Revisiting the relationship between
non-blocking atomic commitment
and consensus®

Rachid Guerraoui

Département d’Informatique

Ecole Polytechnique Fédérale de Lausanne
1015 Lausanne, Switzerland
e-mail: guerraoui@di.epfl.ch

Abstract. This paper discusses the relationship between the Non-
Blocking Atomic Commitment problem (NB-AC)and the Consensus prob-
lem in asynchronous systems with unreliable failure detectors. We first
confirm that NB-AC is harder than Consensus. In contrast to Consen-
sus, NB-AC is impossible to solve with unreliable failure detectors even
with a single crash failure. We define a weaker problem than NB-AC,
called Non-Blocking Weak Atomic Commitment (NB-WAC), which is
sufficient to solve for most practical situations. A fundamental charac-
teristic of NB-WAC is its reducibility to Consensus. The previous results
on solving Consensus with unreliable failure detectors apply therefore to
NB-WAC. An interesting intermediate result of this reducibility is that
Uniform Consensus and Consensus are equivalent problems. We show ac-
tually that any algorithm that solves Consensus with unreliable failure
detectors also solves Uniform Consensus.

1 Introduction

To ensure transaction failure atomicity in a distributed system, an agreement
problem must be solved among a set of participating processes. This problem,
called the Atomic Commitment problem (AC), requires the participants to agree
on an outcome for the transaction: commit or abort. When it is required that
every correct participant eventually reach an outcome despite the failure of other
participants, the problem is called Non-Blocking Atomic Commitment (NB-
AC). Solving this problem enables correct participants to relinquish resources
(e.g locks) without waiting for crashed participants to recover. The Two Phase
Commit (2PC) algorithm, for example, solves AC but not NB-AC [2], whereas
the Three Phase Commit algorithm of [15] solves NB-AC in synchronous sys-
tems (when communication delays and process relative speeds are bounded).
In this paper we compare the NB-AC problem and the Consensus problem in

* Appears in the proceedings of the International Workshop on Distributed Algo-
rithms, Springer Verlag (LNCS), 1995.

asynchronous systems with crash failures and reliable channels, augmented with
(possibly unreliable) failure detectors [4].

Consensus and NB-AC are similar problems in that they are both non-
blocking agreement problems. The so-called FLP impossibility result, which states
that it is impossible to solve any non-trivial agreement in an asynchronous sys-
tem even with a single crash failure, applies to both problems [7]. The starting
point of this paper is the fundamental result of Chandra and Toueg [4], which
states that Consensus is solvable in asynchronous systems with unreliable failure
detectors. An interesting question is then whether NB-AC can also be solved in
asynchronous systems with unreliable failure detectors.

The answer to this question is “No”, and this is not surprising because the
NB-AC problem has been considered harder than Consensus [6, 12]. However, in
contrast to initial intuition, the reason NB-AC is harder than Consensus is not
its Uniform Agreement condition?. We show that Uniform Consensus (Consensus
+ Uniform Agreement) and Consensus are equivalent problems with respect to
unreliable failure detectors. The difficulty in solving NB-AC is actually its Non-
Triviality condition (commit must be decided if all participants vote yes, and
there is no failure). This condition, usually only intended to avoid trivial solu-
tions to the problem, requires precise knowledge about failures which unreliable
failure detectors cannot provide.

Nevertheless, with a weaker non-triviality condition (commit must be de-
cided if all participants vote yes, and no participant is ever suspected), we define
a problem weaker than NB-AC, called NB-WAC (Non-Blocking Weak Atomic
Commitment). This problem is in fact adequate in real-world transactional sys-
tems. A fundamental characteristic of NB-WAC is that it is reducible to Con-
sensus in asynchronous systems with unreliable failure detectors, i.e. whenever
Consensus is solvable, NB-WAC is also solvable. The results of Chandra and
Toueg on solving Consensus with unreliable failure detectors [4] therefore apply
to NB-WAC: (1) NB-WAC is solvable with failure detector class S if at least one
participant is correct, and (2) NB-WAC is solvable with failure detector class
OS§ if there is a majority of correct participants.

The rest of the paper is organized as follows. In Section 2 we describe our
system model. In Section 3 we define NB-AC and show that it is harder than
Consensus. In Section 4 we show that Consensus and Uniform Consensus are
equivalent with respect to unreliable failure detectors. In Section 5 we define NB-
WAC and show that it is reducible to Consensus. Finally, Section 6 summarizes
the main contributions of this paper and discusses related and future work.

