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Abstract

In the epidemic model an update is initiated on

a single site, and is propagated to other sites in a

lazy manner. When combined with version vectors

and event logs, this propagation mechanism deliv-

ers updates in causal order despite communication

failures. We integrate quorums into the epidemic

model to processes transactions on replicated data.

Causal order helps establish the global serialization

order on transactions. Our approach enforces seri-

alizability by aborting transactions that may cause

inconsistency. In the absence of con
ict a transac-

tion can commit as soon as it is known to a quo-

rum of sites. In the presence of con
ict, sites vote

and a transaction can commit as soon as a quorum

of sites vote for it. We present a detailed simula-

tion study of a distributed replicated database and

demonstrate the performance improvements.

1 Introduction

Asynchronous replication has been deployed suc-

cessfully for maintaining control information in

distributed systems and computer networks. For

example, name servers, yellow pages, and server

directories are maintained redundantly on multi-

ple sites and updates are incorporated in a lazy
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manner [12, 33] through gossip messages [21, 17],

epidemic propagation, and anti-entropy [11]. In

this paper we use the epidemic communication

model as the basis for a fault-tolerant algorithm

that supports transaction processing in replicated

databases.

In an epidemic system, sites perform update op-

erations and then communicate in a lazy manner

to propagate the e�ects of those operations. Sites

communicate in a way that maintains the causal

order of updates even in the face of lost messages.

Furthermore, to learn of a particular update, a site

does not have to receive a message directly from

the site that performed that update. Communi-

cation can pass through one or more intermediate

sites. Therefore, the epidemic model provides an

environment that is tolerant of communication fail-

ures and does not require that all sites be available

at the same time as do traditional eager replica-

tion techniques. One can view an epidemic sys-

tem as a set of computers that are normally dis-

connected except for short periods of time when

one computer connects to another to send an epi-

demic message. When viewed in this manner the

epidemic model seems like a natural paradigm to

support users in disconnected and mobile environ-

ments. These environments su�er from constant

re-partitioning, and it may be that no partition

ever contains a quorum of sites. By using the epi-

demic model, updates performed on a single site

can eventually reach all other sites in the system.

Earlier protocols based on epidemic communica-
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tion considered single operation applications such

as replicated dictionaries. Bayou [26] is an exam-

ple of a system that supports weakly consistent

replicated servers. It accommodates a variety of

update policies and operates in a variety of net-

work topologies. Ladin et al. [19] demonstrate the

usefulness of lazy propagation protocols to main-

tain highly available services in a distributed sys-

tem. Adya and Liskov [1] successfully employ the

notion of lazy propagation for optimistic execu-

tion of transactions based on client caches. Other

systems such as Coda [29] and Ficus [16] were de-

veloped for weakly consistent systems. However,

these systems do not support transactional seman-

tics at the epidemic propagation level, rather, sin-

gle operation semantics. Several database proto-

cols [3, 2] employ epidemic propagation for main-

taining replicated databases. However, in these

systems the epidemic model is used only for com-

municating updates, and not for synchronizing up-

dates. Some commercial database systems use

lazy propagation, for example, Oracle 7 [25] uses

a 2-tier replication scheme, however, inconsisten-

cies may arise and a variety of reconciliation rules

are provided to merge con
icting updates. Gray

et al. [15] argue that synchronous approaches for

managing replicated data do not scale well. They

further state that lazy approaches should be ex-

plored for managing replicated data and propose a

primary/secondary lazy replication scheme. More

recently, lazy propagation protocols [6, 9] have

been introduced for database replication. Al-

though these protocols guarantee one-copy serial-

izability, they impose a structure on the sites re-

stricting how and where transactions can perform

updates.

We have recently adapted the epidemic ap-

proach for transaction based systems by develop-

ing a family of algorithms for managing replicated

databases using the epidemic model [4]. In these

algorithms, updates can occur at any site without

any restriction to a designated primary site and

without imposing a structure on the sites. Sites

lazily exchange log records recording the opera-

tions of each transaction, and then apply those

transactions asynchronously. By comparing log

records, sites can determine which transactions

would create serializability con
icts and must be

aborted thus preserving one-copy serializability.

Sites rely on causal message delivery to determine

when transactions will never be involved in a con-


ict and thus may commit.

Our approach in this paper is to combine the

quorum approach [14] within the epidemic frame-

work to achieve balanced treatment for both

queries and updates while maintaining global se-

rializability. The quorum approach is also more

tolerant of site and communication failures. The

paper is organized as follows. In the next sec-

tion we present the epidemic model of replication.

In Section 3 we begin with an overview of the

epidemic read-one/write-all protocol and then de-

velop the epidemic quorum algorithm. In Section 4

we present the results of a performance evaluation

using a detailed simulation. Section 5 concludes

the paper.

2 The Epidemic Model of Repli-

cation

We consider a distributed system consisting of n

sites labeled S1; S2; :::; Sn. We assume a fail-stop

model of site failures and an unreliable communi-

cations medium. Messages can arrive in any order,

take an unbounded amount of time to arrive, or

may be lost entirely. However, messages will not

arrive corrupted. An event model [20] is used to

describe the system execution, hE;!i, where E is

a set of operations and ! is the happened-before

relation [20] which is a partial order on all oper-

ations in E. The happened-before relation is the

transitive closure of the following two conditions:

� Local Ordering Condition: Events occurring at

the same site are totally ordered.

� Global Ordering Condition: Let e be a send

event and f be the corresponding receive

event then e! f .
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Lamport uses the happened-before relation to de-

�ne a clock with the following property:

8e; f 2 E if e! f then T ime(e) < Time(f)

We will refer to this clock as Lamport's clock.

Application speci�c operations are executed lo-

cally and they are communicated to the other sites

by using the epidemic model of communication

which is that information is spread from site to

site when two sites communicate and share infor-

mation. The communication model is such that

it preserves the potential causality among oper-

ations captured by the happened-before relation.

Minimally, if two operations are causally ordered

their e�ects should be applied in that order at

all sites. Epidemic algorithms generally are im-

plemented using vector clocks [23] to ensure this

property. Vector clocks are an extension of Lam-

port clocks [20] and ensure the following property:

8e; f 2 E e! f i� T ime(e) < Time(f):

Note that if T ime(e) and T ime(f) are incompara-

ble, denoted T ime(e) <> Time(f), then events e

and f are concurrent.

In the log based approach each site maintains

a log of application speci�c operations. Sites ex-

change their respective logs to keep each other in-

formed about the operations that have occurred

in the system. This information exchange ensures

that eventually all sites incorporate all the opera-

tions that have occurred in the system. Due to the

unreliable nature of the communication medium, a

record must be included in every message until the

sender knows that the recipient of the message has

received that record [33].

Wuu and Bernstein [33] combine logs and vector

clocks to solve the distributed dictionary problem

e�ciently. Each site Si keeps a two-dimensional

time-table Ti, which corresponds to Si's most re-

cent knowledge of the vector clocks at all sites.

