p.m. in our simulated

day, respectively. Table 11 shows lookup, update, and total access rates at these peak times.

� We observe a peak signaling rate of 4,401 messages per second and 12,721 message-hops per second

at 1 p.m. in our simulated day.

6 Conclusions

In this paper, we have presented a realistic framework for modeling teletra�c in PCS. The framework

incorporates realistic behavior models that have been corroborated using measurements and surveys of
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Figure 12: Database Access Rate
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Figure 13: Number of Database Messages

Simulated Times

Perf.vars (Global) 12:45 p.m. 13:00 p.m. 15:25 p.m.

lookup 4,745.9 4,745.8 4,002.6

rate (per sec)

update 529.5 558.3 741.2

rate (per sec)

total 5,375.4 5,304.1 4,743.8

rate (per sec)

Table 11: Access Rate at Three Selected Simulation Times
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actual human activities. We have compared simulations results with some commonly used models and

showed that the framework produced signi�cantly di�erent results for our applications in data management

research. We have developed a software system capable of simulating a large population of users and have

presented results of a detailed 24-hour simulation of the San Francisco Bay Area.
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