2 Model

Our model of asynchronous computation with failure detection is the one de-
scribed in [4]. In the following, we only recall some informal definitions and

2 The Uniform Agreement condition forbids any two participants (correct or not) to
decide differently. NB-AC requires Uniform Agreement whereas Consensus requires
only Agreement (two correct participants cannot decide differently).

results that are needed in this paper.

2.1 Processes

We consider a distributed system composed of a finite set of processes 2 =
{p1,p2, .., pn} completely connected through a set of channels. Communication
is by message passing, asynchronous and reliable. Processes fail by crashing;
Byzantine failures are not considered. Asynchrony means that there is no bound
on communication delays or process relative speeds. A reliable channel ensures
that a message, sent by a process p; to a process p;, is eventually received by p;,
if p; and p; are correct (i.e. do not crash). To simplify the presentation of the
model, it is convenient to assume the existence of a discrete global clock. This
is merely a fictional device inaccessible to processes. The range of clock ticks is
the set of natural numbers. A history of a process p; € {2 is a sequence of events
h; = €l el --ef where ef denotes an event of process p; occured at time k.
Histories of correct processes are infinite. If not infinite, the process history of
p; terminates with the event crash? (process p; crashes at time k). Processes
can fail at any time, and we use f to denote the number of processes that may
crash. We consider systems where at least one process is correct (i.e. f < [£2]).

A failure detector is a distributed oracle which gives hints on failed processes.
We consider algorithms that use failure detectors. An algorithm defines a set of
runs, and a run of algorithm A using a failure detector D is a tuple R =<
F,Hp,I,S,T >: I is an initial configuration of A; S is an infinite sequence of
events of A (made of process histories); T is a list of increasing time values
indicating when each event in S occured; F is a failure pattern that denotes the
set F'(t) of processes that have crashed at any time ¢; H is a failure detector
history, which gives to each process p and at any time ¢, a (possibly false) view
H(p,t) of the failure pattern: H(p,t) denotes a set of processes, and ¢ € H(p,?)
means that process p suspects process ¢ at time .

2.2 Failure detector classes

Failure detectors are abstractly characterized by completeness and accuracy
properties [4]. Completeness characterizes the degree to which crashed processes
are permanently suspected by correct processes. Accuracy restricts the false sus-
picions that a process can make. Two completeness properties have been iden-
tified. Strong Completeness, i.e. there is a time after which every process that
crashes is permanently suspected by every correct process, and Weak Complete-
ness, i.e. there is a time after which every process that crashes is permanently
suspected by some correct process. Four accuracy properties have been identified.
Strong Accuracy, i.e. no process is suspected before it crashes; Weak Accuracy,
i.e. some correct process is never suspected; Eventual Strong Accuracy, i.e. there
is a time after which correct processes are not suspected by any correct pro-
cess; and Fventual Weak Accuracy, i.e. there is a time after which some correct
process is never suspected by any correct process.

Accuracy

Completeness | Strong Weak { Strong $ Weak
Strong P S op Os

Weak Q w oOQ Ow

Fig. 1. Failure detector classes

A failure detector class is a set of failure detectors characterized by the same
completeness and the same accuracy properties (Figure 1). For example, the
failure detector class P is the set of failure detectors characterized by Strong
Completeness and Strong Accuracy. Failure detectors characterized by Strong
Accuracy are reliable: no false suspicions are made. Otherwise, they are unreli-
able. For example, failure detectors of § are unreliable, whereas failure detectors
of P are reliable.

2.3 Reducibility and transformation

An algorithm A solves a problem B if every run of A satisfies the specification of
B. A problem B is said to be solvable with a class C if there is an algorithm which
solves B using any failure detector of C. A problem B! is said to be reducible
to a problem B? with class C, if any algorithm that solves B? with C can be
transformed to solve B! with C. If B is not reducible to B?, we say that B is
harder than B?.