Each time-table ensures the following time-table

property: if Ti[k; j] = v then Si knows that Sk has

received the records of all events at Sj up to time v

(which is the value of Sj's local clock). To reduce

communication it is desirable for a site to know

which sites have received the record of a particu-

lar event. To this end Wuu and Bernstein de�ne

the HasRecvd predicate as:

HasRecvd(Ti; t; Sk) � Ti[k; Site(t)] � T ime(t);

where t is an event, Site(t) is the site at which t

occurred, and T ime(t) is the local time at Site(t)

when t occurred. When HasRecvd(Ti; t; Sk) is

true Si knows that Sk has received a record of event

t. When a site Si performs an update operation it

places an event record in the log recording that op-

eration. When Si sends a message to Sk it includes

all records t such that HasRecvd(Ti; t; Sk) is false,

and it also includes its time-table Ti. When Si re-

ceives a message from Sk it applies the updates of

all received log records and updates its time-table

in an atomic step to re
ect the new information re-

ceived from Sk. When a site receives a log record it

knows that the log records of all causally preceding

events either were received in previous messages, or

are included in the same message. This is referred

to as the log property which is stated as follows

with respect to a local copy of the log Li at site

Si:

8e; f 2 E if (e! f) ^ (f 2 Li) then e 2 Li:

The correctness of the algorithm can be established

by using both the log and the time-table proper-

ties. The use of vector timestamps and time-tables

can limit scalability. These issues have been ad-

dressed frequently by the distributed systems com-

munity. Rabinovich et al. [28] propose a more scal-

able mechinism than vector timestamps. A variant

of the log and time-table algorithm called the two-

phase gossip protocol [17] reduces the size of the

two-dimensional time-table from n
2 to 2 � n.

3 Epidemic Transactional Repli-

cation

3.1 Epidemic ROWA

In [4] we extended the epidemic model to sup-

port the execution of transactions in a fully repli-

cated database. To enforce atomicity the algo-

rithm treats each transaction as a single event
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with a single log record rather than having one

event per read or write operation. Each trans-

action runs under the local concurrency control

mechanism on a single site referred to as its ini-

tiating site. When a read-only transaction has

performed all of its reads, it can be committed

locally. When an update transaction completes

all of its operations at the initiating site, it re-

quests a pre-commit. When a transaction t, pre-

commits on its initiating site, Si, the local clock

is incremented and a pre-commit record contain-

ing the readset (RS(t)), writeset (WS(t)), the val-

ues written, and a pre-commit timestamp (TS(t))

from the initiating site's vector clock is written to

the local log and the read-locks held by the trans-

action are released. Then sites communicate log

records to detect global con
icts and propagate

values written by transactions. When a site Si

contacts site Sk to initiate an epidemic transfer, Si

determines which of its log records have not been

received by Sk. All transaction records t such that

HasRecvd(Ti; t; Sk) is false are sent in a message

along with Si's time table Ti.

When a site receives a log record it initiates

a transaction to apply the results of the original

transaction to that site. The original instance of

a transaction running on its initiating site is re-

ferred to as a local transaction. The transaction

instances that run on other sites to propagate the

local transaction's updates are referred to as re-

mote transactions.
To enforce one-copy serializability the algorithm

aborts all concurrent transactions with con
ict-
ing operations, hereafter called con
icting trans-
actions. A site can detect if two transactions are
con
icting because their log records contain their
read sets, write sets and version vectors. That is,
the condition for con
ict is:

Conflicting(t; t0) �

2
666666664

TS(t) <> TS(t0)V
0
BBBB@

RS(t) \WS(t0) 6= ;W
WS(t) \WS(t0) 6= ;W
WS(t) \RS(t0) 6= ;

1
CCCCA

3
777777775

If two con
icting transactions attempt to pre-

commit on the same site the second one to arrive

will �nd the �rst, and they will both abort. Thus,

a transaction t cannot commit until it knows that

there are no con
icting transactions in the system

which would cause it to abort.

When Sk receives the message, if the transac-

tion t whose record was sent from Si to Sk is not

aborted due to encountering a con
icting transac-

tion already in the log, it is executed at Sk by ob-

taining write locks and incorporating the updates

to the local copy of the database. If there are lo-

cal transactions that have not yet pre-committed

that hold con
icting locks, they are aborted and t

is granted the locks.

A transaction is committed and the remainder

of its locks released when it is not aborted and

it is known that all sites have knowledge of that

transaction. That is,

Committable(t; Si) �

2
64
8k Ti[k; Site(t)] � TS(t)V

:Aborted(t; Si)

3
75

3.2 Epidemic Quorums

The read-one/write-all epidemic algorithm just de-

scribed is ine�cient in that it aborts all con
ict-

ing transactions. One-copy serializability only re-

quires that for any set of con
icting transactions

at most one commits. To increase system through-

put it would be desirable to commit one trans-

action from each set of con
icting transactions.

However, to take advantage of this optimization

all sites must agree on which transaction to com-

mit. This agreement problem can be solved in an

e�cient way through the use of quorums [14]. Quo-

rums are sets of sites such that the intersection of

any two quorums is non-empty. For example, a

majority quorum [14] is any set that contains a

majority of sites.

We propose to use voting and quorums to re-

solve commit decisions. This was �rst proposed

by Steinke [31] and is similar to the way they are

used by Keleher [18] except our protocol ensures

serializability among multi-operation transactions,

whereas Keleher treats only single-operation re-

quests. In the epidemic-quorum algorithm we as-
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sume complete replication. Transactions are seri-

alized in causal order, and the algorithm guaran-

tees that for each pair of con
icting transactions at

most one commits. This is accomplished by hav-

ing each site vote yes or no on each transaction. A

site never votes yes for two con
icting transactions.

When a site votes, it places a vote record in its

log indicating the transaction, the site voting, and

whether the vote is yes or no. These vote records

are piggy-backed on the usual epidemic messages

so that all sites eventually receive a vote record

from all sites for each transaction. When a site

receives a quorum of yes votes for a transaction it

commits the transaction. When a site knows that

a transaction will never receive a quorum of yes

votes it aborts the transaction.

How can a site know that a transaction will

never receive a quorum of yes votes? Obviously, if

one transaction commits then all con
icting trans-

actions must abort, however there may be a situ-

ation where multiple con
icting transactions hold

votes such that none will ever commit. For exam-

ple, in the majority quorum system, three transac-

tions could each hold one third of the votes. It is

important that this situation not lead to inde�nite

blocking. To cope with this we introduce the idea

of an anti-quorum as a set of sites without which

a transaction cannot acquire a quorum. More for-

mally, an anti-quorum is any set of sites that in-

tersects with all quorums. Any quorum is an anti-

quorum, but an anti-quorum is not necessarily a

quorum because we do not require anti-quorums

to intersect with each other.

Based on this de�nition a site Si can abort trans-

action t as soon as it receives no votes from an

anti-quorum of sites. At this point it is guaran-

teed that no site will ever commit t. Using these

three conditions, commit on a quorum of yes votes,

abort when a con
icting transaction commits, and

abort on an anti-quorum of no votes, Si will al-

ways be able to either commit or abort t by the

time it receives votes on t from all sites. If the set

of yes votes constitutes a quorum then t is commit-

ted. Otherwise, by de�nition, the set of no votes

constitutes an anti-quorum and t is aborted.

When Si has received t, but has not received

enough information to commit or abort t, t is said

to be uncertain at Si. This poses the problem of

what to do with uncertain con
icting transactions.

