
Deferred Update Protocols for Multi-Site Transactions

Parvathi Chundi Daniel J. Rosenkrantz S. S. Ravi

Department of Computer Science

University at Albany - State University of New York

Albany, NY 12222

February 21, 1996

Abstract

Several commercial distributed database systems provide an optional protocol that defers

updates of replicas in order to attain higher transaction throughput. Each replicated data
item is assigned a primary copy site, and has a set of sites with secondary copies. Typically,
in a deferred update protocol, a transaction directly updates only the primary copy of each
data item it modi�es. After the transaction commits, the updates to primary copies by that

transaction are sent transactionally to other sites containing secondary copies of these data
items. Thus, the protocol allows the values of the primary and secondary copies of a data
item to di�er until the secondary copies are updated.

In an earlier paper, we investigated the deferred update approach for transactions that
operate at only one site and then commit (with updates to secondary copies propagated after
commitment). There, we showed that the serializability of transactions can be guaranteed if
and only if the replication topology of the system is either a tree or a forest. In this paper,
we discuss global transactions that operate at multiple sites in a system utilizing the de-
ferred update approach. In such a system, a global transaction that updates replicated data
items can use the underlying deferred update mechanism to ensure replica consistency. Such
a transaction may commit after updating primary copies. The deferred update mechanism
forwards the updates to sites containing secondary copies as usual. However, it is not clear if
global serializability is ensured. We present two protocols to execute global transactions in a
replicated database systems with a deferred update mechanism. The �rst protocol is applica-
ble to systems whose replication topology is a tree. The second protocol is more general, and

is applicable to systems whose replication topology is a forest. The protocols preserve the
execution autonomy of the local sites and the underlying deferred update mechanism. They
impose minimal overhead on transactions that operate at only one site. We show that both
protocols ensure global serializability. We also propose a method for tolerating site failures.



1 Introduction

Replication of data is widely employed in distributed databases to enhance data availability,

reliability and performance. Critical data is stored at several sites so that the system can

continue to operate even when some of the sites fail. Also, improved query performance can be

achieved by accessing the nearest copy. An important goal of any replicated database system

is to make the fact that data is replicated transparent to the users. That is, transactions issue

reads and writes on data items, and the system is responsible for translating these operations into

read and write operations on one or more copies of these data items. Consequently, a replicated

database system should behave like a single copy (non-replicated) database as far as the users

are concerned. Ideally, the interleaved execution of transactions in a replicated database system

should be equivalent to a serial execution of these transactions on a single copy database.

Transaction processing in replicated database systems has been studied by a number of

researchers (see for example [AE90, AE92, BHG87, BG84, PL91] and the references contained

therein). Several protocols achieving replica consistency, such as two phase commit and quorum

consensus, have been proposed in the literature [BHG87, Gi79, Th79]. These protocols allow

a transaction to access a replicated data item at a site only if the transaction also accesses a

certain subset or a speci�ed number of replicas of that data item. Some form of two phase

commit is supported by almost all commercial distributed database system products available

today [St95, Sc94] because it guarantees the consistency of replicated data and the serializability

of transactions. Many commercial vendors [St95, Mo94, Co93, MP+93, Or93] characterize a

system using two phase commit protocol as providing tight consistency or synchronous

distributed replication. This is because the two phase commit protocol commits a transaction

that updates a replicated data item only after all the sites containing a replica of that data item

approve committing the transaction. Tight consistency has some drawbacks in practice [St95,

Mo94, MP+93, Sc94]. In fact, many database vendors indicate that in numerous applications,

two phase commit is impractical. For instance, quoting from [MP+93],

\Synchronous distributed replication is attractive in theory, but fails in the real world.

Its reliance on 100 percent system availability makes maintaining a productive level

of transaction throughput for distributed replication impossible."

Reference [Go94] gives an overview of commercially available distributed database systems

with replication capability. Several of these systems, including SYBASE System 10 [Sy, Mo94,

Co93, MP+93], Oracle 7 [Or93], IBM Datapropagator Relational [Ib94], and CA-OpenIngres

[Sc94], support a protocol for tight consistency and also include an optional protocol that de-

fers the update of replicas. The deferred update protocols support loose consistency [Mo94,

1



MP+93] by allowing some of the copies to be inconsistent for some time. One of the main advan-

tages of loose consistency is that it provides better responsiveness since the waiting operations

associated with protocols such as two phase commit are avoided. A similar approach, called

asynchronous coherency control, has been been studied in [PL91].

In the deferred update approach, a transaction can commit after updating only one copy

of a replicated data item. After the transaction commits, the update is propagated asyn-

chronously to the other copies. Reference [Go94] discusses several methods used by commer-

cial database systems to implement deferred update. A classi�cation of these approaches is

provided in [CRR96]. The vendors of commercial database systems that provide deferred up-

date [Ib94, Mo94, Co93, MP+93, Or93] discuss several applications for which a deferred update

protocol seems preferable to two phase commit. However, they do not address the issue of seri-

alizability in those systems. In fact, [CRR96] provides examples of non-serializable scenarios in

systems with a deferred update capability. The paper \Things Every Update Replication Cus-

tomer Should Know" [Go95] also discusses the importance of serializability in a deferred update

system and concludes that

\Asynchronous update replication should only be used after carefully assessing the

risks. Replication products which do not enforce serializability may not be appropri-

ate for applications requiring transaction integrity."

In [CRR96], we studied the primary copy approach to deferred update; this approach

is supported by several commercial database systems. In this approach, each replicated data

item is assigned a site where the primary copy of the data item is stored. Copies of this

data item appearing at other sites are referred to as secondary copies. Di�erent data items

may have primary copies at di�erent sites and a given data item need not have a copy at every

site. (The notions of primary and secondary copies have also been used in Distributed INGRES

[St79, SN77].) A replication server1 is included at each site; the replication servers cooperate

to ensure the propagation of an update to all copies.

We formalized the primary copy approach using what we call the single-site strict primary

update (single-site spu) protocol, and addressed the issue of serializability2 . (The issue of

serializability is also addressed in [Go95], but [Go95] does not provide a solution.) Under the

single-site spu protocol, transactions operate at only one site. In a system using the single-site

spu protocol, updates to a data item can be done only at its primary site. Secondary copies

are read-only. For a transaction T to update a replicated data item, T must operate at the site

S containing the primary copy of the data item. After T commits, the replication server at S

1The term \replication server" is a trademark of SYBASE, Inc.
2The terminology used in this paper di�ers slightly from that used in [CRR96]. This allows us to simplify the

terminology used in the protocols developed here.