A failure detector class C! is said to be stronger than a class C?, (written Ct >
C?), if there is an algorithm which, using any failure detector of C!, can emulate
a failure detector of C2. Hence if C! is stronger than €2 and a problem B is
solvable with €2, then B is solvable with C!. The following relations are obvious:
PrQ PSS OP=0CQ, 0P =08,8=W, 08 =OW,Q =W, and CQ >
OW. As it has been shown that any failure detector with Weak Completeness
can be transformed into a failure detector with Strong Completeness [4], we also
have the following relations: @ = P, OQ = OP, W = 8, and OW = OS. Classes
S and OP are incomparable.

2.4 Consensus

In the Consensus problem (or simply Consensus), every participant proposes an
input value, and correct participants must eventually decide on some common
output value. Consensus is specified by the following conditions. Agreement: no
two correct participants decide different values; Uniform- Validity:if a participant
decides v, then v must have been proposed by some participant; Termination:
every correct participant eventually decides. Chandra and Toueg have stated the
following two fundamental results [4] :

1. If f < |£2], Consensus is solvable with S.
2. If f < [|42]/2], Consensus is solvable with 8.

3 NB-AC is harder than consensus

In this Section, we show that the Non-Blocking Atomic Commitment problem (or
simply NB-AC) is not solvable in asynchronous systems with unreliable failure
detectors. This impossibility result holds even with the assumption that at most
one process may crash. Hence NB-AC is harder than Consensus.

3.1 The Non-Blocking Atomic Commitment problem

Atomic commitment problems are at the heart of distributed transactional sys-
tems. A transaction originates at a process called the Transaction Manager
(abbreviated TM), which accesses data by interacting with various processes
called Data Managers (abbreviated DM). The TM initially performs a begin-
transaction operation, then various write and read operations (by translating
writes and reads into messages sent to the DMs), and finally an end-transaction
operation. To ensure the so-called failure atomicity property of the transaction,
all DMs on which write operations have been performed, must resolve an Atomic
Commitment problem (as part of the end-transaction operation). These DMs are
called participants in the problem. In this paper we assume that the participants
know each other, and know about the transaction [1].

The atomic commitment problem requires the participants to reach a com-
mon outcome for the transaction among two possible values: commit and abort.
We will say that a participant AC-decides commit (respectively AC-decides
abort). The write operations performed by the DMs become permanent if and
only if participants AC-decide commit. The outcome AC-decided by a partici-
pant depends on votes (yes or no) provided by the participants. We will say
that a participant votes yes (respectively votes no). Each vote reflects the ability
of the participant to ensure that its data updates can be made permanent. We
do not make any assumption on how votes are defined, except that they are not
predetermined. For example, a participant votes yes if and only if no concurrency
control conflict has been locally detected, and the updates have been written to
stable storage. Otherwise the participant votes no. A participant can AC-decide
commit only if all participants vote yes. In order to exclude trivial situations
where participants always AC-decide abort, it is generally required that commit
must be decided if all votes are yes and no participant crashes [2].

We consider the Non-Blocking Atomic Commitment problem (NB-AC) in
which a correct participant AC-decides even if some participants have crashed.
NB-AC is specified by the following conditions:

— Uniform-Agreement: No two participants AC-decide different outcomes.
— Uniform-Validity: If a participant AC-decides commit, then all partici-
pants have voted yes.

— Termination: Every correct participant eventually AC-decides.
— NonTriviality: If all participants vote yes, and there is no failure, then
every correct participant eventually AC-decides commit.

Uniform-Agreement and Uniform-Validity are safety conditions. They ensure
the failure atomicity property of transactions. Termination is a liveness condi-
tion which guarantees non-blocking. NonTriviality excludes trivial solutions to
the problem where participants always AC-decide abort. This condition can be
viewed as a liveness condition from the application point of view since it ensures
progress (i.e. transaction commit) under reasonable expectations: when no crash
and no participant votes no.

3.2 Impossibility of solving NB-AC

We show that NB-AC is harder than Consensus since even when assuming a
single crash, unreliable failure detectors are not strong enough to solve NB-AC.
We state this result for classes & and &P (Sect 2.3). Hence the result holds for
S8, 09, W, and OW.

Theorem 1. If f > 0, NB-AC cannot be solved with either &P or §S.