To preserve causality, when t arrives at Si it ac-

quires write locks and applies its writes before the

next received transaction is processed. However, a

con
icting transaction may have written to a com-

mon data item x, and if they are both uncertain

neither can be aborted. It seems that they must

both hold write locks on x. This situation is not

incorrect. The important point is that neither of

these transactions will initiate any new operations

on x, and no other transaction can access x until its

value is committed, and at most one of the trans-

actions will commit. If t commits then all con
ict-

ing transactions must abort, and t can write the

correct value of x before releasing the lock.

Lock
Requested

*2 *2

Lock Held

R W IW

IW

W

R

1*

Figure 1: Lock con
ict table for intention to write

locks.

To solve this problem we adapt an idea from

multi-granularity locking called intention to write

locks [8]. The con
ict table for intention to write

locks is given in Figure 1. Intention to write locks

do not con
ict with other intention to write locks,

but do con
ict with read and write locks. When

the log record of a transaction arrives at a site it

initiates a remote transaction. This remote trans-

action acquires intention to write locks on all data

items written by the original transaction and pre-

commits. When a local transaction pre-commits

it no longer needs access to local data items, and

it might become involved in this kind of con
ict.

So, the local transaction releases all of its read

locks, converts all of its write locks to intention

to write locks, and behaves like a remote transac-
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tion. This prevents local transactions that have

not pre-committed from accessing the data item,

but allows con
icting, uncertain transactions to

pre-commit and simultaneously reserve access to

the data item. If two transactions hold intention

to write locks on a data item and one of them

aborts then the data item is still inaccessible until

the fate of the second transaction is determined.

When a transaction commits it converts its inten-

tion to write locks into write locks, applies its up-

dates to the data items, and releases the locks.

1

1

1

2

1 2

(x)

(x)

(x);Commit t (x)

(x) (x)

1

W

W

W W

W

3

2

1S

S

S

W

?

Figure 2: Situation �1.

In this algorithm intention to write locks create

two special situations. The �rst is referred to as

�1 in the lock con
ict table, and is demonstrated

in Figure 2. Transaction t1 writes data item x

on site S1 and pre commits (W1(x).) Then the

log record for t1 is transmitted to site S2 where

a remote transaction representing t1 acquires an

intention to write lock on x and pre-commits. Now

t1 is known to two sites (a majority quorum) so

it converts its intention to write lock to a write

lock, writes x, and commits. Later, t2 writes x

on site S2 and pre-commits (W2(x).) Now, when

the records of t1 and t2 are transmitted to site S3
they will both acquire intention to write locks on

x and pre-commit. When they attempt to commit

they will have to convert their intention to write

locks to write locks to write their values to x, but

this would be prevented by the other transaction's

intention to write lock.

The solution to this is to force transactions to

commit in causal order even if they are received in

the same message. This requirement needs to be

enforced anyway to make serialization order based

on causal order, and it can be enforced if the order

of transactions in a message preserves the order

of transactions in the log. This is trivial because

messages are generated from the log. In this case

if a remote transaction t tries to convert its inten-

tion to write lock on a data item x to a write lock,

and another remote transaction t0 holds a con
ict-

ing intention to write lock on x then t ! t
0. If

t
0 ! t then t

0 cannot be uncertain because its re-

mote transaction on t's initiating site must have

committed or aborted before t's local transaction

could have acquired a write lock on x. Therefore,

the remote transaction for t0 must be committed

or aborted on this site and cannot be holding an

intention to write lock. If t and t
0 are concurrent,

then they must be con
icting because they wrote

the same data item. Since t is committing, t0 must

abort. This only leaves the case where t ! t
0. In

this case we want t to write before t0 so we should

allow t to acquire a write lock and commit regard-

less of con
icting intention to write locks.

1

2

1

2

1
(x);Pre-commit t

(x) ?

(x)

S

S

W

W

1

W

Figure 3: Situation �2.

The second situation is referred to as �2 in the

lock con
ict table, and is demonstrated in Fig-

ure 3. Transaction t1 writes x on S1 and pre-

commits. Concurrently, Transaction t2 writes x

on S2, but a message containing the log record of

t1 arrives before t2 pre-commits. Now, t1 needs to

acquire an intention to write lock on x at S2, but

t2 holds a con
icting write lock. If t1 were to wait

for the lock then t2 would pre-commit and convert

its write lock to an intention to write lock, and t1

and t2 would be concurrent and thus con
icting.

In this case it makes sense to abort t2 right away

and give the intention to write lock to t1. If the

transactions become con
icting one would have to

be aborted anyway, and at this point t2 has less

work invested so far because it hasn't been trans-

mitted to another site. This situation also applies

to read locks held by local transactions.

Due to these two rules remote transactions never
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wait for a lock. This has the desirable e�ect of

eliminating distributed deadlocks. Local transac-

tions can wait for locks held by remote transac-

tions, but these remote transactions will never wait

for locks so there can be no deadlock cycle involv-

ing remote transactions. Local and remote trans-

actions can wait for other sites to vote on asso-

ciated remote transactions, but at this time the

waiting transaction must be pre-committed and

thus not be waiting for any locks. Deadlock cy-

cles can only involve local transactions waiting for

locks from other local transactions at the same site.

These deadlocks can be detected without commu-

nication.

3.3 Implementing the Epidemic Quo-

rum Algorithm

Figure 4 illustrates the data structure used to rep-

resent transaction records. The elements of the

record are the transaction's read set (RS), write

set (WS), values written (values), the transac-

tion's initiating site (site), and the version vector

of the initiating site at the time its local trans-

action pre-commits (time). Transaction:time

is a vector timestamp to distinguish concur-

rent transactions from causally related ones, but

the scalar value of the initiating site's clock is

used to uniquely identify the transaction for the

HasRecvd predicate and vote records. This value

is stored in transaction:time[transaction:site].

type Transaction=

record

RS : setof DataObjectType;

WS : setof DataObjectType;

values : setof DataType;

site : SiteId;

time : array [1::n] of T imeType;

end

Figure 4: A Transaction Record

Figure 5 illustrates the data structure used to

represent vote records. A vote record uniquely

identi�es the transaction being voted on by its

initiating site (Tsite), and its scalar timestamp

(T time). It also contains the voting site (site),

the voting site's local time when the vote record

was created (time), and indicates whether the vote

is yes or no (V oteY es). If V oteY es is true then the

vote is a yes vote. If it is false then it is a no vote.

Concurrency among vote records is unimportant

so the time �eld of a vote record is a scalar value

used only in the HasRecvd predicate and for log

management to determine whether a site needs to

send the vote record to another site. Vote records

are communicated in the same epidemic messages

as transaction records and sites use a single time

table for this purpose, but preserving causality be-

tween vote records is not necessary.

type V ote =

record

Tsite : SiteId;

T time : T imeType;

site : SiteId;

time : T imeType;

V oteY es: F lag;

end

Figure 5: A Vote Record

The algorithm for processing a transaction at its

initiating site is given in Figure 6. Each site keeps a

scalar local clock (clocki), a two-dimensional time-

table (Ti), a log of transaction records (Li), and a

log of vote records (Vi). Our algorithm has sepa-

rate logs for transaction and vote records for ease

of explanation, however they do not necessarily

need to be kept in separate data structures. A

transaction starts execution at its initiating site

by acquiring locks, performing computation, and

writing values to the database. Then, before the

transaction pre-commits it puts a record in the

transaction log describing the transaction, and a

record in the vote log indicating that the initiat-

ing site has voted yes for this transaction. The

site's local time is updated for each record, and

the transaction acquires a mutex to prevent con-
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icting access to the clock, time-table, and logs.