2



sends all the updates made by T on primary copies at S transactionally to all sites containing

the corresponding secondary copies. Since the commit of a transaction updating a primary copy

at a given site results in messages going to other sites, we call such an update message a ripple

message. We refer to the subtransaction executed as a result of receiving a ripple message as a

ripple subtransaction. Thus, the values of the primary and secondary copies of a data item

may di�er until the updates on the secondary copies are completed. The single-site spu protocol

also allows a transaction executing at a site to read secondary copies located at that site.

In [CRR96], we showed that the distribution topology of the replicated data determines

whether a system employing the single-site spu protocol ensures serializability. We modeled this

topology by a directed graph that we call the data placement graph (DPG). This graph

represents the distribution of the primary and secondary copies of data items across sites. The

graph has nodes for sites and edges for data 
ow from primary copies to secondary copies. Under

standard assumptions concerning the nature of distributed database systems and the concurrency

control mechanisms used at each site, we showed that global serializability in a system using the

single-site spu protocol is ensured if and only if the DPG satis�es a certain acyclicity condition.

For any con�guration violating this acyclicity condition, the single-site spu protocol can produce

non-serializable histories. These non-serializable histories are produced by the simplest type of

transactions that can be envisioned for a distributed system with replication, namely transactions

that operate at only one site and send out ripple messages. Thus, the acyclicity condition on

DPGs is a very strong lower bound that a data con�guration must meet in order to have any

hope that serializability can be maintained while using the primary copy approach to deferred

updates.

The protocol in [CRR96] supports transactions that operate at only one site, and send out

ripples when committed. However, a distributed system should provide facilities that permit a

transaction to operate at multiple sites. In this paper, we examine the issues involved in executing

transactions operating at multiple sites in a system that incorporates the ripple mechanism of

the single-site spu protocol. We call a transaction operating at more than one site a multi-site

global (global) transaction. The transaction management scheme uses a Global Protocol

Manager (GPM) to which global transactions are submitted. The GPM operates at one

site. It submits the operations of a global transaction to various sites depending on the data

items accessed, and eventually commits the transaction. Local sites execute the transactions

submitted to them. These transactions may be subtransactions belonging to global transactions

or transactions submitted locally that operate at only one site as before.

Using a deferred update capability may decrease the time needed to execute a global trans-

action which updates replicated data. In such a case, a global transaction G may commit after

3



updating only one copy (the primary copy, in the case of a primary copy approach) of each

replicated data item. After G commits, the underlying deferred update mechanism sends the

new values to other sites. However, the temporary inconsistency of replicas allowed by a deferred

update ripple mechanism may give rise to non-serializable histories. In fact, in a system with

a deferred update capability, it is easy to construct non-serializable histories if transactions can

operate at multiple sites (see Section 2).

We present a transaction management scheme for executing global transactions in a system

where each site incorporates the ripple mechanism of the single-site spu protocol. We address the

issue of serializability for this scheme. We refer to this approach as amulti-site strict primary

update (multi-site spu) protocol. Since the edges in the DPG represent the direction of

\
ow" of ripples between sites, if global transactions operate at di�erent sites that are connected

by a path in the DPG, the ripple subtransactions may introduce indirect con
icts between them.

Hence, to ensure global serializability, the GPM may decide to execute global transactions at

additional sites depending on the structure of the DPG. Re
ecting the impact of the structure

of the DPG, we present two multi-site spu protocols. The structure of the replication topology

of any given system determines which of these two protocols should be used. We �rst present a

tree based multi-site spu protocol for the case where the DPG corresponding to the system

contains a single connected component. We then show how to extend the tree based multi-site

spu protocol to the case where the DPG contains two or more connected components. We refer

to the latter protocol as the forest based multi-site spu protocol. In both cases, we prove

that global serializability is ensured. We present both protocols because the forest based protocol

is more general, whereas the tree based protocol is simpler and more e�cient when the DPG

consists of a single connected component.

Both of our multi-site spu protocols allow local sites to execute the single-site spu protocol

for transactions that operate at only one site. Hence, it is necessary that the data placement

graph corresponding to the replication topology of the system satisfy the acyclicity condition

from [CRR96] to ensure global serializability. By establishing the correctness of our protocols,

we show that the acyclicity condition is su�cient to ensure global serializability even when the

transaction mix includes multi-site global transactions.

We summarize the salient features of the multi-site spu protocols below.

1. Transactions are allowed to operate at more than one site.

2. The execution autonomy of local sites is preserved as far as possible. Each local concurrency

control is unaware that global transactions are running at other sites, and is unaware of

the GPM.

4



3. Only minimal changes are made to the ripple mechanism used at the local sites for ensuring

replica consistency. The GPM is unaware of the ripple subtransactions that are exchanged

among sites.

4. Transactions that operate at only one site are executed as e�ciently as before. The ex-

amples in [Mo94, MP+93, Or93] motivating the deferred update approach suggest that in

many applications of that approach, transactions typically operate at only one site (and

then send out ripples). These transactions will not incur the extra overhead imposed on

multi-site global transactions.

We note that preserving local autonomy and ensuring serializability renders the protocols as well

as the correctness proofs nontrivial.

We also discuss how to handle arbitrary site failures and the failure of the GPM. A global

transaction must commit or abort at all sites it operates. We ensure the atomicity of global

transactions by using a technique similar to the redo approach [BGS92].

Preserving the execution autonomy of local sites while ensuring database consistency is a ma-

jor goal of the multi-site spu protocol. Recently, several protocols (see [BS88, BGS92, DEK+93,

GRS94, JDE+94] and the references contained therein) have been proposed to preserve autonomy

of local databases in a multidatabase system while ensuring database consistency. In particular,

[DEK+93] and [JDE+94] deal with multidatabases with replicated data. They propose protocols

that both ensure consistency of data and preserve local autonomy, but under the assumption

that the local databases do not share data items prior to the creation of the multidatabase. The

multi-site spu protocols presented here execute global transactions in a system where the local

databases have shared data and use the deferred update ripple mechanism to maintain replica

consistency.

The remainder of this paper is organized as follows. Section 2 presents some potential non-

serializable scenarios which illustrate some of the pitfalls that a multi-site spu protocol must

avoid in order to achieve serializability. Section 3 presents the distributed data model and related

de�nitions. Section 4 formalizes the tree based multi-site spu protocol. Section 5 presents the

forest based multi-site spu protocol. Section 6 presents a method for ensuring consistency and

atomicity in the presence of site failures. Section 7 concludes the paper.

2 Some Pitfalls to Avoid

Since deferred update allows loose consistency of replicas, it may also a�ect global transactions.