ProOF. (By contradiction®). Consider an algorithm A which solves NB-AC us-
ing any failure detector of OGP (respectively of §). Consider a failure detector
D of OP (respectively of §) and a run R =< F,Hp,I,S,T > of A. In R, all
participants vote yes. One participant p; crashes immediately without sending
any message, and all other participants are correct. Consider a correct partici-
pant ps. If py does not AC-decide, then the Termination condition of NB-AC is
violated in run R: a contradiction. Assume thus a time ¢ at which ps AC-decides
either (1) commit or (2) abort. Consider both cases:

1. py AC-decides commit at time t. Consider a run R! =< F, Hp,I', S, T > of
A, identical to R, except that p; votes no (instead of yes). Participant ps
executes exactly the same events in R' as in R, and AC-decides commit at
time ¢ (R! is indistinguishable from R to ps). As one participant (p;) has
voted no, the Uniform- Validity condition of NB-AC is violated in run R' of
A: a contradiction.

2. py AC-decides abort at time t. Consider a run R? =< F? H% I? 5% T% >
of A. In R?, all participants (including p;) are correct, and all messages from
p1 are delayed until after ¢’ > ¢. Assume that H3 is identical to Hp, except
that after ¢ > ¢, pl is never suspected in H%. As no participant crashes in
Rs, then H2 satisfies Strong Completeness. Consider accuracy.

— If D is of class OP, Hp satisfies Eventual Strong Accuracy, i.e. there
is a time after which correct participants are never suspected by any
correct participant. As H3 is identical to Hp, except that p; is never
suspected by any participant after time ¢/, then H2 satisfies Eventual
Strong Accuracy.

? The intuitive idea of this proof was given in [5].

— If D is of class 8§, Hp satisfies Weak Accuracy, i.e. some correct partici-
pant pg is never suspected in Hp. As px # p1 (p1 crashes in R), then py
is never suspected in H%. Hence H2 satisfies Weak Accuracy.

Until time ¢, participant ps executes exactly the same events as in R and AC-
decides abort at t (until time ¢, R? is indistinguishable from R to py). As all
participants are correct and all have voted yes, the NonTriviality condition
of NB-AC is violated in run R? of A: a contradiction. a

By the relations between failure detector classes (Sect. 2.3), we have the following
Corollary.

Corollary 1. If f > 0, NB-AC is not solvable with either $Q, 8, &8, or OW.

Intuitively, the reason why NB-AC is not solvable with unreliable failure detec-
tors is that NB-AC requires precise knowledge about failures. Assume a partic-
ipant p which neither knows that all participants have voted yes, nor that some
participant has voted no. Participant p cannot wait indefinitely for the votes of
all participants (some may have crashed), and p cannot AC-decide abort unless it
knows that some participant has crashed. An unreliable failure detector (which
can make false failure suspicions) does not give p such knowledge and is there-
fore not strong enough to solve NB-AC. The need for precise knowledge about
failures is contained in the NonTriviality condition of NB-AC. It is surprising
that a condition which is intended to eliminate trivial solutions, introduces a
significant difficulty in the problem. In Section 5, we weaken the NonTriviality
condition, still precluding trivial solutions, so that the new weaker problem has
solutions with unreliable failure detectors.

4 Uniform Consensus equivalent to Consensus

Generally, Atomic Commitment problems have been considered harder than
Consensus because of their Uniform Agreement condition (not because of their
Non Triviality condition) [6, 12]. Broadly speaking, Consensus enables two par-
ticipants to decide differently as long as at least one of them crashes, whereas
Atomic Commitment problems forbid two participants from ever AC-deciding
differently (whether they crash or not).

In what follows, we show that in asynchronous systems with unreliable failure
detectors, Uniform Consensus (Consensus + Uniform Agreement) is reducible
to Consensus, i.e whenever Consensus is solvable, Uniform Consensus is also
solvable.

4.1 Uniform Consensus reducible to Consensus with unreliable
failure detectors

The Uniform Consensus problem is specified by the Uniform- Validity and Termi-
nation conditions of Consensus (Sect 2.4), and the following Uniform-Agreement
condition:

— Uniform-Agreement: No two participants (correct or not) decide different
values.

First, we consider unreliable failure detector classes characterized by Strong
Completeness. These are OP, 8, and OS (Figure 1). We will come back in Corol-
lary 2 to classes characterized by Weak Completeness.

To show that Uniform Consensus is reducible to Consensus with OP (re-
spectively §, ©8), it suffices to show that, if there is an algorithm A that solves
Consensus with OGP (respectively S, ©S), then we can construct an algorithm
A’ that solves Uniform Consensus with OP (respectively S, ©&8). Theorem 2
below is even stronger as it claims that A’ is A itself.