Finally, the transaction releases its read locks, and

converts its write locks to intention to write locks.

After this point the transaction is processed iden-

tically at all sites as a remote transaction for the

purpose of detecting con
ict and committing the

transaction. This is necessary in case a con
ict-

ing transaction arrives, and both transactions are

required to simultaneously hold intention to write

locks.

Persistent data:

clocki: T imeType INITIALLY 0;
Ti : array [1::n; 1::n] of T imeType INITIALLY 0;
Li : setof Transaction INITIALLY ;;
Vi : setof V ote INITIALLY ;;

Transaction(RS, WS, f(x)):

begin

GetReadLocks(RS);
values := f(read (RS));
GetWriteLocks(WS);
WriteV alues(WS; values);
begin mutex

Ti[i; i] := + + clocki;
t := hRS;WS; values; i; Ti[i; �]i ;
Li := Li [ ftg;
Ti[i; i] := + + clocki;
Vi := Vi [ fht:site; t:time[t:site]; i; Ti[i; i]; trueig;
Pre-Commit;

end mutex

ReleaseReadLocks(RS);
ConvertToIntentionToWriteLocks(WS);

end;

Figure 6: The Epidemic Algorithm for Executing

Transactions at Si

The algorithm for sending log records, and

processing received log records is given in Fig-

ures 7 and 8. The send procedure acquires a mu-

tex to prevent a local transaction from accessing

the time-table or logs, and then sends all trans-

action and vote records for which the HasRecvd

predicate is false. Transactions in the local log

are placed in causal order, and the send procedure

preserves this order so that the receiving site can

process the message's records in that order and

be guaranteed that it is processing transactions in

causal order. Vote records can be sent in any order.

Vote records are processed after all transactions in

an epidemic message, and the ordering of two vote

records is irrelevant.

Send(m) to Sk :
begin

begin mutex

SP := ftjt 2 Li ^ :HasRecvd(Ti; t; Sk)g;
V P := fvjv 2 Vi ^ :HasRecvd(Ti; v; Sk)g;
send hSP; V P; Tii to Sk;

end mutex

end;

Figure 7: Epidemic propagation of transaction

records from Si to Sk

The receive procedure has two steps. First, it

processes transaction records one at a time, and

then it processes all vote records and checks for

transaction commit or abort. The receive proce-

dure starts at the beginning of the set of trans-

action records and looks for the �rst record that

it has not already received. When it �nds such a

record it acquires the mutex to prevent interfer-

ence from local transactions. The reason for this

is more complicated than just preventing simul-

taneous access to the log or time table. Consider

the following situation: The receive procedure pro-

cessing transaction t checks the log and �nds no

con
icting transactions so it decides to vote for t.

Then a con
icting local transaction l acquires locks

and pre-commits. When l pre-commits, all trans-

actions in the log are causally preceding so there

can be no con
icting transaction and the site votes

for l. However, t is not yet in the log, and it is con-


icting, but the receive procedure will not check

the log again so it will vote for both t and l. To

prevent this from happening the receive procedure

prevents local transactions from pre-committing

between the time that t checks the log and the

time that it inserts its log record and updates the

time table.

Once t has the mutex it checks the log for

8



Receive(m) from Sk :

begin

let m = hSPk; V Pk; Tki ;
foreach ftjt 2 SPk ^ :HasRecvd(Ti; t; Si)g do

begin mutex

if f9t0 2 Lij(Conflicting(t; t
0) = true)^

(9v0 2 Vijv
0 = V oteFor(t0; i) ^ v

0
:V oteY es = true)g then

Ti[i; i] := ++ clocki;

Vi := Vi [ fht:site; t:time[t:site]; i; Ti[i; i]; falseig;
else

Ti[i; i] := ++ clocki;

Vi := Vi [ fht:site; t:time[t:site]; i; Ti[i; i]; trueig;
endif

GetIntentionToWriteLocks(t:WS);

Ti[i; t:site] := t:time[t:site];

Li := Li [ ftg;
Pre-Commit(t);

end mutex

endfor

begin mutex

8K 6= i; J Ti[K;J ] := max(Ti[K;J ]; Tk [K;J ]);

Vi := Vi [ V Pk;

foreach t 2 Li do

if Abortable(t; Si) then

ReleaseIntentionToWriteLocks(t:WS);

Abort(t);

elseif Committable(t; Si) then

ConvertToWriteLocks(t:WS);

WriteV alues(t:WS; t:values);

ReleaseWriteLocks(t:WS);

Commit(t);

endif

endfor

Li := ftjt 2 Li ^ 9jj:HasRecvd(Ti; t; Sj)g;
Vi := fvjv 2 Vi ^ 9jj:HasRecvd(Ti; v; Sj)g;

end mutex

end;

Figure 8: Epidemic propagation of transaction records from other nodes to Si
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con
icting transactions. In Figure 8, v =

V oteFor(t; i) if site i's vote for transaction t is

recorded in vote record v. If the site has already

voted yes on a con
icting transaction then the site

votes no on t. Otherwise, the site votes yes on

t. Then the site acquires intention to write locks

on all data items in its write set. Because of the

special cases in the intention to write lock con-


ict table this operation will always succeed with-

out waiting. Transaction t then updates the time-

table and log and pre-commits. Then the receive

procedure releases the mutex before it handles the

next transaction. Any non-con
icting local trans-

actions waiting for the mutex can now pre-commit.

In terms of causality this means messages are not

received all at once. Messages are received one

transaction at a time, and local transactions can

execute in between two transactions from the same

message. This still preserves correctness because

transactions in a message are received in causal

order, and the log and time table are updated in-

crementally for each transaction.

When all transactions in an incoming epidemic

message have been processed the receive procedure

updates the other rows of its time-table to update

its knowledge of other sites' version vectors. Up-

dating this information after processing transac-

tions is correct because it is merely a lower bound

on other sites' version vectors. This is not true for

its own row which is used to create version vectors

for local transactions. Those values are updated

incrementally as each transaction was processed.

Then the receive procedure adds all vote records

in the epidemic message to its vote log, and checks

each uncertain transaction to see if it can be com-

mitted or aborted. Testing for commit or abort of

transactions must be done in causal order which is

possible because the log preserves the causal order

on transactions.

Finally, the site deletes all transaction and vote

records that it knows are known to all sites. This

is allowed because if Si knows that Sj has received

transaction t then Si must have received Sj 's vote

on t. So when Si knows that all sites have received

t then Si must have all vote records for t and must

have committed or aborted t so the record for t is

not needed locally. Likewise, t causally precedes all

votes on t so if Si knows that all sites have received

a vote on t it knows all sites have received t and Si

must have committed or aborted t, and the vote

record is no longer needed locally. When Si knows

that a record, either transaction or vote, is known

to all sites that record will never be included in

any message and thus it will not be needed for any

purpose and can be deleted.

3.4 Read-Only Transactions

There has been a lot of work on increasing con-

currency and fault tolerance for read-only transac-

tions by reducing the number of sites they need to

access [13, 10, 32, 7, 30]. In our protocol, read-only

transactions can also be executed locally without

the need global synchronization. To see that this

is possible consider all of the committed update

transactions in the system and a single read-only

transaction t. All update transactions must be se-

rializable, and t can be serialized just after the last

transaction in the serialization order from which it

read. No transaction concurrent to t and writing

a data item read by t can be serialized before this

point.

