5 Conclusions

We have studied organization and access for broadcast data, taking a stand that
periodic broadcasting is a form of storage. Data is stored “on the air” with the
latency of access proportional to the duration of the bcast. Broadcasted data can be
reorganized “on the fly” and refreshed (reflecting updates) between two successive

bcasts. The main difference with the disk based files is that we need to minimize
two parameters (access time and tuning time) contrary to just one (access time) for
the disk based files. While broadcast tuning time roughly corresponds to disk access
time, the broadcast access time is an equivalent of the disk space taken by the file.

We investigated two data organization methods namely Hashing and flexible
indezring and we have demonstrated the relative advantages of both the schemes.
In [3] which is orthogonal to this paper we also study data organization methods
based on different types of indexing called (1, m) indexing and distributed indexing.
Distributed Indexing is better than any Hashing scheme for small key sizes. We
provided evidence in [4] that hashing performs better then distributed indexing in
case the key sizes are large.

There are a number of research questions which have to be investigated. If fil-
tering has to be done by complex predicate matching then more sophisticated data
organizations techniques are needed. In particular we would like to investigate further
techniques of secondary indexing. There are a number of communication issues which
have to be looked at in detail. How to achieve reliability of the broadcast in error
prone environments such as wireless cellular? Since the clients are only listening there
is no (or very limited) possibility of the acknowledgment. Multiple Access protocols
which guarantee timely delivery of information are necessary for the broadcasting
(and especially the directory) to work correctly. Finally, we view data broadcasted
on the channel as another level of storage hierarchy, where data is literally “stored
on the channel”. This view allows us togiook at data in a uniform way regardless of
whether 1t 1s stored in one location or multicasted on the network.
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As the capacity of buckets (n) increases the access time due to flexible indexing
increases very slowly and the access time due to hashing increases quite fast. The
difference between the access times due to flexible indexing and due to hashing is quite
big for large values of p. Another important parameter that affects the access time
is the capacity of the buckets i.e., the number of tuples a bucket can hold. Below
a threshold of the capacity of buckets the access time of flexible indexing doesn’t
perform very well. This threshold is when n/2 < [log,p| + m, where m is the
number of data subsegments per data segment.

The graph in figure 5(Right) illustrates the point we made above. The number of
data buckets (F'ile) considered is 1024 and p, the number of data segments, is 100 (i.e.,
the overflow size is 10). The x-axis represents the values of n, the capacity of buckets
and the y-axis the access time. When the value of » is small n/2 < [log, 100| 4+ m
15 then hashing performs better than flexible indexing. For large values of n flex-
ible indexing 1s better in terms of the access time. In the figure Vn,1 < n < 16,
(16/2 £ (74 1)) the access time due to hashing is better and Vn,16 < n < 25 ,
(25/2 £ (7T+5)) both the methods are comparable in terms of their access times and
and Vn, 25 < n flexible indexing performs better.

PRACTICAL IMPLICATIONS

Consider a stock market data of size 128 Kbytes that is being broadcasted in a
channel of bandwidth 20 Kbps. Let the packet length be 128 bytes. It takes around
50 seconds to broadcast the whole file and 0.05 seconds to broadcast or tune into a
single packet. Let the clients be equipped with the Hobbit Chip (AT&T). The power

consumption of the chip in doze mode 1s 50 pW and the consumption in active mode
1s 250 mWV.

The tuning time as well as the access time, if no indexing is used is 25 seconds
(half of the beast time). With per fect hashing we will have to tune into three buckets,

resulting in a tuning time of 0.15 seconds. Thus the battery life is increased by 165
folds. But then the penalty is that the access time doubles to 50 seconds.

If we use hashing B with 20 logical buckets, then the tuning time is 53 buckets
1.e., 2.65 seconds. Thus the battery life increases by almost 10 times at the cost of
the access time increasing by just 1%. On using flezible indexing, for the same
access time we can do by just tuning into just 6 ([log220| + 1) buckets. The tuning
time 1s 0.3 seconds, thus the battery life increases by more than 80 times.

RESULTS

Our results can be summarized as :

e If the access time is of importance (of the two parameters) then if n/2 <
([log, p| + m) then use Hashing. i.e., if the capacity of the buckets are large
use Flexible indexing else use Hashing.

o If the tuning time is of importance and if Data > 2x*pxlog, p then use flexible
indexing i.e., if the overflow is small use hashing else use flexible indexing.

e Hashing schemes should be used when the tuning time requirements are not
rigid and when the key size is relatively large compared to the record size [3].

e Indexing schemes should be used when tuning time is restricted and the key
size is relatively small compared to the record size [3].