Theorem 2. Any algorithm that solves Consensus with OGP (respectively S,
OS8), also solves Uniform Consensus with OP (respectively S, $S).

PrOOF. We show that there is a failure detector D of OP (respectively of S,
&S8) such that, if an algorithm A using D has a run R where Uniform Consensus
is not solved, A has also a run R! where Consensus is not solved.

Consider arun R =< F, Hp,I,S,T > of A such that the Uniform Agreement
condition is not satisfied in R but the specification of Consensus is satisfied
(otherwise it is obvious that R! is R itself). In run R, two participants p; and
p; decide different values and at least one of them crashes, say p;. Assume p;
decides v; at time t;, and p; decides v; at time t; (v; # v;).

Consider a run R' =< F!' HL I',S* T' > with the same failure pattern
as in R, except that p; and p; are correct in R'. Delay in R! the reception
of all messages from p; and p;, not received in R before maz(t;,t;), until ¢ >
maz(t;,t;). Assume that H} is identical to Hp until ¢/, and after ¢ no correct
participant is ever suspected and every participant that crashes is permanently
suspected. It is thus clear that H}, satisfies Strong Completeness, Eventual Strong
Accuracy and Eventual Weak Accuracy. As Hj, does not contain any suspicion
other than those in H,, if Hp satisfies Weak Accuracy (i.e.if D is of S), H}
also satisfies Weak Accuracy.

In run R', participant p; executes the same events as in R until time t;,
and decides v; (until ¢;, run R! is indistinguishable from R to p;). Similarly,
participant p; executes the same events as in R until ¢;, and decides v; (until
time ¢;, R' is indistinguishable from R to p;). Hence in run R!, two correct
participants decide differently. a

It is worthwhile to note that the algorithms described in [4], which was initially
designed to solve Consensus with § and OS8, also solve Uniform Consensus.

By the relations between failure detector classes (Sect. 2.3), we have Corol-
lary 2 below.

Corollary 2. Uniform Consensus is reducible to Consensus with OP (respec-

tively ©Q, 8§, W, 8, OW).

Corollary 3 follows from the previous results on solving Consensus (Sect 2.4) and
the relations between failure detector classes (Sect. 2.3).

Corollary 3. If f < |£2|, Uniform Consensus is solvable with either 8 or W,
and if f < [|42]|/2], Uniform Consensus is solvable with either &S, OP, OQ, W,
or OW.

4.2 TUniform Consensus versus Consensus with reliable failure
detectors

In this section we show that Theorem 2 does not hold with P (hence it does
not hold with Q).* We give an algorithm A that solves Consensus with any
failure detector of P, but there is a failure detector D of P, such that A does not
solve Uniform Consensus using D. The algorithm is described by the function
consensus(v; } in Figure 2, called by every participant p;, where v; represents the
input value proposed by p;. Function consensus() terminates by the execution of a
“return outcome” statement, where outcome is the decision value (line 8): when
p; executes return outcome, p; decides outcome. Participant p; is informed by
its local failure detector module, D;, of failure suspicions: the notation p; € D;
(line 3) indicates that p; suspects p;.

function consensus(v;)

1 7:=1;

2 while j <3

3 wait until [received (p;, v;, decide) or p; € D;] ;
4 if received (pj, vy, decide) then

5 vii=vy ;

6 J=3+1;

7 send (pi, vi, decide) to all ;

8

return v; ;

Fig. 2. An algorithm which solves Consensus but not Uniform Consensus

The basic idea of the algorithm is the following. Participant p; immediately
sends the decision message (p1,v1,decide) (line 7) (bypassing lines 2-6), and
decides v (line 8).If p2 does not suspect p; before it receives (p1, v1, decide), then
pa2 adopts vy (line 5). Then py sends (p2, ve, decide) (v1 = v3) to all (line 7), and
decides v; (as did p1) (line 8). Participant ps waits until it receives (p1, v, decide)
or it suspects p1, and it receives (pa, va, decide) or it suspects ps. In the case
where ps receives both messages and vy # wvae, ps adopts vy. More generally,
participants decide on the input value proposed by the participant pg, such that
k is the smallest index among participants that are never suspected.