If t read x from transaction u, and transaction v

wrote x and is concurrent to t then u! v. v can-

not have happened before u, or it would also have

happened before t, and v cannot be concurrent to

u or they would be con
icting and one would have

aborted. If a fourth transaction w wrote a data

item y also read by t then either w happened before

v or w and v are concurrent and non-con
icting.

If v also accessed y then w ! v by the above ar-

gument. If not then w and v are non-con
icting

and their serialization order can be reversed. So

an equivalent total order is w ! t! v. Since this

can be done for all transactions concurrent to t the

history is equivalent to t being serialized after all

transactions that causally precede it, and before

all transactions concurrent to it.

When more than one read-only transaction is in-

cluded there at �rst appears to be a problem. Con-

sider a database with data item copies x1; x2; :::; xn
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and y1; y2; :::; yn. S1 performs t1 : W (x1), and S2

performs t2 : W (y2). Now S1 communicates with

a quorum of sites not including S2, and S2 com-

municates with a quorum not including S1. The

transactions are not con
icting so they both re-

ceive a quorum of yes votes and commit. Now

S1 performs t3 : R(x1); R(y1), and S2 performs

t4 : R(x2); R(y2). One might think that t3 reads

from t1 and not t2 while t4 reads from t2 and not

t1 causing a serialization con
ict, but this is not

the case. When t1 and t2 were each received by

a quorum of sites there must have been at least

one site, Si, that received both. Consider with-

out loss of generality that Si received t2 second.

In order for S2 to commit t2 and release its locks

S2 must have received Si's vote, and Si's vote for

t2 causally succeeded Si's receipt of t1. Therefore,

t1 must be received by S2 before S2 can commit

t2. Since the receive procedure processes all trans-

actions of a message before processing any vote

records from that message t1 must have been pre-

committed on S2 before t2 committed on S2. If

t4 held a read lock on y2 when t1 arrived then t4

would be aborted and restarted when t1 acquired

an intention to write lock. If t4 requests a read

lock after t1 arrives it will wait on t1's intention

to write lock. Either way, t4 must wait for the

read lock on x2 until t1 commits on S2. Therefore,

t4 reads x from t1 and the serialization order is

t1 ! t3 ! t2 ! t4.

Read-Only(RS, f(x)):

begin

GetReadLocks(RS);

values := f(read (RS));

ReleaseReadLocks(RS);

Commit;

Return(values);

end;

Figure 9: The Epidemic Algorithm for Executing

Read-Only Transactions at Si

This protocol relies on the fact that the database

is fully replicated so the quorums of any two trans-

actions will overlap even if the transactions do

not con
ict. Therefore, concurrent non-con
icting

transactions can be serialized in the order in which

they become committable. If a transaction t1 gets

a quorum of yes votes before a transaction t2 then

every site will have received t1 by the time it com-

mits t2, and no read-only transaction can read t2

without being serialized after t1.

The algorithm for processing read-only transac-

tions is given in Figure 9. The read-only transac-

tion acquires read locks, reads values, and releases

read locks. Then the transaction can commit and

return the values read. If any con
icting transac-

tion arrives while the read-only transaction is wait-

ing for read locks then the read-only transaction is

aborted. Otherwise the read-only transaction will

not violate serializability as explained in the pre-

vious section and it can commit.

3.5 Optimizations

The �rst optimization avoids explicit yes votes.

The quorum algorithm just presented creates a

vote record for each update transaction at each

site. It is possible to reduce the number of vote

records that must be stored at each site and trans-

mitted among sites. If a transaction t pre-commits

on every site without encountering any con
icting

transactions, then obviously every site votes yes for

t. Therefore, a site does not have to create vote

records for t until it learns of a con
icting transac-

tion t
0. Also, sites do not need to record and send

out both yes and no votes. A site Si can send only

its no votes and the other sites can infer that Si

voted yes if it is known (using the time table) that

Si received the transaction and Si did not send out

a no vote. This will work if Si records its no vote

for t before it updates its time table indicating it

has received t. Then when Si sends its time table

to Sk, Sk knows that Si has received and voted

on t and the vote is yes unless Sk has received an

explicit no vote from Si for t. Thus Si can infer

that Sk voted yes on t if:

HasRecvd(Ti; t; Sk) ^ :f9v 2 Vi j v = nog

Because we are interested in performance and
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it was thought that this optimization would scale

better to a large number of sites, this optimization

was used in the performance evaluation.

The second optimization is not forcing write

locks by aborting local un-pre-committed transac-

tions. In the quorum protocol, when a pre-commit

transaction record is received at a site, all con-


icting local transactions that have not yet pre-

committed are aborted and the incoming remote

transaction is given the locks. These local trans-

actions may have been needlessly aborted if the

remote transaction fails to get enough yes votes

and is aborted. With this in mind, the quorum

algorithm could be modi�ed so that the incom-

ing remote transaction waits for the locks and

only aborts local transactions when and if it re-

ceives su�cient votes to commit. This modi�ca-

tion preserves correctness since all it does is delay

the decision to abort some con
icting transaction.

We previously argued that the quorum protocol

does not need global deadlock detection because

remote transactions are never involved in a dead-

lock since they never have to wait for a lock. For

this new modi�cation, we still do not require dis-

tributed deadlock detection. If two con
icting re-

mote transactions request locks at di�erent sites

in a di�erent order, the con
ict will be resolved

when one of them is aborted due to voting. The

one that is allowed to commit will not be stopped

by the other that holds the lock and has not yet

aborted, because it is only an intention-to-write

lock. Any deadlock that might be detected locally

must include a local non-pre-committed transac-

tion which can be aborted. To see that you cannot

have a deadlock consisting only of remote transac-

tions, recall that remote transactions request all

of their locks at once. Similarly, it is not possi-

ble to have a deadlock consisting only of remote

transactions and local transactions that have al-

ready pre-committed since in order for a trans-

action to pre-commit, it must be holding all the

locks it needs. Since there must be a local non-

pre-committed transaction in any deadlock, we can

select one of them as the victim and abort it. We

did preliminary performance measurements with-

out this optimization and discovered that it was

helpful in maintaining a good overall throughput.

3.6 An Example

An example execution is illustrated in Figure 10.

The arrows indicate messages sent from one site

to another, and the boxes indicate the contents of

those messages. In this example there are three

sites, and any two sites constitute a majority quo-

rum. Each site performs one transaction. Trans-

action t at S1 reads and writes x. Transaction u at

S2 reads and writes x and y. Transaction v at S3
reads and writes y. Transactions t and u con
ict

as well as transactions u and v, but t and v do not

con
ict. So either t and v should commit or just

u should commit.

t:{x},{x},1,(1,0,0)
u:{x,y},{x,y},2,(0,1,0)

v:{y},{y},3,(0,0,1)

Q

Vote no on u

v: R(y) W(y)

t:R(x) W(x) P

t:2,no;  v:2,no

Vote no
t:2,no;  v:2,no

v:{y},{y},3,(0,0,1)

u:{x,y},{x,y},2,(0,1,0)

on v

S3

u: R(x, y) W(x, y)S2

S1

Commit t

on t
Vote no

t:{x},{x},1,(1,0,0)

u:{x,y},{x,y},2,(0,1,0)

Figure 10: Example history.