15as specified before, m = min((n/2 — log, p), (L-data_segment/2)) when (n/2 — log, p) > 0 else

m=1
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Figure 5: Comparison of Tuning Time & Access Time

4.2 Comparison of Hashing and Flexible Indexing

In the comparison we will consider a very good hashing function which will give us
equal overflow (of length over) for all the values i.e., the minimum overflow and the

average overflow are the same. Let the hashing function have plogical bucketsi.e., the
keys will be mapped into some number between 1 through p. To have a fair comparison

we assume that over and the length of the data segment (L_data_segment) are the
same. The hashing function divides the data buckets into p parts (each of length
L_data_segment), as the overflow is the same for all the logical buckets.

The access time using hashing in this case is

0.5 % (over) 4+ 0.5 % (File + p/2) that is
0.5 ((File + p/2) * (1 + p)/p)
and the average tuning time is 0.5 * (over) i.e.,
0.5 * (L_data_segment)

Let us first compare the tuning time using the two schemes. The tuning time due
to flexible indexing is better when

(0.5 % (L_data_segment)) > (logyp+ Data/(2 * p* (m + 1))) i.e.,
File > (2*px*log,pxm/(m+ 1) — (log,p + m) * p/n)

where the number of tuples in the local index, m = min((n/2 —
log, p), (L_data_segment/2)) when (n/2 —log, p) > 0 else m = 1.

Figure 5(Left) illustrates a comparison of the tuning times using flexible indexing
and hashing. The x-axis represents the length of over (overflow size which is equal
to the size of the data segment) in terms of number of buckets. The number of data
buckets in the file 1s 1024. The capacity of a bucket, n, was assumed to be 100. As
the size of over increases, the number of data segments (p) decreases. In the hashing
scheme the tuning time is half the data segment size and this grows linearly with the
increase 1n the size of data segment. But 1n case of flexible indexing the tuning time
grows very slowly and more over it is not a monotonically increasing function. Notice
that when the size of data segment is less than 14 buckets (i.e., Data < 2 % p *xlog, p)
the tuning time using flexible indexing is larger than that of the hashing scheme. On

the other hand, for for the sizes of data segment of more than 14, ﬂexib%e indexing is
a clear winner.

Let us now consider the access time comparison. Flexible indexing gives a better
(lesser) access time when the following is true:

0.5 (File + p* ([logyp] +m)/n)* (1 +p)/p < 0.5x%((File+p/2)*(1+p)/p)
i.e.,when ([logy p] + m) < n/2



— Search through the local index to see if K is greater than or equal to the
first field of each tuple if the answer is positive follow the pomter of the

first such tuple, tune in at the designated bucket and proceeds as in (iii)

e (ii1) Search the next (L_data_segment/(m + 1)) buckets, sequentially to locate
K, where L_data_segment denotes the length of a data segment.

Let us consider an example to illustrate the above protocol. Consider Figure 4
and let the key we are looking for be 54 and let the initial probe be made at bucket
20. The offset at bucket 20 will direct us to the beginning of the next data segment,
in this case i1t is 25. The client tunes in at bucket 25. It checks to see if the query key
(54) is lesser than 25, the answer is in negative. So the next tuple is checked. 54 > 49
and hence the pointer 25 is selected. The client now tunes in after 25 data buckets to
bucket 49. Searches through the control index in bucket 49, the comparison against
the fourth tuple is successful ( 54 > 53) and hence the client tunes in at the fifth
bucket. Then it searches sequentially through buckets 53 and 54 to find K.

4.1 Analysis

The tuning time'? using the flexible indexing technique is : [log,p| +
L_data_segment/(m + 1) in the worst case. In general, the average tuning time
is [log, | + L_data_segment/2 x (m + 1) where 7 is the number of data segments in
front of this data segment (including this one). This is because we require (atmost)
[log, p| tunings after the initial probe to get to the relevant data segment. Once we
get to the data segment that has the search key, then on an average we have to search
Data/(2 * (m + 1) * p) buckets sequentially '*. Thus on an average the tuning time is

(D _[logy i] + Data/(2* (m +1)))/p

Vi 1 < i < p and Data being the size of the entire broadcast '*, thus upper bound on
the average tuning time is

([log, p[ + Data/(2 x p * (m +1)))