For example, the execution of a global transaction executing at a set of sites that share data

items may be in
uenced by replica inconsistency among sites. We now give several examples

5



of possible threats to serializability. Each example is accompanied by a data placement graph

(DPG) D corresponding to the placement of primary and secondary copies in the system. Each

node in D represents a site. D contains an edge Si ! Sj if there is at least one data item whose

primary copy is at Si and for which there is a secondary copy at Sj . Figures include, for each

site, the set of data items that are involved in the non-serializable execution. Alongside each

node, we give the implications for transaction serialization due to con
icts at that site. In the

examples, we denote the primary copy of a data item d by d itself and denote a secondary copy

of d by d0. The read (write) operation of a transaction Ti on a data item x is denoted by ri(x)

(wi(x)). The commit of Ti is denoted by ci. Send and receive operations on a ripple produced

by the transaction Ti are denoted by sendi and recvdi respectively.

��
��

��
��

-S� S�

G1 ! L3 ! T2T2 ! G1

fa; xg fa0; yg

Figure 1: Indirect con
icts due to a single edge in the DPG

Example 2.1: (Figure 1) The data items at site S� include fa; xg and at site S� include fa
0; yg.

Here, a is replicated at both sites, while x is a local data item at S� and y is a local data item

at S� . Transaction G1 is a global transaction operating at sites S� and S� with the following

operations G1 = r1(x) w1(x) w1(y) c1. Transaction T2 operates only at S�, with operations T2

= r2(x) w2(a) c2. Transaction L3 operates only at site S� with operations L3 = r3(a
0) w3(y) c3.

Since G1 is as global transaction, it is submitted to the GPM and its execution is coordinated

by the GPM. However, T2 and L3 are not submitted to the GPM, so the GPM is unaware of

them. Note that commit of transaction T2 at site S� results in a ripple message to be sent to

site S� . When this ripple message is received at S� , a ripple subtransaction is submitted by the

replication server at S� to update the value of a0.

We have transactions G1 and T2 executing at site S�. Let h� be the history corresponding

to the execution of these transactions at S�, where h� = r2(x) w2(a) c2 send2 r1(x) w1(x) c1.

This introduces the serialization graph edge T2 ! G1 at S�.

We have G1, L3 and the ripple subtransaction corresponding to the ripple message of T2 from

S� executing at S�. Let h� be the history at S� where h� = w1(y) c1 r3(a
0) w3(y) c3 recvd2

w2(a
0) c2. Hence, the local serialization graph at S� contains the path G1 ! L3 ! T2.

The global serialization graph contains a cycle G1 ! L3 ! T2 ! G1 involving G1, L3 and

T2. 2

In Example 2.1, con
icts are introduced between subtransactions belonging to G1 executing

at di�erent sites due to the ripples from S� to S� . The following example illustrates that indirect

6



con
icts may also be introduced when a global transaction executes at sites which do not have

a data placement edge between them, but which are connected by a path in the data placement

graph.

��
��

��
��

��
��

S

S

S

Sw

�

�

�

�/

S� S�

S


G1 ! T2

T2 ! L4 ! T3

T3 ! G1

fa; yg

fa0; b0; xg

fb; zg

Figure 2: Indirect con
icts due to a path between sites

Example 2.2: (Figure 2) Site S� includes data items fa; yg, site S� includes data items fb; zg

and site S
 includes data items fa
0; b0; xg. Data item a is located at S� and S
 , with the primary

copy at S�. Data item b is located at S� and S
 with the primary copy at S� . Data items x, y,

and z are local data items at S
 , S� and S� respectively.

G1 is a global transaction submitted to the GPM, with operations G1 = r1(a) w1(y) r1(b)

w1(z) c1. Transaction T2 is submitted to S�, with operations T2 = r2(y) w2(a) c2. Transaction

T3 is submitted to S�, with operations T3 = r3(z) w3(b) c3. L4 is submitted at site S
 , with

operations L4 = r4(a
0) r4(b

0) w4(x) c4. Note that commit of T2 (T3) at S� (S�) generates a ripple

message which is sent to S
 (S
). The GPM executes G1 at S� and S�.

At S�, G1 and T2 execute. Let h� be corresponding history where h� = r1(a) w1(y) c1 r2(y)

w2(a) c2 send2. The local serialization graph at S� contains the edge G1 ! T2.

Let h� be the history at S� containing the operations belonging to G1 and T3, where h� =

r3(z) w3(b) c3 send3 r1(b) w1(z) c1. This introduces the serialization graph edge T3 ! G1 at S� .

Finally, let h
 be the history at S
 where h
 = recvd2 w2(a
0) c2 r4(a

0) r4(b
0) w4(x) c4 recvd3

w3(b
0) c3. This introduces the following serialization graph edges at S
 : T2 ! L4 ! T3.

Hence, we have the following cycle in the serialization graph: G1 ! T2 ! L4 ! T3 ! G1. 2

It is clear from the above examples that the deferred update ripple mechanism creates inter-

ference among global transactions which may result in non-serializable executions. This implies

that even if two global transactions do not execute together at any site, there may still be a path

between them in the global serialization graph. One such scenario is presented below.

Example 2.3 (Figure 3) Site S� includes data items fa; tg, site S� includes data items fa0; xg.

Site S
 includes data items fb; yg and site S� includes data items fb0; zg. Data items t, x, y, z

are local data items at S�, S�, S
 , and S� respectively. Data item a is replicated at S� and S� ,

with the primary copy at S�. Data item b is replicated at S
 and S� with the primary copy at

S
 .

7



G1 and G2 are global transactions, with operations G1 = r1(x) w1(x) r1(y) w1(y) c1 and G2

= r2(t) w2(t) r2(z) w2(z) c2.

Note that G1 must operate at sites S� and S
 , and G2 must operate at sites S� and S�.

Transactions T3 and T4 are submitted at S� and S
 respectively. Transaction T3 contains oper-

ations T3 = r3(t) w3(a) c3. Transaction T4 contains operations T4 = r4(y) w4(b) c4. Commit of

T3 (T4) at S� (S
) causes a ripple message to be sent to S� (S�). Finally, transactions L5 and

L6 are submitted to S� and S� respectively where L5 = r5(x) r5(a
0) c5 and L6 = r6(z) r6(b

0) c6.

At site S�, the transactions G2 and T3 execute with history h� = r3(t) w3(a) c3 send3 r2(t)

w2(t) c2. The local serialization graph at S� contains the edge T3 ! G2.

��
��

��
��

��
��

��
��

? ?

S� S


S� S�
G1 ! L5 ! T3

T3 ! G2
T4 ! G1

G2 ! L6 ! T4

fa; tg

fa0; xg fb0; zg

fb; yg

Figure 3: Indirect con
icts in a multi-component DPG

At S�, G1 and L5 and the ripple subtransaction of T3 execute. The history at S� is h� =

r1(x) w1(x) c1 r5(x) r5(a
0) c5 recvd3 w3(a

0) c3. The local serialization graph at S� contains the

path G1 ! L5 ! T3.