4 Note that this does not mean that Uniform Consensus is not reducible to Consensus.

Theorem 3.1. The algorithm in Figure 2 solves Consensus with P.

ProoF. We show that the three conditions of Consensus are satisfied.

1. Agreement. Assume that a correct participant p; decides v. As p; is correct,
then by the Strong Accuracy property of D, no participant suspects p;. Since
p; must have sent its decision message (p;, v, decide) (line 7) before deciding
(line 8), then by the reliable channels assumption, every correct participant
receives (p;, v, decide). Hence every participant py such that ¢ < k must have
received (p;, v, decide) (line 4) before deciding. Thus py decides v (line 5).

2. Validity. Every outcome decided by some participant is, by construction, an
input proposed by some participant (line 1).

3. Termination. We show by induction on i that every correct participant p;
eventually decides. If p; is correct then it sends a decision message (line 7)
and decides (line 8). Assume that for every k& > 1, if pg is correct then it
eventually decides, and consider pgy1. As every correct participant must
have sent a decision message (line 7) before deciding (line 8), then by the
Strong Completeness property of D and the reliable channels assumption,
Pr+1 cannot remain blocked undefinitely at the while statement of line 2. For
every j < (k + 1), either pgyq receives the decision message (p;, v, decide),
or pr4+1 suspects p;. Consequently, if pry1 is correct, then ppii eventually
decides. ad

Theorem 3.2. The algorithm wn Figure 2 does not solve Uniform Consensus

with P.

ProoF. We show that there is a failure detector D of P, and a run of the
algorithm where the Uniform Agreement condition is violated. Consider the run
R =< F,Hp,I,S,T > such that p; and ps have different input values. Assume
that in Hp, every process that crashes is permanently suspected and no correct
participant is ever suspected. Hence Hp satisfies Strong Completeness and Strong
Accuracy. Assume that p; crashes immediatly after deciding vy (line 8), and its
decision message (p1,v1,decide) (line 7) never arrives at py. Hence py suspects
p1 and decides vy (va # v1). Thus p; and py decide differently in run R. 0O

By the relations between failure detector classes P and @, Theorem 3.1 and
Theorem 3.2 apply also to Q. Clearly, the algorithm in Figure 2 does not solve
Consensus with unreliable failure detectors. Indeed, if p; and ps are correct and
po falsely suspect p1, both may decide different values.

5 NB-WAC reducible to Consensus

In this Section, we define the Non-Blocking Weak Atomic Commitment problem
(or simply NB-WAC) by weakening the Non Triviality condition of NB-AC. Then
we show that in asynchronous systems with unreliable failure detectors, NB-
WAC is reducible to Uniform Consensus. This implies, by Theorem 2, that NB-
WAC is also reducible to Consensus.

5.1 The Non Blocking Weak Atomic Commitment problem

NB-WAC is specified by the Uniform-Agreement, Uniform-Validity and Ter-
mination conditions of NB-AC (Sect 3.1) and by the following NonTriviality
condition:

— NonTriviality: If all participants vote yes, and no participant is ever sus-
pected, then every correct participant eventually AC-decides commit.

As all failure detector classes we consider ensure Weak Completeness (every
participant that crashes is eventually suspected), the NonTriviality condition of
NB-WAC is weaker than the NonTriwviality condition of NB-AC. Nevertheless,
the NonTriviality condition of NB-WAC still eliminates trivial solutions to the
problem where participants always AC-decide abort.’ Note that an algorithm
that solves NB-WAC may lead to always abort transactions with an underlying
failure detector that always suspects some process. In practice however, failure
detectors do not behave this way. Failure detectors are usually implemented using
time-outs and suspect processes only after time-out expirations. The expiration
of a time-out (either correct or false suspicion) is generally considered, in real-
world transactional systems, a sufficient reason to abort a transaction [2].

5.2 NB-WAC reducible to Uniform Consensus

The reduction algorithm described by the function atomicCommitment() in Fig-
ure 3, transforms any algorithm that solves Uniform Consensus with OGP (respec-
tively 8, ©8), into an algorithm that solves NB-WAC with &P (respectively S,
OS).