12

Now, let us analyze the access time. Let the time required to get to the first bucket
of the next data segment, on making an initial probe be calle§ probe wait. On an
average the probe wait is half the size of L_data_segment. After coming to the first
bucket of the next data segment the client has to wait half the size of the bcast size
(Data), on an average. This wait is called the data wait. The access time is the sum
of the above two waits. Hence the access time is 0.5% (L_data_segment) 0.5 (Data)
ie.,

0.5 * Data x (1 + p)/p

Let the size of the raw file (without the control index) be File. The total space(in
terms of the number of buckets) occupied by the control index is
(S Mlogy 5] + pxm)fn , Vi 1 <i<p
that is, p * ([log, p] + m)/n is an upper bound for the number of additional buckets
due to the control index. Where n is the number of tuples that a bucket can hold.
The size of the final file (after the control index is added) is Data and
Data = File+ p#*([log,p| + m)/n  Thus the access time using flexible indexing is :

0.5 % (File + p * ([logy p] + m)/n) * (1 +p)/p

we will ignore the initial probe and another first probe (if the former resulted in going to the
next beast) in the following discussion to convey the formula without confusion

13The half of the size of the data segment and L_data_segment = Data/p

4Data is the collection of all the data buckets and all of the control index

12



instance, the index in the data bucket #25 specifies that for all key values which are
smaller than 25 the client has to tune to the bucket that is 43 bucﬁets away which is
bucket # 1 of the next beast (in this case the client simply missed the key and has to
wait for the next broadcast). If the key is larger than 49 then the client has to tune
again to the data bucket #49 (which the offset #= 25 indicates). This data bucket
will provide an index to help the client further on. Similarly, if the searched key is
larger than 33 (but not larger than 49) then the client should tune again 9 buckets
ahead where he will use the index at the bucket 33. Not all data buckets contain the
index though. Notice that if we go “further down” the index for the data bucket #25,
we reach the tuple with (first field) 31. Here if, the key is between 31 and 33 then the
client will not search the tuples that follow and will tune to the buckets between 31
and 33 in search of the key. Notice that the index information is distributed between
different data buckets.

Formally, the control index can be divided into two parts: the binary control
index and the local index. The binary control index and the local index together will
be called control index. The control index consists of tuples. Each tup%e has two
fields. The first field is a key for a data record and the second field is a pointer to the
data bucket containing that record. By a pointer we mean an of fset value, which
denotes the relative position of the data bucket from this bucket. Each bucket has
an of fset to the beginning of the next data segment.

The binary control index has [log,¢| tuples. Where ¢ is the number of data
segments in front of this data segment (including this one).

— (a) The first tuple consists of the key of the first data record in the current
data bucket and an offset to the beginning of the next broadcast

— (b) The k th tuple consists of the key of the first data record of the

|log,i/2¥7!| + 1 th data segment followed by an offset to the first data
bucket of that data segment.

The local index consists of m tuples (m is a parameter which will depend on
number of tuples a bucket can hold, the access time desired etc). The local index

further partitions the data segment into m + 1 data subsegments Dy, Ds,...,D,,1+1 and
consists of the following m tuples :

— (a) The first tuple consists of the key of the first data record of the D,, ;.
The specified offset points to the first data bucket of D, 1.

— (b) The k th tuple consists of the key of the first data record of the D414
followed by an offset to the first data bucket of D,, 1.

The first bucket of each data segment stores control index as well as (if space
allows) data records. The access protocol for a record with key k is as follows :

e (i) Make an initial probe and get the offset to the beginning of the next data
segment and go into doze mode

e (ii) Tune in again to the beginning of the designated next data segment.

— If the search key K is lesser than the first field of the first tuple in the
binary control index then (the record has been missed) doze till the offset
given by the second field and proceed as in step (ii) (else)

— Search through the rest of the binary control index from the top to the
bottom of the index to see if K is greater than or equal to the first field
of each tuple, if the answer is positive follow the pointer of the first such

tuple and proceeds as in step (i) (else)

this one)
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Figure 4: Example for Flexible Indexing

time.

4 Flexible Indexing

We are now going to explore the fact that the file is completely known to the server
prior to the %roadcast. Notice that hashing divides the file into p logical buckets of
statistically varying size. The sizes of each 1ndividual logical bucket vary and depend
on the hashing function itself. Rather than using hashing we can simply divide the
file into p segments and provide some indexing to help the user “navigate” and reduce
the tuning time. The parameter p will make the indexing method proposed in this
section flezible since depending on its value we will either get very good tuning time
or very good access time.