G1 and T4 execute at S
 . The execution of T4 results in a ripple message which is sent to S�.

The history at S
 is h
 = r4(y) w4(b) c4 send4 r1(y) w1(y) c1. The local serialization graph at

S
 contains the edge T4 ! G1.

At S�, we have the transactions G2, L6 and the ripple subtransaction corresponding to the

ripple from T4 at S
 . The history at S� is h� = r2(z) w2(z) c2 r6(z) r6(b
0) c6 recvd4 w4(b

0) c4.

The local serialization graph at S� contains the path G2 ! L6 ! T4.

The serialization graph edges at the local sites result in the following cycle in the global

serialization graph: T3 ! G2 ! L6 ! T4 ! G1 ! L5 ! T3. 2

3 System Design

3.1 The Global System Architecture

A replicated database system (RDBS) consists of a set of sites S1, S2, : : :, Sn (n > 2). Each

site includes a pre-existing local database system (LDBS). Each pair of sites can communicate

using a �fo discipline. Each site contains a protocol manager that communicates with other

sites to maintain the consistency of replicated data. The RDBS contains a Global Protocol

8



Manager (GPM) which runs at one site and coordinates transactions accessing data at multiple

sites. Each replicated data item has a designated site where the primary copy of the data item

resides; the copies of this data item at other sites are secondary copies. Data items occurring

at more than one site are referred to as global data items. Each site may also have local data

items. We denote a secondary copy of a data item d by d0 and the primary copy by d itself.

3.2 Data Placement Graph

The data placement graph (DPG) for a given RDBS is de�ned as follows. Each node in the

DPG represents a site. There is a directed edge from Si to Sj if there is at least one data item

for which Si is the primary site and Sj is a secondary site. Given a DPG, the corresponding

undirected data placement graph (UDPG) is obtained by simply erasing the directions on

the edges and combining multi-edges (if any) between a pair of vertices into a single edge. In a

DPG, a pair of edges of the form (u; v) and (v; u) which form a directed cycle of length 2 will be

referred to as dual edges. We say that a DPG D(V;A) is strongly acyclic if it does not have

dual edges and the undirected graph obtained from D by deleting the direction on each edge and

combining the multi-edges into a single edge is acyclic.

3.3 The Single-site spu protocol

The local sites in the RDBS rely on the ripple mechanism of the single-site spu protocol to

maintain replica consistency. Reference [CRR96] formalizes the single-site spu protocol and

discusses the conditions under which the single-site spu protocol ensures serializability. We

summarize the protocol and these conditions here.

The single-site spu protocol allows transactions to operate at only one site. A transaction

is a partial order of read and write operations (denoted by r and w respectively) ending with a

commit (c) or an abort (a) operation. As in Section 2, the read and write of a transaction Ti

on a data item d are denoted by ri(d) and wi(d) respectively. Each LDBS executes two types of

transactions.

1. A local transaction operates at a single site. It can read and write local data items at that

site. It can read, but not write, global data items at that site.

2. A single site primary (ssp) transaction operates at a single site. It can read and write

local and primary data items located at that site. Further, it can read, but not write,

secondary data items at that site.

Whenever an ssp transaction at a site Si updates primary data items and commits, the

protocol manager at Si sends the new values of these data items as a ripple message to the

9



corresponding secondary sites. When the protocol manager at a site Sj receives a ripple message,

it executes a ripple subtransaction to update the corresponding secondary data items at Sj .

The send and receive operations of a ripple generated by an ssp transaction Tk are denoted

by sendk(�) and recvdk(�) respectively, where � is the set of new values of primary copies

modi�ed by Tk. The ripple messages are sent in the order in which ssp transactions commit at

Si. Also, for each edge Si ! Sj , the protocol manager at Sj submits the ripple subtransactions

corresponding to ripple messages received from Si in the order in which the ripple messages are

received, so that each such ripple subtransaction is committed before the next one begins.

We de�ne the local history at a site as a partial order over operations of all transactions

executing at that site, including send and receive operations carried out by the protocol manager

at that site. The partial order at each site must satisfy the usual conditions listed in [BHG87].

We assume that each LDBS uses strict two phase locking to produce serializable histories. Note

that two phase locking provides a pessimistic concurrency control. Therefore, an LDBS does not

abort a transaction that �nished all its accesses, except in the event of a failure. We also assume

that the ripple mechanism ensures that a ripple subtransaction is always committed. If a ripple

subtransaction gets aborted, it is retried. A global history is a union of local histories at each

site, augmented by the requirement that the send of a message occurs prior to the corresponding

receive. We de�ne a spu-global history to be a global history produced by the single-site spu

protocol. In [CRR96], it is shown that the serializability of spu-global histories is based on the

DPG corresponding to the RDBS. There we de�ne a DPG to be a spu-global serializable if it

has the property that every history produced by the single-site spu protocol executing in a data

con�guration corresponding to the DPG is globally serializable. Then, we prove that a DPG is

spu-global serializable if and only if it is strongly acyclic.

3.4 Global serializability

Given a global history produced by executing a set of transactions on an RDBS, each site has

a local serialization graph. The global serialization graph is obtained by taking the union

of nodes and edges of the local serialization graph at each site in the RDBS. In the union,

all subtransactions of a global transaction are combined into a single node and each ripple

subtransaction is combined with the node that caused it. A global history is serializable if and

only if the corresponding global serialization graph is acyclic.

4 The Tree Based Multi-Site Spu Protocol

In this section, we describe a multi-site spu protocol, which we call the tree based multi-site

protocol for a system whose DPG consists of a single connected component. We require that

10



the DPG is strongly acyclic, and hence the UDPG is a tree.

The GPM uses the tree based multi-site spu protocol to execute global transactions which

operate at two or more sites in the RDBS. A global transaction can read and write any (logical)

data item in the RDBS. The GPM coordinates the execution of global transactions. In addition,

the GPM also maintains a directory of local data items and primary and secondary copies of

global data items. When a global transaction Gi is submitted to the GPM, the GPM �rst decides

the set of sites at which Gi must be executed. Then, it creates a server for Gi at each of these

sites. Each such server interacts with the LDBS to execute Gi's operations. A subtransaction

of Gi at a site Sj is the partial order of operations executed at Sj that belong to Gi. Figure 4

illustrates the architecture of the system.

server server

GPM

Global transactions

. . . . . .. 

LDBS LDBS
1 nripples ripples. . . . . .