We assume that participants know each others,; and every participant p, either
crashes, or calls the function atomicCommitment(). The vote of participant p; is
denoted vote;, and we represent a Uniform Consensus algorithm by the function
uniformConsensus() (called at line 5 and 7). The values proposed and returned
by uniformConsensus() are commit and abort. Function atomicCommitment()
terminates by the execution of a “return outcome” statement, where outcome
is either commit or abort (lines 6 and 8): when p; executes return outcome, p;
AC-decides outcome. Participant p; is informed by its local failure detector of
crash suspicions: the notation p; € D; (line 3) (D; € {OPy, Si, OS;}) indicates
that p; suspects p;.

The basic idea of the algorithm is the following. Every participant sends its
vote to all participants (including itself). A participant that either receives a vote
no or suspects another participant, starts Uniform Consensus by proposing abort
(line 5), and AC-decides the outcome returned by Uniform Consensus (line 6).
Every participant that receives yes votes from all participants, starts Uniform

5 Coan and Welch have discussed in [5] the benefits of defining a weak Non Trivial-
ity condition in order to develop randomized Non Blocking Atomic Commitment
protocols.

function atomicCommitment(vote;)
send (pi, vote;) to all
for j=1ton
wait until [received (p;, vote;) or p; € D] ;
if p; € D; or vote; = abort then

outcome; := uniformConsensus(abort) ;
return outcome; ;

outcome; := uniformConsensus(commit) ;

return outcome; ;

CO ~1I O UL i W N =

Fig. 3. An algorithm that reduces NB-WAC to Uniform Consensus

Consensus by proposing commit (line 7), and AC-decides the outcome returned
by Uniform Consensus (line 8).

Theorem 4. The algorithm in Figure 3 reduces NB-WAC to Uniform Consensus
with either OGP, S, or O8S.

ProoF. We show that the four conditions of NB-WAC are satisfied.

1. Uniform Agreement. Any participant that AC-decides outcome (lines 6 and
8), must have decided outcome through Uniform Consensus (lines 5 and 7).
By the Uniform Agreement condition of Uniform Consensus, no two partic-
ipants can decide differently.

2. Uniform Validity. A participant AC-decides outcome, only if it decides

outcome through Uniform Consensus. By the Validity condition of Uniform
Consensus, a participant decides commit only if some participant p has pro-
posed commit (in line 7). To reach line 7, p must have received yes votes
from all.

3. Termination. There are two cases to consider for any correct participant p:
(3.1) p receives yes votes from all, and (3.2) p does not. In case (3.1), p
starts Uniform Consensus (line 7). In case (3.2), if p receives any vote no,
p starts Uniform Consensus (line 5). Otherwise, as every correct participant
sends its vote, then by the assumption of reliable channels and the Fventual
Strong Completeness property of OGP (respectively S, OS), p eventually sus-
pects some participant and starts Uniform Consensus (line 5). Hence every
correct participant starts Uniform Consensus. By the Termination condition
of Uniform Consensus, every correct participant eventually decides and thus
AC-decides.

4. NonTriviality. If there are no suspicions and all votes are yes, then every
participant which starts Uniform Consensus proposes commit (line 7). By the
Uniform- Validity condition of Uniform Consensus, every correct participant
decides commit and thus AC-decides commit (line 8). O

By Corollary 3 and the relations between failure detector classes (Sect 2.3), we
have Corollary 4.

Corollary 4. If f < |f2|, NB-WAC is solvable with either S or W, and if
f<[|£2]|/2], NB-WAC is solvable with either OS, OP, ©Q, or OW.

NB-WAC algorithms can be obtained by combining the reduction algorithm of
Figure 3 and the algorithms solving Consensus with & and ©S8 [4]. In compar-
ison, the algorithms described in [1, 15] for example can be seen as algorithms
that use P. Elsewhere, we have described centralized and decentralized Three
Phase Commit algorithms using 8 [9, 10].

6 Concluding Remarks

The importance of this work is in extending the applicability field of the results
of Chandra and Toueg [4] on solving problems in asynchronous systems (with
crash failures and reliable channels) augmented with unreliable failure detec-
tors. The applicability of these results to problems other than Consensus has
been discussed in [4, 11, 13, 14]. To our knowledge, it is however the first time
that (non-blocking) atomic commitment problems are discussed in asynchronous
systems with unreliable failure detectors.