We will assume that the data records are sorted in ascending (or descending) order.
We divide the set of data buckets into p parts ®. The data segments are numbered 1
through p. The first bucket in each of the data segment will contain a control part
consisting of the control indez. The control index is a binary index ° which, for a
given key K helps to locate the data bucket which contains that key.

Let us begin describing the technique with an example. Figure 4 shows a set of 66
data buckets'®. Let p = 9, with the length of all but the last of the data segments be 8
buckets. The first bucket of each data segment contains an index. Three such buckets
are illustrated in Figure 4. Each index entry is a pair which consists of the key value
and the offset ' showing the client when to tune again to find the searched key. For

8all but with the possible exception of the last, of the these parts are equal in length

9There is no other specific reason beyond simplicity for keeping the index binary

10the bucket number is also the key of the first record in that bucket

a5 explained eatlier of fset denotes the relative distance of the bucket from this bucket (including



Buckets Physical.Buckets Av. Overflow Access Time Tuning time

2 1025 913 770 258
4 1026 257 642 130
16 1032 65 949 34
32 1040 33 937 18
64 1056 17 937 10
128 1088 9 949 6
512 1280 3 642 3
2048 2048 1 1025 2

Table 1: Access time for Hashing Scheme B

the perfect hashing function which gives 1024 logical buckets (which corresponds
to 2048, physical buckets) gives the access time (1025) which is far from optimal,
thought the tuning time (of 3) was the minimum for this case. In fact the optimal
access time 1s provided by the hashing function with 32 or 64 logical buckets, but here
we compromise on the tuning time which is 18 or 10 times as much (respectively).
This is a consequence of the small number of physical buckets. Notice that the lower
level hashing functions have even smaller number of buckets but then the data miss
probability due to hitting the first time the right logical bucket is too high (if this
happens we have to wait for the next broadcasted version). Thus the higher the
number of logical buckets the lower the tuning time. For lower number of logical
buckets the access time is also high as the data miss is high.

Hence, perfect hashing function does not provide the minimal access time for the
broadcasted files

In fact the minimal access time is achieved by the hashing functions with signif-
icantly smaller number of logical buckets than tﬁe perfect hashing function. Notice
that the tuning time goes asymptotically down to 3 data accesses when the number
of logical buckets grows (the minimum is achieved for the perfect hashing function).

There are a number of possible other hashing schemes which can be used as well
for the broadcasted files, however in our view the hashing scheme presented above
provides us with the best access time/tuning time profile. For instance, grouping all
overflow buckets at the end of the file with each logical bucket having a pointer to its
overflow area leads to alternative hashing scheme. Its access time wif;l be comparable
to the first of our hashing schemes since the data miss behavior in this case will be
equivalent to the first of our schemes. The second scheme will provide better access
time due to the reduced data miss.

Notice that hashing is a flezible method of organizing broadcasted data. Indeed,
if we have more leverage in terms of the tuning time we can improve the access time
by simply reducing the number of logical buckets (thus by increasing the overflow).

However, the price to be paid in case we want to minimize the tuning time in
terms of the access time increase is rather high for hashing methods considered here
(perfect or near perfect hashing increases the size of the broadcast and consequently
the access time). A natural question is whether can improve the tuning time of
hashing method without paying a high access time penalty same level? One way of
achieving this goal is to provide a hybrid scheme mixing hashing and indexing: use
hashing to reach the right logical bucket and then use indexing within each logical
bucket to reach the right physical bucket. Statistically, there 1s some empty space
in the “last” physical, overflow bucket of each logical bucket so we could reuse this
extra space to store this local index. Unfortunate%y, the amount of this empty space
is a statistical variable and cannot be guaranteed - hence additional indexing would
almost surely increase the overall size of the broadcast and add to the access time.