Local &

ssp transactions

Local &

ssp transactions

global subtransactionglobal subtransaction

Figure 4: RDBS Architecture

4.1 Counter data items

When a primary site and a secondary site share data items, we can say that the secondary site

stores a (possibly lagging) \view" of the database at the primary site. A global transaction

operating at both sites might potentially see inconsistent views; we detect such inconsistencies

using view ids. We create new global data items, which we refer to as counter data items. (The

counter data items are related to the concept of tickets in [GRS94].) A counter data item serves

as a view id. We create a unique view id at a primary site for each of it secondary sites. A

secondary copy of the view id is stored at the corresponding secondary site. Therefore, for each

edge Si ! Sj in the DPG, we create a unique counter data item ctij that is replicated at Si and

Sj , with the primary copy at Si and the only secondary copy at Sj . If a transaction updates the

primary copy of any data item at Si that has a secondary copy at Sj , then the transaction is

11



augmented by two additional operations: read the current value of ctij and write a new value of

ctij by incrementing it by 1. Since counter data items are also replicated data items, whenever

the primary copy of a counter is modi�ed, the corresponding ripple subtransaction updates the

secondary copy.

4.2 The Protocol Description

In designing the multi-site spu protocol, we minimize the changes made to the local concurrency

controls and the ripple mechanism. Consequently, we assume the following.

1. Ssp transactions are not coordinated by the GPM even though they update global (replicated)

data.

2.The GPM is not aware of ripple messages that are generated by the protocol managers at

various sites in the system.

3.Each subtransaction of a global transaction is treated as just another local or ssp transaction

by each LDBS. In other words, the LDBS need not be aware of global transactions or the GPM.

A global transaction Gi is submitted to the GPM, accompanied by its read and write sets

which we denote by RS(Gi) and WS(Gi). For the tree based multi-site spu protocol, the DPG

corresponding to the RDBS contains a single connected component and is strongly acyclic. The

execution of Gi proceeds in the following three phases.

Phase I: Construct the set of sites at which Gi must execute.

The GPM �rst creates the original site set of Gi, denoted by oss(Gi). For each data item

x 2 RS(Gi) [ WS(Gi), if x is a local data item, then the site at which x is located is added

to oss(Gi). If x is a global data item and x 2 WS(Gi), then the primary site of x is added to

oss(Gi). If x is a global data item and x 2 RS(Gi) only, then any site containing a copy of x can

be added to oss(Gi). The GPM �nds the minimal subtree � in the UDPG that includes all the

sites in oss(Gi). (Since the UDPG is a tree, this minimal subtree is unique.) We refer to the set

of sites in � as the extended site set of Gi and denote it by ess(Gi). The global transaction

Gi is made to execute at all sites in ess(Gi). Hence, the GPM creates a server at each of these

sites for executing Gi.

Phase II: Augment Gi with operations on counters and submit Gi for execution.

For each site Sj in ess(Gi), the subtransaction Gij contains the union of the following sets of

operations. We refer to these operations collectively as data operations.

� original accesses: If Sj 2 oss(Gi), then Gij contains operations of Gi on some of the (non-

counter) data items at Sj . Otherwise, the set of original accesses is empty.

� counter accesses: Gij reads counter data items that Sj shares with its neighbor sites that

belong to ess(Gi). If Gi is updating primary data items at Sj , Gij also contains the read and

12



write operations on the corresponding counter data items.

� secondary accesses: For each secondary data item d0 at Sj , Gij writes d
0 if d 2 WS(Gi).

Note that if Gi updates a primary data item, it updates only those secondary copies that are

located at some site in ess(Gi).

The GPM submits a data operation � of Gi to the corresponding server after all the data

operations that � depends on have been completed. We denote this submission by submit(�).

After submitting �, the GPM waits for a noti�cation message carrying success/failure from the

server. If the GPM receives failure or times out waiting for the noti�cation message, it aborts

Gi. (A timeout may also mean that Gi is involved in a deadlock.) We denote the send and

receive of a noti�cation message by send-notification(�) and recv-notification(�) respectively

where � is the set of values returned. Along with success/failure, the noti�cation message also

reports the values returned by the read operations of Gi. This allows data 
ow between data

operations of Gi executing at di�erent sites. Using these reported values, the GPM aborts Gi if

it reads di�erent values for a counter data item from two di�erent sites.

We say that a global transaction enters the �nished stage when the GPM �nishes executing

all of its data operations.

Phase III: Committing Gi.

For each site Sj in the RDBS, the GPM maintains a queue Qj of global transactions. After

Gi �nishes executing data operations at all sites in ess(Gi), the GPM adds Gi at the end of the

queue Qk corresponding to each site Sk in ess(Gi). When Gi reaches the beginning of some queue

Qk, the GPM sends a commit message to the server for Gi at Sk . After Gik commits at Sk, the

server at Sk sends a commit-done(Gi) message to the GPM. After receiving this message, the

GPM removes Gi from Qk . Note that the GPM adds each global transaction to the appropriate

queues in the order in which they enter the �nished stage.

A global transaction G is said to be committed after the last commit-done message is

received at the GPM. Note that G is said to be committed after it commits at all sites in ess(G),

so G does not wait for the ripple subtransactions generated on behalf of G to commit. A ripple

subtransaction at a site S not in ess(G) is submitted and committed at S whenever the ripple

message is received by the protocol manager at S. On the other hand, if S is in ess(G), a

ripple message received as a result of the commit of G is discarded because the tree-structured

multi-site spu protocol has already updated the secondary copies at S as part of G.

4.3 Selection of the Original Site Set

In Phase I of the protocol, if RS(Gi) contains some global data items that are not in WS(Gi),

there may be some 
exibility in choosing oss(Gi). However, we can assume that Gi cannot

13



operate at only one site, since otherwise it would be more e�cient to treat Gi as an ssp or a

local transaction. As a consequence, it can be shown that there is a unique minimal site set that

satis�es the requirements of ess(Gi). More precisely, for any nonempty set of sites S, let ess(S)

denote sites in the unique minimal subtree that includes all sites in S. Let us say that S satis�es

the access requirements of Gi if using S as oss(Gi) permits all of the data operations of Gi to

be performed. Then, there is a unique set of sites T such that for all sets S satisfying the access

requirements of Gi, T � ess(S). Further, there is a set S satisfying the access requirements of

Gi, such that T = ess(S).

4.4 Discussion

We now show how the �rst two hypothetical non-serializable executions given in Section 2 are

handled by the multi-site spu protocol.