First, S1 sends epidemic messages to S2 and S3,

S2 sends an epidemic message to S1, and S3 sends

an epidemic message to S2. Each message con-

tains a transaction record and the time table of

the sender (which is not shown). The �gure shows

the read set, write set, initiating site, and version

vector of the transaction records, and the voting

site and vote value of the vote records. For exam-

ple, the message from site S1 contains the trans-

action record t : x; x; 1; (1; 0; 0) which means that

transaction t read x, wrote x, initiated at site S1,

and has version vector (1; 0; 0). There is no ex-

plicit vote record as the receiver of the message

will know that site S1 voted yes on t because of the

absence of a no vote record in the message. When

these messages are received the sites compare log
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records. Site S1 votes no on u because it implicitly

voted yes on t. It now knows of two transactions

with one yes vote each so neither can commit. Site

S2 votes no on t and v because it voted yes on u.

It now knows of three transactions with one yes

vote each so none can commit. However, when S3

receives the message from S1 sees that t and v do

not con
ict. Now S3 knows that two sites, S1 and

S3, know about t and did not vote no, so there

are two yes votes. This constitutes a quorum so it

commits t.

Now, S2 sends messages to S1 and S3. S2's log

contains three transaction records, t, u, and v, and

two vote records, t : 2; no and v : 2; no. S2 does

not send the record for t to S1 because it knows

that S1 already has it, but it sends its vote record

for t. It also sends the transaction record for u that

it sent in a previous message because this message

might have been lost and the transaction and vote

records for v. Likewise, it does not send the record

for v to S3, but it does send its vote for v. S2 also

sends the transaction and vote record for t and the

transaction record for u. We now describe what

happens at points P and Q.

At point P, S1 has already received the record

for u so it ignores it. When it processes the record

of v it votes yes on v because it voted no on u

and t is non-con
icting with respect to v. Now it

processes vote records. The no vote from S2 on

t is added to the log, but S1 still can't commit

or abort t. When S1 adds the vote record for v,

however, it can infer two yes votes for v, one from

S3 and one from itself, so it commits v, and aborts

the con
icting u.

At point Q, S3 processes u and votes no because

it voted yes for both t and v. S3 also aborts u be-

cause it has committed t. S3 has already received

the record of t so it is ignored. S3 records that S2
voted yes on u, and no on t and v. S3 now has one

yes and one no for v so it cannot be committed or

aborted. S3 receives a no vote on t, but this has

no e�ect because it already committed t when it

received two yes votes.

At this point every site has seen every transac-

tion, but sites do not know all of the votes. Eventu-

ally, due to further epidemic communication, these

vote records will propagate through the network.

As a result every site will commit t and v and abort

u. In the meantime, x and y will be inaccessible

at any site where transactions are still uncertain.

Any new transaction wishing to access x or y will

have to wait until the corresponding lock is re-

leased. The new transaction will read the correct

committed value and will be causally ordered after

t, u, and v so that it can not interfere with their

serialization order.

4 Performance Evaluation

In order to evaluate the performance of epidemic

algorithms with and without quorums, we used

a detailed simulation of a distributed replicated

database. The simulation is based on accepted

database modeling techniques [27, 22] and uses

the simulation package CSIM18 [24]. All measure-

ments in these experiments were made by running

the simulation until a 95% con�dence interval was

achieved for each data point.

Each site has a Source thread that generates

transactions. The transactions make read and

write requests to the Site DBMS thread which

maintains the database itself, enforces two-phase

locking, maintains the time-table and the log and

initiates epidemic messages to other sites. Re-

sources that are used for a given time by the

transactions and the Site DBMS are: the CPU,

the database disk, the log disk, and the network.

Transactions are modeled as sequences of read and

write operations. All the reads are done before

all the writes and the writeset is a subset of the

readset. The time between successive operation

requests within a transaction is a parameter, Int-

Time, set at 3ms.

Each site has a copy of the 1000 page database.

By making the number of data pages small, we can

study data contention issues more easily. These

1000 pages could represent the \hot spots" of a

larger database. A page is assumed to be 2Kbytes

and is the locking granularity as well as the data

disk granularity. The DBMS uses strict two-phase
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Parameter Meaning Value

ThinkTime Transaction interarrival time varies

NumSites Number of sites 5, 10, 25

ER Epidemic rate 3ms

NumDisks Number of data disks per site 1

MinDiskTime Smallest data disk access time 4 ms

MaxDiskTime Maximum data disk access

time

14 ms

CPUInitDisk CPU time needed to access

disk

0.3 ms

LogDiskTime Time used for forced write of

log

8 ms

LogPageSize Number of log records per page 100

HitRate Probability of cache hit 0.9

LockTime CPU time needed to handle

locks for read or write request

0.006 ms

Table 1: System Parameters

locking to ensure local serializability. A wait-for-

graph for handling local deadlocks is maintained

and is checked for cycles each time an edge is

added. The epidemic protocols we are using guar-

antee there will be no global deadlocks.

Parameter Meaning Value

ReadSetMin Smallest transaction read set

size

5

ReadSetMax Maximum read set size 11

ROPercent Percentage of read only

transactions

75, 50%

WriteSetMin Smallest write set size for up-

date transactions

1

WriteSetMax Maximum write set size 4

CPUPgTime CPU time spent on a data page 1.0 ms

IntTime Time between successive oper-

ation requests

3 ms

Table 2: Transaction Parameters

The system parameters of the model are given in

Table 1 along with their values. The parameters

governing the generation and behavior of trans-

actions are given in Table 2. The generation of

new transactions is governed by the ThinkTime.

This is the per site transaction interarrival time

and can be made arbitrarily long or short. There

is no multiprogramming level to limit the num-

ber of active transactions vying for resources and

data item locks. This approach corresponds to the

\open" queuing model and is appropriate for a sys-

tem accepting requests from an unbounded num-

ber of users. The percentage of read-only trans-

actions is 75%. This is a reasonable assumption

since in most database applications, most transac-

tions are queries. The readset size is between 7 and

11 read operations for read-only transactions. The

execution of a read-only transaction is completely

localized. Update transactions have a readset size

between 5 and 8 read operations and a writeset

size of 1 to 4 write operations. The writeset is a

subset of the readset so there are no blind writes.

The simulation model assumes that the network

is fully connected so that any site can exchange

messages directly with any other site. We assume

that the network is fast (100 Mbits/sec). On a

100 M bit/sec network, the amount of CPU time

needed to send or receive a message was set to

0.1ms. When a site is ready to initiate an epi-

demic session with another site, it chooses that

site at random from the remaining sites. The epi-

demic rate is given in milliseconds and tells how

often a site is allowed to initiate an epidemic com-

munication. In all these experiments we �xed the

epidemic rate to 3ms. If the site is busy with local

processing, the actual time between transmissions

may be more than the stated value.

The following are some of the key measurements

and abbreviations used in the analysis. All mea-

surements of time are given in milliseconds unless

stated otherwise.

Pre-commit time If an update transaction pre-

commits, it records the elapsed simulation

time in milliseconds since it made its �rst read

request of the system. The mean value for

all such update transactions is the pre-commit

time.