In the next section we show a method which is not based on hashing but which can
maintain its good access time characteristics while significantly lowering the tuning
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The expected access time for the Hashing B can be calculated as follows. Let A’ be
the modified hashing function of h. By Displacement(h, K) we denote the difference
between the address of the physical bucket where K resides (Physical_bucket(k)) and
the designated bucket for k (h'(k))computed as:

Displacement(h, K) = Physical bucket(K) — h'(K)

The expected access time is computed by calculating for each key K in the file,

the access time “per key” and then averaging it out. The expected access time “per
key” is the combination of two factors:

o If the initial probe is in the part of the broadcast between the designated bucket
and the physical bucket of the key, then the data miss occurs despite of the fact
that the key is still ahead in the current broadcast. Thus, the unit has to wait

an extra revolution. This is calculated as”

(Displacement(h, K)/Data(h)) * (Data(h) + 1/2 * Displacement(h, K))

e If the initial probe is outside of the displacement area then:
(1 — (Displacement(h, K)/Data(h))) * (Data(h) + Displacement(h,K))/2

Since in this case the unit has to wait, on average between the
Displacement(h,K) and the file size.

The expected access time is computed as a sum of expected access times per key
divided by the total number of keys in the file (again assuming that all query requests
refer to the records in the file)

Figure 3 illustrates the source of the basic advantage of the hashing scheme B
over the hashing scheme A. Given the same file and the same key K (K=10), the
probability of the directory miss for the Hashing B is much smaller than that for
Hashing A. This probability is proportional to the value of Displacement(h, K) which
1s shown for both schemes and is demonstrated to be much smaller for the Hashing
B. In both the Hashing schemes, getting a good hashing function depends on the
distribution of the keys.

Table 1 illustrates how the expected access time and the tuning time depend on
the hashing function used. The table shows the average access time and the average
tuning time for the situation when there are 17 records per bucket (each record with
30 bytes of length). The size of “control part” is 24 bytes(per bucket). The size of the
data file 1s 1024 buckets hence the total number of data records is 17408. Notice that

"Data(h) is the size of beast for the given data file, for a given hash function h
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Figure 2: Comparison of Hashing A & Hashing B

Given the file, what is the hashing function minimizing the access time? For the
disk based files the best function is the perfect hashing function (the one with no
overflow). For the broadcasted files this is not the case. This critical difference comes
from the fact that the total number of broadcasted buckets has immediate impact
on the access time (the more one has to wait for the next version of the file). The
perfect hashing function does not minimize the number of physical buckets necessary
for the file becast. On the contrary, the more overflow buckets are used, the smaller
the total number of broadcasted buckets is. Indeed, the more overflow buckets the
file has, the lesser “half-empty” buckets are broadcasted and this consequently results
in better bucket utilization. The smaller the overflow area the lower is the tuning
time which reaches minimum for the perfect hashing function. This further shows the
basic differences between the file organization for broadcast and file organization for
the disk storage. Hashing based scheme for the broadcasted file displays the random
access behavior for the tuning time and the sequential access behavior for the access

time (when the size of the file matters). Access schemes for the disk based files are

only characterized by one parameter - the access time. Two parameters: tuning time
and the access time are needed for the broadcasted files and the behavior of the
access time for broadcasted files is drastically different from the access time for the
disk based ones. For example, the perfect hashing function is not always “perfect”
for the broadcasted files.

3.2 Hashing B

Hashing A can be further improved if we notice that the directory miss phenomenon
may be significantly reduced with a minor modification to the hashing function. As-
sume that d is the size of the minimum overflow chain. We can now modify the
hashing function h to

) MK iHh(K)=1
h(K){ (]E(K)) —1)(1 4+ min_over flow) + 1 if hEK; >1

and leave the rest of the scheme unchanged. In this way, the new hashing func-
tion h' takes under consideration the shift introduced by the overflow (taking under
consideration the value of the minimum overflow).

Figure 2 illustrates the improvement, which is because the probability of a data
miss is significantly reduced in case of Hashing B. If the sizes of the overflow chains
per logical bucket do not differ much, then the reduction is substantial . In the
extreme case, when all buckets have the same size of the overflow chain, k' turns

into the perfect hashing function for the file whose bucket size is increased by (1 + d)
times.

Sthe hashing function over here is a uniform hashing function
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We will now present two hashing protocols: Hashing A and Hashing B. Hashing
B will be an improvement of Hashing A. Hashing B will require maintaining some
additional information.