Example 2.1: Since S� contains some primary data items whose secondary values are located

at S� there is a counter, say ct��, whose primary copy is at S�, and whose only secondary copy

is at S� . Global transaction G1 accesses data from sites S� and S� and hence ess(G1) includes

S� and S�. Then, according to the protocol, the subtransaction of G1 at S� reads the value

of the counter ct�� at S�. Similarly, the subtransaction of G1 executing at S� reads ct0�� from

S� . Consider how the scenario given in Section 2 would be expanded to include the accesses on

counter ct�� . At S�, G1 reads the value of ct�� written by the ssp transaction T2. At S� , G1

reads the value of ct0�� before the ripple subtransaction T2 is executed. Since each ssp transaction

increments the value of the counter, the value of ct�� read by G1 at S� is di�erent from that

read by G1 at S�. Then, according to the protocol, G1 is aborted. 2

Example 2.2: Global transaction G1 operates at S� and S� . Since there is a primary data

item at S� whose secondary copy is at S
 , there is a counter ct�
 whose primary copy is at

S� and whose only secondary copy is at S
 . Similarly, there is a counter ct�
 whose primary

copy is at S� and whose only secondary copy is at S
 . Since oss(G1) = fS�; S�g, the unique

subtree connecting these sites in the UDPG includes S
 . Therefore, according to the protocol,

ess(G1) = fS�; S�; S
g. G1 reads ct�
 from S� and S
 and ct�
 from S� and S
 . In the scenario

described in the example, at S�, G1 reads the value of ct�
 before T2 updates it. At S� , G1

reads the value of ct�
 after it is written by T3.

Since the ripple subtransactions T2 and T3 update the value of ct0�
 and ct0�
 respectively

and G1 reads these data items, G1 (directly or indirectly) con
icts with both T2 and T3 at S
 .

For the protocol to commit G1, G1 must read the same values for ct0�
 and ct0�
 at S
 as at

S� and S� respectively. These reads at S
 add edges G1 to T2 and from T3 to G1 in the local

serialization graph at S
 . These edges, along with the path T2 ! L4 ! T3 would cause a cycle

14



in the serialization graph at S
 , and hence the local concurrency control at S
 restarts one of

these transactions. 2

5 The Forest Based Multi-site Spu Protocol

5.1 The Protocol Description

In this section, we describe the forest based multi-site spu protocol. This protocol is designed

for the case where the DPG contains more than one connected component. We require that the

DPG is strongly acyclic, so the UDPG is a forest.

The forest based multi-site spu protocol is an extension of the tree based multi-site spu

protocol described in Section 4. When a global transaction G is executing in more than one

connected component in the DPG, the forest based protocol may add more sites to ess(G) than

the tree based protocol. Therefore, the execution of global transactions by the tree based protocol

is more e�cient since their extended site sets may be smaller. Phases II and III of the forest

based multi-site spu protocol are the same as those of the tree based protocol. Phase I of the

forest based protocol is given below. As before, it is assumed that a global transaction Gi is

submitted along with its read and write sets, RS(Gi) and WS(Gi).

Phase I: Construct oss(Gi) as before. Let us assume that the sites in oss(Gi) belong to the

connected components C1, C2, ..., Cp in the UDPG.

1. For each l (1 � l � p), let 
l be the following set of global transactions. Set 
l contains the

global transaction that is the last one to �nish within Cl and 
l contains all global transactions

that are executing at some site in Cl and have not yet committed.

2. For each l (1 � l � p), let 
0

l = 
l [ fGm j 9j such that Gm 2 
j and Gm operated at some

site in Clg.

3. For each l (1 � l � p), let �l be the minimal subtree in the UDPG that includes all sites

in oss(Gi) that belong to Cl and includes, for each Gm in 
0

l, at least one site from ess(Gm).

(Since each connected component of the UDPG is a tree, this minimal subtree is unique.)

4. Let ess(Gi) = [
p
l=1�l.

5.2 Discussion

We now explain how the forest based multi-site spu protocol takes care of the scenario described

in Example 2.3. The DPG in this case contains two connected components, namely C1 = fS�,

S�g and C2 = fS
 , S�g.

Let us assume that G1 arrived earlier than G2 in the system. Since G1 is the �rst global

transaction to execute, ess(G1) = fS� ; S
g. When G2 arrives, G1 either has not yet committed

or is the last committed transaction in C1 and C2.

15



In Phase I of the execution of G2, the protocol does the following. Site set oss(G2) is fS�; S�g.

Therefore, G2 operates in C1 and C2. Step 1 sets 
1 = fG1g and 
2 = fG1g. Step 2 sets


0

1
= fG1g and 
0

2
= fG1g. Step 3 sets �1 = fS�, S�g and �2 = fS
 , S�g. Therefore, G2

executes at all four sites in the system.

Now, consider C1. There is a counter data item ct�� whose primary copy is located at S�

with a secondary copy at S� . Since G2 operates at both these sites, it reads ct�� from both

sites. According to the example, G2 reads the after value of T3 at S�. For G2 to commit, it must

read the same value of ct0�� at S�. This means that there is an edge from T3 to G2 in the local

serialization graph at S�; and consequently a path from G1 to G2. Therefore, G1 must commit

at S2 and release its locks before G2 performs the read on ct0�� at S� . Therefore, G2 is waiting

for G1 at S�.

In connected component C2, S
 and S� share a counter data item ct
� which G2 reads at both

S
 and S�. Since G2 reads ct
0


� at S� before T4 updates it, it must also read ct
� at S
 before T4

updates it. Therefore, there is an edge from G2 to T4 in the local serialization graph at S
 , and

hence a path from G2 to G1 at S
 . For G1 to perform its operations at S
 , G2 must commit

at S
 and release its locks. Therefore, G1 is waiting for G2 at S
 . Hence, we have a deadlock

situation and the GPM aborts one of the global transactions (whichever times out earlier). 2

6 Handling Failures

In this section, we discuss how to ensure database consistency and atomicity of transactions in

the presence of failures. We explain how to handle arbitrary site failures and the failure of the

GPM. When a local site S fails, all transactions executing at S that have not yet committed at

the time of failure are aborted. Since local and ssp transactions operate at only one site, aborting

these transactions does not violate atomicity. However, ensuring atomicity of ssp transactions

requires that if an ssp transaction T commits at a site S, the ripple subtransactions sent to other

sites as a result must also commit. Similarly, The GPMmust make sure that a global transaction

either commits or aborts at all sites. Furthermore, if a global transaction commits, its ripple

subtransactions must also commit. (This is a part of the ripple mechanism.)

6.1 Atomicity of global transactions

We �rst discuss how to handle arbitrary site failures. Handling site failures while ensuring

local autonomy has been studied in [BGS92, SKS91, KLS90, WV90]. Our focus is on ensuring

atomicity of global transactions in a system using a multi-site spu protocol. A global transaction

may be aborted at a site by the GPM, or by the local concurrency control when it is involved in

a local deadlock. In such a case, the GPM must abort the global transaction at all other sites.