By weakening the NonTriviality condition of atomic commitment, we have
defined a problem, called Non-Blocking Weak Atomic Commitment (NB-WAC),
which is adequate in practical transactional systems. We have shown that (1)
Uniform Consensus is reducible to Consensus, and (2) NB-WAC is reducible to
Uniform Consensus. As a consequence, the results of Chandra and Toueg on
solving Consensus with unreliable failure detectors apply to NB-WAC.

We would like to define, in terms of failure detector characteristics, lower
bounds on fault-tolerance for NB-WAC. It has been stated that GW is the weak-
est failure detector class that can solve Consensus [3], and &P cannot solve Con-
sensus if more than a majority of participants can fail [4]. An interesting question
is whether these lower bounds are relevant for NB-WAC. Furthermore, one may
wonder if the NonTriviality condition defined in this paper is the strongest one
that makes the problem solvable with unreliable failure detectors. Finally, we
have not considered unreliable failure detectors with a known bounded num-
ber of false suspicions. Whether NB-WAC is reducible to Consensus with these
failure detectors is an open question.

Acknowledgement

I am deeply grateful to André Schiper for his crucial help. The presentation of
the paper was greatly improved by the suggestions of Aleta Ricciardi and the
referees. I would also like to thank Tushar Chandra, Vassos Hadzilacos, Mikel
Larrea and Sam Toueg for interesting discussions.

References

10.

11.

12.

13.

14.

15.

. 0. Babaoglu and S. Toueg. Non-Blocking Atomic Commitment. In Distributed Sys-

tems, pages 147-166. Sape Mullender ed, ACM Press, 1993.

. P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery

in Database Systems. Addison Wesley, 1987.

T. Chandra, V. Hadzilacos and S. Toueg. The Weakest Failure Detector for Solving
Consensus. Proceedings of the 11th ACM Symposium on Principles of Distributed
Computing, pages 147-158. ACM Press, 1992.

. T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed sys-

tems. Technical Report, Department of Computer Science, Cornell Univ, 1994. A
preliminary version appeared in the Proceedings of the 10th ACM Symposium on
Principles of Distributed Computing, pages 325-340. ACM Press, 1991.

. B. Coan and J. Welch. Transaction commit in a realistic timing model. Distributed

Computing, pages 87-103. 4(2), 1990.

D. Dolev and R. Strong. A Simple Model For Agreement in Distributed Systems. In
Fault-Tolerant Distributed Computing, pages 42-50. B. Simons and A. Spector ed,
Springer Verlag (LNCS 448), 1987.

. M. Fischer, N. Lynch, and M. Paterson. Impossibility of Distributed Consensus with

One Faulty Process. Journal of the ACM, pages 374-382. (32) 1985.

J. Gray. A Comparison of the Byzantine Agreement Problem and the Transaction
Commit Problem. In Fault- Tolerant Distributed Computing, pages 10-17. B. Simons
and A. Spector ed, Springer Verlag (LNCS 448), 1987.

. R. Guerraoui, M. Larrea and A. Schiper. Non-Blocking Atomic Commitment with an

Unreliable Failure Detector. To appear in Proceedings of the 14th IEEE Symposium
on Reliable Distributed Systems, 1995.

R. Guerraoui and A. Schiper. The Decentralized Non-Blocking Atomic Commit-
ment Protocol. To appear in Proceedings of the 7th IEEE Symposium on Parallel
and Distributed Processing, 1995.

R. Guerraoui and A. Schiper. Transaction model vs Virtual Synchrony model:
bridging the gap. In Distributed Systems: From Theory to Practice, pages 121-132.
K. Birman, F. Mattern and A. Schiper ed, Springer Verlag (LNCS 938), 1995.

V. Hadzilacos. On the relationship between the atomic commitment and consensus
problems. In Fault- Tolerant Distributed Computing, pages 201-208. B. Simons and
A. Spector ed, Springer Verlag (LNCS 448), 1987.

L. Sabel and K. Marzullo. Election Vs. Consensus in Asynchronous Systems. Tech-
nical Report TR95-1488, Cornell Univ, 1995.

A. Schiper and A. Sandoz. Primary Partition “Virtually-synchronous Communi-
cation” Harder than Consensus. Proceedings of the 8th International Workshop on
Distributed Algorithms, pages 39-52. Springer Verlag (LNCS 857), 1994.

D. Skeen. NonBlocking Commit Protocols. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 133-142. ACM Press, 1981.

This article was processed using the IATpX macro package with LLNCS style