3.1 Hashing A

The access protocol for record with key K is as follows:
e Probe the current bucket, read the control data from it and calculate h(K).

o IF Current bucket # < h(K)
—THEN Go into doze mode and listen again to slot h(K)
—ELSE wait till the beginning of the next bcast, repeat protocol again

o At h(K), get the Shift, go into doze mode to wake up after Shift number of
buckets

e This time listen until either the record with key K is found (successful) or with

key L ( h(L) # h(K) ) is found (failure)

Figure 1(A)® illustrates a simple scenario of locating a key K = 15 in the file,
hashed Modulo 4. Assuming that the initial probe takes place on the second physical
bucket, the client reads the hashing function from the control part of the that bucket
and proceeds with the first probe to the bucket number of four which, in case there
i1s no overflow would contain the key K = 15, if it exists in the file. Since there is
overflow, the keys are shifted and the client reads the value of the shift (5) and goes
into the doze mode, and tunes in, in the final probe to the beginning of the “logical
bucket” number four (to conclude whether the key K =15 is present it must look at
all the overflow buckets of that bucket).

Figure 1(B) illustrates the cases when the client has to wait until the next broad-
cast in order to locate the given key K. This may occur either due to the data miss or
due to the directory miss. In the data miss scenario the client’s initial probe comes
after the bucket containing the key which he wants. In the directory miss case, the
client’s initial probe comes before the bucket containing his key but after the bucket
which contains a proper pointer (in this case the physical bucket number four). In
such a case there is no way for the client to find out that the key which he is looking
for 1s still to be broadcasted and the client has to wait until the next bcast.

°In all the figures, the buckets which are fully white denote the logical buckets (by a logical bucket
of k, we mean the h'(k) bucket) and the ones with bars denote the overflow buckets (of the preceding
white bucket). The numbers in the right hand side top corners of some buckets denote the shift
value in the control part of that bucket.



the bucket to which the pointer points to. The actual time of the broadcast for such a
bucket will be calculated by multiplying (of fset - 1) by the time necessary to broad-
cast a single bucket (which depends on the bit rate of the channel and the size of the
bucket).

A naive method of providing a directory would be to broadcast the index before
each broadcast of the file. This, however, leads to an unacceptably large average
access time (having to wait first for directory and then for the data). Hence, there
is a need to interleave the directory with the data more often to reduce the initial
waiting time. Then however, we increase the overall length of the broadcast.

We could also provide hashmg based schemes to improve the direct access prop-
erties and reduce the tuning time. However, even if the hashlng function is perfect
we may end up with many buckets which are “half empty” - increasing the size of the
broadcast andpconsequently the access time.

Notice that in the traditional I/O terms the tuning time roughly corresponds to
the disk access time in terms of number of disk blocks being accessed. However,
the tuning time is fixed per broadcasted bucket, while the access time to the disk
block varies depending on the position of the read/write head. The broadcast access
time, on the other hand, corresponds to space requirement of the data on the disk.
The larger, the file size the longer broadcast access time. Therefore, adding a data
directory (index or hash) improves the tuning time while it increases the access time®.

In general, different types of users may need different tradeoffs between tuning
time and access time. Some may value lower access time and may have more leverage
in terms of the tuning time (larger, laptop machines which may have more powerful
batteries), some others will prefer lower tuning time and will be ready to pay for it in
terms of the access time. Thus we need ﬂe:m'ble data organization methods capable
of accommodatmg different classes of users®. Distributed indexing method provided
in [3] is not flexible in this sense, since it does not benefit from a more lenient tuning
time requirements. In this paper we introduce two data organization methods which
can be used for different priorities in terms of tuning and access time. The hashing
method makes it possible to trade tuning time for %le access time by changing the
size of the overflow area. The flexible indexing method is also parameterized in such
a way that depending on the value of the parameter we may change the ratio of the
access to tuning time.

3 HASHING

Hashing based schemes do not require a separate directory to be broadcasted together
with the data. The hashing parameters are simply included in the data buckets. Each
bucket has two parts : the Data part and the Control part. The control part is the

“investment” which helps guide searches to minimize the access and listening times.

Control part for the first N buckets (B) includes:

— Hash Function: h

— Shift: The pointer (i.e. the actual bucket number) to a bucket which
contains keys K such that h(K) = address(B)

The shift function is necessary since most often the hashing function will not be
perfect. In such a case there will be collisions and the colliding records will be stored
immediately following the bucket assigned to them by the hashing function. This will
create an offset for other buckets (pushing the rest of the file “down”). The control
part of the rest of the buckets have an offset to the beginning of the next broadcast.

3Sounding really strange from the traditional file access point of view. It is obvious however,
since broadcasting index increases the total size of the broadcast

“Notice this whole discussion arises because we have two basic performance parameters instead
of just one as in the case of disk based files



communication channel and tuning time plays little role since the PCs are connected
to a continuous power supply.