16



Suppose a global transaction G completes its data operations at all sites and the GPM decides

to commit it. Since we assume that local sites use pessimistic concurrency controls (such as two

phase locking) and G has completed its data operations, G will not be aborted by a local site

for deadlock reasons. However, it may still be aborted in case of a local site failure. Suppose

global transaction G executing at a set of sites is aborted at some site S due to local site failure,

but is committed at all other sites. After S recovers, atomicity can be achieved using one of the

following approaches [BGS92].

redo: The writes of the aborted subtransaction of G at S are installed by executing a redo

transaction consisting of all the write operations of G at S.

retry: The entire aborted subtransaction including its reads and writes is executed again at S.

compensate: At each site where G committed, a compensating transaction is executed to

semantically undo the e�ects of G.

We use the redo method to ensure global atomicity in the presence of failures. To ensure that

G either commits at all sites or aborts at all sites, the GPM uses an atomic commit protocol

such as two phase commit. This two phase commit is done the sites at which Gi operates. We

modify Phase III of the protocol as follows. Let Gi be a global transaction with extended site

set ess(Gi). After Gi performs its data operations at all sites in ess(Gi), the GPM does the

following.

Phase III:

1. The GPM sends a prepare-to-commit message to the server created for Gi at each site in

ess(Gi). When a server receives the prepare-to-commit message from the GPM, it votes to either

commit or abort Gi. If a server votes to commit the transaction, it enters a prepared state for

Gi.

2. If the GPM receives commit votes from all the servers, it decides to commit Gi. It records

this decision on its log. Then, for each site Sj 2 ess(Gi), the GPM adds Gi to the end of queue

Qj . When Gi reaches the head of queue Qj , the GPM sends a commit message to the server.

3. When a server receives a commit message from the GPM, it submits a commit to the local

site. After the commit is done, it sends a commit-done message to the GPM.

4. If the GPM receives an abort vote or times out waiting for a vote from some server, it decides

to abort Gi and sends an abort message to all servers created for Gi.

For a two phase commit scheme to work, when a server enters the prepared state, it must be

in a position to comply with the decision of the GPM, even in the presence of failures. Since it

is possible for a site to fail while a server is in the prepared state, the server at a site must store

the updates made by Gi onto a stable storage before entering the prepared state. If the GPM

decides to commit Gi, but Gij gets aborted because of a site failure at Sj , then after Sj recovers,

17



Gij can be redone by installing the updates from the stable storage.

If the LDBSs provide a local prepare-to-commit operation that allows a server to force trans-

action log records into a stable storage and to abort or commit a transaction only after the GPM

makes that decision, then servers can make use of that operation and easily achieve atomicity.

So, we consider the case where the LDBSs do not provide such an operation. Reference [BST90]

discusses a method for ensuring atomicity and database consistency under failures in cases where

the local sites do not support prepare-to-commit operation locally. The method discussed in that

paper places restrictions on the accesses by global and local transactions so that consistency of

data can be guaranteed despite failures in the system. One way to avoid placing restrictions on

the accesses by transactions is to simulate the prepared-to-commit operation. We propose here

a method that provides a prepared-to-commit state for global transactions. At each site S in

the RDBS, the system includes an Auxiliary Recovery Manager (ARM) that maintains a

stable log, which we call the auxiliary log, for global transactions operating at S. The auxiliary

log, as opposed to a traditional write-ahead log [BHG87], contains only the \redo" information.

This is because, when a site fails before a global transaction commits, the global subtransac-

tion executed at that site is rolled back, thereby obviating the need for undo information in the

auxiliary log.

Step 1 of Phase III described above is modi�ed as follows. Suppose the server for global

transaction Gi at a site Sj receives a prepare-to-commit message from the GPM and decides to

commit Gi at Sj . The server requests the ARM at Sj to store the updates by Gij along with

its transaction id in the auxiliary log. The server then enters the prepared state by voting to

commit Gi. Step 2 is unchanged. In Step 3, after Gi is committed at Sj , the server for Gi at Sj

requests the ARM to write a commit-complete(Gi) entry in the auxiliary log, and then sends a

commit-done message to the GPM. In Step 4 of the protocol, if the GPM's decision is to abort

Gi, then the server informs the ARM to delete the log entry for Gi.

Now, suppose Sj fails at some point in time. After Sj recovers, the local recovery manager

restores the database. Then, the ARM examines the auxiliary log to see if any global transactions

were in the prepared state when the crash occurred. For each G in the prepared state, the ARM

sends a message to the GPM requesting the outcome of G. If the GPM decided to commit G,

then the ARM obtains the new values for the data items updated by G from the auxiliary log,

installs them and writes a commit-complete(G) in the log, thereby committing G at Sj . If the

GPM aborted G, the ARM deletes the log entry for G. If the GPM has not reached a decision

about Gi, then the ARM votes to commit Gi at Sj . Steps 2,3 and 4 of Phase III are carried as

before.

Note that if Gi commits at Sj , but the site failed before the ARM could write commit-

18



complete(Gi) in the auxiliary log, Gi will be redone. However, this does not cause inconsistencies

because the redo writes the same values that were written before the crash.

6.2 Handling Failure of the GPM

Since the GPM acts as a coordinator for all global transactions, in event of its failure, global

transactions may be aborted at local sites and no more global transactions can be executed until

the GPM recovers. In order to deal with failure, the GPM maintains a stable log, which we call

the GPM log. For each global transaction G executed, the GPM records in the log, ess(G)

and either a commit or an abort entry recording a decision to commit G (in Step 2 of the two

phase commit protocol) or abort G (in Step 4). After a global transaction commits at all sites,

the GPM writes a transaction-complete entry to the GPM log.

Each server sends an are-you-alive message to the GPM if it does not receive a message from

the GPM for a certain period of time. If the GPM does not respond to the are-you-alive message,

then the server senses failure of the GPM. In such a case, if it is not in prepared state, it aborts

the global transaction it is executing at the local site and aborts itself.

If a server is in a prepared state when it senses the failure of the GPM, it cannot abort

itself or the transaction G it is executing at the local site, since G may have committed at other

sites. In this case, the servers may wait for the GPM to recover or use a protocol similar to

the initiator's algorithm [BHG87] to recover from the failure. After the GPM recovers from

the failure, it creates for each site Sj , an empty queue Qj . It then inspects the GPM log. For

each commit entry of a global transaction Gi that does not contain a corresponding transaction-

complete entry in the GPM log, it adds Gi to each Qj where Sj 2 ess(Gi). Note that the GPM

adds global transactions to queues in the order in which their commit entries appear in the GPM

log. The GPM commits these global transactions as before.

6.3 Atomicity of ripple subtransactions

There are many approaches to ensuring the atomicity of ripple subtransactions. We discuss one

approach here. There are two major recovery issues involving ripple subtransactions. First, if

a site running a ripple subtransaction fails, upon recovery, these ripple subtransactions must be

performed. Second, if a site commits a transaction that updated a primary copy, and the site

fails before sending out the required ripple messages, upon recovery, these ripple messages must

be sent. Upon recovery, ripple messages are dealt with after the ARM completes the recovery of

global transactions.