Commit or Update commit time If a trans-

action commits (�nal commit), it records the

elapsed simulation time in milliseconds since

it made its �rst read request of the system

and the mean for all committing transactions

is the commit time. Only update transactions

are included in this measure.

Read-only commit time Read-only trans-

actions do not do a pre-commit, they sim-
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Figure 11: Response time for 5 sites

ply commit. The commit time of read-only

transactions is recorded separately from up-

date transactions.

ThinkTime (TT) This is the mean of the expo-

nential distribution for the transaction inter-

arrival time per site and is expressed in mil-

liseconds. As the ThinkTime is made shorter,

the load on the system increases.

Start rate The transaction start rate is measured

in transactions per second and is the rate at

which new transactions are generated. This

determines the load on the system and is equal

to NumSites*1000/TT.

Commit rate The commit rate, also called the

throughput rate, is the number of transac-

tions, both read-only and update, committed

by the system per second.

Read-only commit rate The read-only commit

rate is the number of read-only transactions

that are committed by the system per second.

Update commit rate The update commit rate

is the number of update transactions that are

committed by the system per second.

We refer to the epidemic read-one write-all algo-

rithm as eROWA and use it to provide us with a

baseline against which to measure the performance

of the quorum algorithm, eQrm, which includes all

of the optimizations described. A simple majority

was used as a quorum. Thus, a transaction can

commit when the home site knows that a major-

ity of sites have received t and did not vote no. A

transaction is aborted when the home site knows

that a majority of sites have voted no for t. In

the case of an even number of sites, a transac-

tion which gets no votes from half of the sites is

aborted.

4.1 Response Time Analysis

In the response time graphs, both the x- and y-

axis are in milliseconds. In a system with �ve

sites, as shown in Figure 11, the read-only commit

time is the same for eROWA and eQrm except un-

der heavy system loads indicated by a ThinkTime

of less than 30ms. In eROWA, the pre-commit

time is greater than the read-only commit time

because the update transactions do all of their

writes (which take slightly longer than reads) and

a forced write of the log disk (8ms) before they can
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Figure 12: Response times vs ThinkTime

pre-commit. In eQrm, the update transactions ac-

quire all needed locks but do not do the data writes

or write to the log disk before pre-committing.

Only when an eQrm transaction has enough votes

to commit does it do the data writes and force

write to the log disk. Thus, the pre-commit time

is less than the read-only commit time for eQrm.

An eQrm update transaction only needs to be ap-

proved by a majority of the sites rather than all of

them for eROWA, this enables the transactions to

commit earlier and, as expected, the smaller com-

mit time for eQrm re
ects this. Given that the

pre-commit response time of update transactions

closely tracks the read-only commit time, we drop

it from our future graphs.

We then conducted experiments to study the

performance of epidemic transaction protocols as

the number of sites in the system increases. In

Figure 12(a) we show the read-only and update

commit times for a 10 site system for eROWA and

eQrm. The read-only commit times for the two

protocols are very similar, while for update trans-

actions, eQrm does substantially better. The com-

mit time is longer in a 10 site system than in a 5

site system, although the quorum protocol, eQrm,

provides substantial bene�t. Recall that a Think-

Time of 50ms for 5 sites means that 100 transac-

tions are entering the system per second (5 sites

* 1000 / 50ms). This same transaction genera-

tion rate would be represented by a ThinkTime of

100ms in a 10 site system.

In Figure 12(b) we report the response time for

an epidemic system with 25 sites. It is impor-

tant to keep in mind that a transaction genera-

tion rate of 125 transactions per second would be

represented by a ThinkTime of 80ms in a 10 site

system and a ThinkTime of 200 in a 25 site system.

In this larger system, two interesting trends start

to manifest. First, that the eROWA gives better

response time to read-only transactions as the sys-

tem load increases, especially with ThinkTime less

than 80ms. In this range, eQrm cannot sustain

reasonable response times for read-only transac-

tions. The second trend is that for update trans-

actions, eQrm gives much better response time up

until about the same system load. For example, at

a ThinkTime of 130ms, for eROWA an average of

88ms elapse between the time update transactions

are pre-committed and the time they are commit-

ted. This time di�erential, which is a measure

of the time needed to propagate the pre-commit

records throughout the system and collect enough
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Figure 13: Commit rates for 25 sites

information to commit the transaction, is 65ms for

eQrm. Thus eQrm provides 26% improvement in

update commit time. In a heavily loaded system

(ThinkTime less than 80ms), the response time for

committing update transactions using eROWA out

performs eQrm. By analyzing the type of transac-

tion committing, we suspected that eROWA was

changing the mix of committed transactions in fa-

vor of read-only transactions. We discuss this in

detail next.

4.2 Throughput Analysis

To analyze the transaction mix and to assess over-

all performance, we now discuss in more detail the

throughput, or commit rate, of the system under

varying loads. In Figure 13, the x-axis (the trans-

action start rate) is the number of transactions

generated and submitted to the system per sec-

ond. The total commit rate for eROWA and eQrm

is given in Figure 13(a), while in Figure 13(b), we

present the update and read-only commit rates.

When the start rate is small, almost all transac-

tions are committed. At a start rate of 150, both

eROWA and eQrm commit close to 150 transac-

tions per second (see Figure 13(a)). In particular,

at a start rate of 156.2, the total commit rate is

151.2 transactions per second or 96.7% for eROWA

and 154.0 transactions per second or 98.6% for

eQrm. At a start rate of 250, the total commit

rate for eROWA is 225.6 or 90.2%. The total com-

mit rate for eQrm is 245.4 or 98.1%. So far, eQrm

is clearly superior and it continues to be better up

to a start rate of 400 transactions per second.

At 500 transactions started per second, the total

commit rate is 367.5 (73.5%) for eROWA and 341.6

(68.3%) for eQrm. At 625 transactions per second,

the total commit rate is 406.7 (65.1%) for eROWA

and 383.6 (61.4%) for eQrm. Under these heavy

system loads, eROWA appears to perform better,

however, as we shall see, this improvement in to-

tal commit rate comes at the expense of update

transactions as eROWA is changing the transac-

tion mix.

In Figure 13(b), we see the read-only and update

commit rate for the two protocols. At a transac-

tion start rate of 156.2 transactions per second, the

read-only commit for eROWA is 116 representing

slightly over 75% of the committed transactions.

The update commit rate is 35 transactions per sec-

ond which is slightly less than 25%. The read-only

commit rate for eQrm is 114.0 representing 75% of

17



the committed transactions. The update commit

rate is 37.4 transactions per second which is about

25%. Both protocols are maintaining the original

transaction mix of 75% read-only and 25% update

transactions at this start rate. However, the pic-

ture changes as the start rate increases. At a start

rate of 250, the read-only commit for eROWA is

174.6 representing 77% of the committed trans-

actions. The update commit rate is 51.1 which

is only 22.6%. Thus, already eROWA has begun

to favor read-only transactions. Unlike eROWA,

eQrm does not favor read-only transactions at the

expense of update transactions. At a start rate

of 250, the read-only commit is 185.5 representing

75.4% of the committed transactions. The update

commit rate is 60.2 transactions per second which

is 24.5%. Thus, eQrm maintains the original bal-

ance between update and read-only transactions

whereas eROWA was beginning to favor read-only

transactions at this rate.