In section 2, we discuss data organization methods suitable for broadcasting. In
section 3 and in section 4 we discuss two indexing schemes for organizing and broad-
casting data. In section 3 we discuss the hashing scheme and in section 4 flezible
indering is discussed; we also compare the performance of the two schemes in this
section. In Section 5 we present conclusions and discuss future work.

2 Data Organization Basics of Broadcasting

Consider a file consisting of a number of records which are identified by keys. The file
is not static and can be updated frequently so its size can grow and shrink at any time.
Suppose that the server broadcasts this file periodically to a number of clients. The
clients will only receive the broadcasted data and are interested in fetching individual
records (identified by a key) from the file. Therefore fetching individual records from
the broadcasted file will be performed without transmitting an uplink request but by
filtering the incoming broadcasting stream for the given gata item. Hence, queries
will b}f answered only by listening to the channel. Data filtering i1s done by direct key
matchin

Exa;gnple Consider the stock ticker tape broadcasted continuously. Each “edition”
of the broadcast may include different groups of stocks; those which are currently
the move”. Stocks are identified by their symbols and the clients may be mterested in
monitoring pre-specified stocks or just in obtaining an isolated stock quotation.

We would like to organize the broadcasted data in such a way that the following
two parameters are minimized:

o Access Time: Time elapsed from the moment a client issues a query to the
moment the answer is received by the client.

o Tuning Time: Amount of time spent by the client, listening to the channel.

Having these two parameters makes the data organization on the broadcast a
problem which is different from the organization of the disk based files, where only
one parameter - access time is taken into consideration. Here, we will have to optimize
with respect to two parameters which work against each other.

If data is broadcasted without any form of directory, then the client in order to
filter a data item, will have to tune to the channel on an average half of the time
it takes to for the broadcast. As we will see, this is unacceptable as it requires the
client’s CPU to be active for a long time, consummg scarce battery TeSOUrces. We
would rather provide a selective tuning enabhng the client to “wake up” only when
data of interest is being broadcasted. We assume that the communication channel
is the source of all information to the client including data as well as directories.
We assume a single channel since multiple channels are really equivalent to a single
channel with capacity (bit rate/bandwidth) equivalent to the combined capacity of
the corresponding channels.

Selective tuning will require that the server broadcasts directory together with the
data. The directory may be eventually cached by the client but new clients who have
no prior knowledge of the broadcasted data organization will have to access it from
the air. Besides, we will assume that the file will be changed by the server and can
grow and shrink any time between successive broadcasts. The smallest logical unit
of the broadcast will be called a bucket. The size of the bucket is a multiple of the
size of a packet. Both access time and the tuning time will be measured in terms of
number of buckets.

Broadcasts will contain successive versions of the file which will constitute (to-

gether with the directory) successive beasts 2. Each bucket of the current beast will

have a number called the address of the bucket - the sequence number of this bucket
within the current bcast. Pointers to the specific buckets within the bcast will be
provided by specifying the of fset between the bucket which holds the pointer and

2a version of the broadcasting of the file along with any index or other control information



Querying 1s viewed as filtering of the incoming data stream according to the
user specified “filter”.

o Interactive/On-Demand: The client requests a piece of data on the uplink chan-
nel and the server responds by sending this piece of data to the client.

In practice, a mixture of the above two modes will be used. The most frequently
demanded items (weather, stock, traffic) will be broadcasted. Since the cost of broad-
cast does not depend on the number of users who “listen” this method will scale up
with no penalty when the number of requests grows. For example, if the weather
information is broadcasted every minute, then it doesn’t matter whether 10 or 10000
users are listening, the average access time will be 30 seconds. This would not be the
case if the weather was provided on demand. The “on-demand” mode will have to be
used for the less often requested items. Broadcasting them periodically would be a
waste of bandwidth. However, even in the pure “on-demand” mode- it makes sense to
batch similar requests together (multicast as opposed to unicast) and send the answer
once rather than cater individually to each request. Periodic data broadcasting is the
main topic of this paper.