When the start rate increases to 500 transac-

tions per second, the di�erence between the pro-

tocols becomes pronounced and eROWA's bias in

favor of read-only transactions becomes quite ob-

vious. The total commit rate for eROWA is 367.5;

however, the read-only transaction commits now

represent 81.4% of the committed transactions and

the update commits are only 18.6%. At a start

rate of 500 the read-only transaction commit rate

for eQrm is 254.1 representing 74.4% of the com-

mitted transactions and the update commits are

87.5 or 25.6%. At a start rate of 625, the up-

date commit rate for eROWA actually begins to

decrease over the update commit rate at a start

rate of 500, whereas, the update commit rate of

eQrm is continuing to increase.

Thus eQrm does not favor one type of transac-

tion over the other. In fact, at a start rate of 500

transactions per second, the system has reached

its thrashing point and performance is starting to

degrade due to data contention. At this point,

eQrm maintains the percentage of committed up-

date transactions while eROWA simply aborts up-

date transactions. This explains the lower overall

response time for eROWA observed in a heavily

loaded system in Figure 12.

4.3 Increasing the Proportion of Up-

date Transactions

To further validate our observation that eQrm

maintains the percentage of committed update

transactions even in heavily loaded systems, we

conducted an experiment where the number of up-

date transactions was increased to 50% of all trans-

actions. Increasing the proportion of update trans-

actions will increase the contention for data and

resources at a given transaction start rate. It will

also give us the opportunity to see if the eQrm pro-

tocol can maintain the transaction mix at 50% up-

date. The total commit rate for eROWA and eQrm

when there are 50% read-only transactions and

50% update transactions is given in Figure 14(a).

Encouragingly, the total commit rate achieved by

eQrm is superior to eROWA at transaction start

rates up to 300 transactions per second. Further-

more, eQrm maintains the mix of committed trans-

actions at about 50% update and 50% read-only

(see Figure 14(b)). Above that rate, eQrm begins

thrashing and total throughput decreases. The to-

tal commit rate for eROWA continues to increase,

sacri�cing update transactions as can be seen in

Figure 14(b). Read-only transactions are \easier"

to commit because they share locks with each other

and use only the local disk and CPU resources.

4.4 Comparison with Traditional Meth-

ods

In this section we explore the advantages of epi-

demic based updates versus a more traditional syn-

chronous approach. A simple traditional update

protocol allows for local execution of read-only

transactions just like the epidemic protocol. When

an update transaction does a write, the home site

DBMS must acquire write locks for that data page

at each replica site. The home site DBMS sends a

message to each other site requesting a write lock.

When the remote site is able to grant the lock,

it responds with an acknowledgment. When the

home site receives acknowledgments from all other
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Figure 14: Commit rates for 25 sites, 50% Update

sites, it lets the transaction perform the data write

and proceed with its next operation. When the

transaction has completed all its operations, the

home site DBMS starts an atomic commit proto-

col such as a two phase commit [8].

In order to assess the performance of the epi-

demic protocol we modeled the traditional update

protocol with our simulator. Since the traditional

protocol can cause local and global deadlocks, we

used a timeout mechanism to abort transactions

which were waiting for locks past the timeout pe-

riod. The optimal timeout period [5] for maxi-

mizing the transaction throughput was found to

be approximately the response time of an update

transaction. Accordingly, an adaptive timeout pe-

riod was used that was based on the estimated

transaction response time for a given ThinkTime

(transaction interarrival rate).

Experiments were performed using the tradi-

tional protocol with the same system and transac-

tion parameters as the epidemic experiments. Re-

sponse times for epidemic and traditional proto-

cols are contrasted for 10 (Figure 15(a)) and 25

sites (Figure 15(b)). The response times for the

traditional approach are similar to the epidemic

approach for read-only transactions.

The results for update transactions are more in-

teresting. At low system load, the e�ects of data

and resource contention are minimal and we ex-

pected that the e�ciency of two phase commit

would be an advantage over the somewhat ran-

dom epidemic commit process (information propa-

gation depends on the random communication pat-

terns among sites). As can be seen in Figure 15,

the traditional protocol outperforms eROWA for

update transactions in both 10 and 25 site sys-

tems. The epidemic quorum protocol, eQrm, how-

ever, outperforms the traditional protocol for 25

sites at a ThinkTime greater than 80 ms (a heavy

load for 25 sites - over 300 transactions started per

second) and for 10 sites at a ThinkTime less than

120 ms.

The commit time for an update transaction in

the traditional protocol re
ects two forced writes

of the recovery log disk: the home site force writes

its log disk before initiating two phase commit and

each remote site must force its log before respond-

ing in the a�rmative. The commit time for up-

date transactions in the epidemic protocol re
ects

only the forced write of the recovery log by the

home site; the remote sites respond after an un-

forced write of the pre-commit record enabling the
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Figure 15: Response time compared to Traditional Protocol

home site to commit the transaction. A remote

site forces its log later when it commits the trans-

action.

The epidemic protocol has several advantages

over the traditional approach while maintaining

the desirable characteristics of consistency and se-

rializability. It relieves some of the limitations

of the traditional approach by eliminating global

deadlocks and reducing delays caused by block-

ing. In addition, the epidemic communication

technique is more 
exible than the reliable, syn-

chronous communication required by the tradi-

tional approach. In order for an update trans-

action to commit in the traditional protocol, all

sites must be simultaneously available and partic-

ipating in the two-phase commit. In the epidemic

protocol, all sites must eventually be available and

participate in the epidemic commit, but because

of the asynchronous communication, all sites need

not be available at the same time. This is a great

advantage in widely distributed systems that may

experience transient failures and network conges-

tion.

5 Conclusion

E�cient, fault tolerant management of replicated

data has been a di�cult problem especially in the

context of disconnected and mobile environments.

In this paper we presented an algorithm which uses

the epidemic model and quorums to provide a so-

lution to this problem. Our solution is tolerant of

communication failures due to the epidemic model,

and tolerant of site failures due to quorum commit-

ment.

We conducted a detailed simulation study of the

transactional epidemic protocols with and without

quorums. The experimental results are quite pos-

itive and demonstrate the potential for the epi-

demic approach to support replication with trans-

actional semantics where multiple operations must

be treated atomically without designating sites as

primary or secondary. In the quorum based epi-

demic protocol, quorums are used for synchroniza-

tion, thus allowing update transactions to commit

once a majority of sites are aware of the update.

However, updates are still propagated to all copies,

making local execution of read-only transactions

possible. Furthermore, our experiments show that

the epidemic quorum approach has several advan-
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tages:

� Even for high system load, the mix of submit-

ted transactions matches the mix of commit-

ted transactions.

� The overhead of replication, in terms of re-

sponse time, does not increase signi�cantly as

the number of copies increases.

� The system throughput and especially that of

committed update transactions is maintained

up to the thrashing point and is better than

the read-one write-all approach.

Hence, we believe that the epidemic quorum ap-

proach holds the promise of e�ciently supporting

replicated databases which must preserve full se-

rializability in an update anywhere environment.

With the inevitable popularity of E-commerce, re-

liability of commerce servers is likely to become an

important issue. Unlike replication of Web servers,

E-commerce will require multi-operational trans-

actions and serializability of those transactions.

We strongly believe that asynchronous replication

techniques such as the one described in this paper

will have a major impact in this area.
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