MOTIVATION

Power conservation is a key issue for small palmtop units which typically run on
small AA batteries [2]. The lifetime of a battery is expected to increase only 20%
over the next 10 years [7]. A typical AA cell is rated to give 800 mA-Hr at 1.2 V (.96
W-Hr). The constraint of limited available energy is expected to drive all solutions to
mobile computing on palmtops. Assuming that the power source of the palmtop to
be 10 AA cells with a CD-ROM and a display, the constant power dissipation in a CD-
ROM (for disk spinning ) will be about 1 W. The power dissipation for display will be
around 2.5 W. Thus the assumed power source will last for 2.7 Hrs. Thus to increase
the longevity of the batteries, the CD-ROM and the display may have to be powered
off most of the time. Apart from CD-ROM and display, the CPU and the memory of
the palmtops also consume power. There is a growing pressure on hardware vendors
to come up with the energy efficient processors and memories. The Hobbit chip from
AT&T is such a processor which consumes only 250 mW in the full operation mode.
The power in “doze” mode is only 50 pW (the ratio of power consumption in normal
operating mode to doze mode is 5000). When the palmtop is listening to the channel,
the CPU must be in active mode for examining data packets (finding, if they match
the predefined data). This is a waste of energy since on an average only a very few
data packets are of interest to the particular unit. It is definitely beneficial if the
palmtop can slip into doze mode most of the time and “wake up” only when the data
of interest is expected to arrive. This requires the ability of selective tuning which
1s discussed in detail in this paper. In our model we explore filtering of data from
the data broadcast using selective tuning features. The mobile clients will remain in
a doze mode most of the time and tune in periodically to get information which is
broadcasted on the communication channel.

Wireless data broadcasting can be viewed as storage on the air - an extension of
the client’s memory. Because of its periodic nature, latency of broadcast (the period
between two successive broadcasts) will serve as the access time of such a memory
and will not depend on the number of users accessing it. Such “public” storage will
actually outperform any traditional storage media, for a sufficiently large number of
users (this is shown in [4]).

Broadcasting over a fast, fixed network has been investigated as an information
dissemination mechanism in the past. In the Datacycle project [6] at Bellcore the
database circulates on a high bandwidth network (140 Mb/s) and individual users
query this data by filtering the relevant information using a special massively parallel
transceiver capable of filtering up to 200 million predicates a second. The main
difference between the broadcasting considered in this paper and the broadcastin
model used in the Datacycle architecture is that battery life was of no concern at al
in the Datacycle architecture and this precisely our concern.

Gifford in [5] describes a system where newspapers are broadcasted over the FM
band and down loaded by a PC equipped with radio receivers. There i1s a single
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Abstract

Organizing massive amount of information on communication channels is a
new challenge to the data management and telecommunication communities.
In this paper, we consider wireless data broadcasting as a way of disseminating
information to a massive number of battery powered palmtops. We show that
different physical requirements of the wireless digital medium make the problem
of organizing wireless broadcast data different from data organization on the
disk. We demonstrate that providing index or hashing based access to the
data transmitted over wireless is very important for extending battery life and
can result in very significant improvement in battery utilization. We describe
two methods (Hashing and Flexible Indexing) for organizing and accessing
broadcast data in such a way that two basic parameters: tuning time, which
affects battery life, and access time (waiting time for data) are minimized.

1 Introduction

In this paper, we consider wireless data broadcasting as a way of disseminating in-
formation to a massive number of battery powered palmtops. In this scenario the
clients, equipped with palmtops will filter the incoming stream of information in or-
der to match the pre-specified requests. Filtering will not involve transmitting any
requests to the server - it will be a receive only activity targeted at monitoring and
ad hoc querying of the data stream.

We show that different physical requirements of the wireless digital medium make
the problem of organizing wireless broadcast data different from data organization
on the disk. We gemonstrate that providing index or hashing based access to the
data transmitted over wireless is very important from the battery life point of view
and can result in significant improvement in battery utilization, possibly of orders
of magnitude. New technology can utilize and buﬂyd upon some well known tech-
niques (file organization and access). These traditional solutions cannot be applied
directly though and need substantial modification because of the different physical
limitations. New solutions require merging interdisciplinary expertise ranging from
new communication protocols to file system and database design.

This paper and [3] provide different organization and access methods for the wire-
less broadcast data. In [3] we concentrate on indexing methods, with special emphasis
on the access time, while in this paper we analyze a hashmg scheme and an index
based scheme with special emphasis on minimizing the tuning time. The schemes
¥resented in this paper are flexible in the sense that, we can sacrifice access time
or a gain in tunmﬁ time and vice versa. We will concentrate here on the wireless
communication medium, although most of the presented work will also apply to the
fixed network.

We will distinguish between two fundamental ways of providing users with infor-
mation:

o Data_Broadcasting: Periodic broadcasting of data on the channel. Accessmg
broadcasted data does not require uplink transmission and is “listen only.’
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