When a site S� fails, the protocol manager at S� may or may not fail. We deal with these

two cases separately.

19



We �rst consider the case where the protocol manager does not fail when S� fails. In this

case, the protocol manager submits the ripple subtransactions for each ripple message that was

received but not committed, and sends ripple messages (if any) to other sites.

The case where the protocol manager also fails when S� fails is handled as follows. After S�

recovers, the protocol manager obtains the ripple messages sent to S� from other sites, and then

submits these ripple subtransactions. Let S1, ..., Sl be the sites such that each secondary data

item at S� has its primary copy at some Sj (1 � j � l). Then, there are secondary copies of

counter data items ct0
1�, ..., ct

0

l� at S� whose primary copies are located S1, ..., Sl respectively.

The protocol manager sends a ripple-request message to each of the Sj 's. The ripple-request

message includes the current value of ct0j� at S�. Next, the protocol manager at Sj forwards,

in the proper order, all ripple messages to S� that wrote a higher value for ctj� than the value

included in the ripple-request message. Finally, the protocol manager at S� forms and submits

these ripple subtransactions.

If a protocol manager at a site S� fails and recovers, it may have no knowledge of the

ripple messages it sent earlier. Let S1, ..., Sl be the sites that contain secondary copies of data

items whose primary copies are located at S�. Then, during recovery, the protocol manager

at S� obtains the value of counter ct0�j from each of the Sj (1 � j � l) and sends each Sj

ripple messages corresponding to the transactions that wrote a higher value of ct�j at S� and

committed prior to the failure.

7 Conclusions

A deferred update approach is supported by several commercial database systems, such as

SYBASE System 10, Oracle 7, CA-OpenIngres, and IBM Datapropagator Relational etc., to

maintain replica consistency in an e�cient manner. In a primary copy deferred update approach,

each replicated data item is assigned a primary copy site, and the other copies are referred to

as secondary copies. In an earlier paper [CRR96], we showed that database consistency is en-

sured in a system using the primary copy deferred update approach only if the corresponding

data placement graph satis�es an acyclicity condition. In this paper, we have investigated the

problem of executing global transactions that operate at multiple sites in a system utilizing the

primary copy deferred update mechanism. We presented two protocols, one for tree-structured

data placement graphs and the other for forest-structured data placement graphs. We showed

that both of these protocols guarantee global serializability. Further, these protocols preserve

execution autonomy of the concurrency control mechanisms at each site and introduce only a

small overhead on transactions that operate at a single site. We also presented a method for

tolerating arbitrary site failures and the failure of the GPM.

20



References

[AE90] D. Agrawal and A. El Abbadi, \Exploiting Logical Structures of Replicated
Databases," Inf. Proc. Lett., Vol. 33, No. 5, Jan. 1990, pp 255-260.

[AE92] D. Agrawal and A. El Abbadi, \The Generalized Tree Quorum Protocol: An E�cient
Approach to Managing Replicated Data," ACM TODS, Vol. 17, No. 4, Dec. 1992,
pp 689-717.

[BG84] P. A. Bernstein and N. Goodman, \An Algorithm for Concurrency Control and Re-
covery in Replicated Distributed Databases," ACM TODS, Vol. 9, No. 4, Dec. 1984,
pp 596-615.

[BHG87] P. A. Bernstein, V. Hadzilacos and N. Goodman, Concurrency Control and Recovery
in Database Systems, Addison-Wesley, Reading, MA, 1987.

[BS88] Y. Breitbart and A. Silberschatz, \Multidatabase Update Issues," Proc. of 1988 SIG-
MOD Conf., Chicago, IL, June 1988, pp. 135-142.

[BST90] Y. Breitbart, A. Silberschatz, and G. Thompson, \Reliable Transaction Management
in a Multidatabase System," Proc. of the 1990 ACM SIGMOD Conf., Atlantic City,
NJ, May 1990, pp. 215-224.

[BGS92] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz, \Overview of Multidatabase
Transaction Management," VLDB Journal, Vol 2, 1992, pp 181-239.

[CRR96] P. Chundi, D. J. Rosenkrantz, and S. S. Ravi, \Deferred Updates and Data Placement
in Distributed Databases", To appear in ICDE '96, New Orleans, LA, Feb 1996.

[Co93] M. Colton, \Replicated Data in a Distributed Environment," Proc. of 1993 ACM

SIGMOD Conf., Washington, DC, May 1993, pp 464-466.

[DEK+93] W. Du, A. Elmagarmid, W. Kim, and O. Bukhres, \Supporting Consistent Updates
in Replicated Multidatabase Systems", VLDB Journal, Vol. 2, No. 2, 1993.

[Gi79] D. K. Gi�ord, \Weighted Voting for Replicated Data," Proc. 7th SOSP, Dec. 1979,
pp 150-159.

[Go95] R. Goldring, \Things every update replication customer should know", Proc. of 1995
ACM SIGMOD Conf., San Jose, CA, May 1995, pp 439-440.

[Go94] R. Goldring, A discussion of Relational Database Replication Technology, InfoDB,
Vol.8, No.1, Spring 1994.

[GRS94] D. Georgakopoulos, M. Rusinkiewicz, and A. Sheth, \Using Tickets to Enforce the
Serializability of Multidatabase Transactions", IEEE Transactions on Knowledge and

Data Engineering, Vol. 6, No. 1, Feb 1994, pp 166-180.

[Ib94] IBM, An introduction to Datapropagator Relational, Release 2, Technical Document,
IBM, Dec 1994.

[JDE+94] Jin Jing, W. Du, A. Elmagarmid, and O. Bukhres, \Maintaining Consistency of
Replicated Data in Multidatabase Systems", Proc. International Conf. on Distributed

Computing Systems, 1994.

[KLS90] H. F. Korth, E. Levy, and A. Silberschatz, \ A Formal Approach to Recovery by
Compensating Transactions", Proc. of International Conf. on Very Large Databases,
Brisbane, Australia, 1990.

[Mo94] A. Moissis, \SYBASE Replication Server: A Practical Architecture for Distributing
and Sharing Corporate Information," Technical document, SYBASE Inc., March
1994.

[MP+93] N. Monserrat, T. Palanca, M. Deppe and B. Hartman, \Replication Server: A Com-
ponent of SYBASE System 10," Technical document, SYBASE Inc., April 1993.

21



[Or93] Oracle Corporation, \Oracle 7TM Symmetric Replication: Asynchronous Distributed
Technology," White paper, Sept. 1993.

[PL91] C. Pu and A. Le�, \Replica Control in Distributed Systems: An Asynchronous Ap-
proach," Proc. 1991 ACM SIGMOD Conf., Denver, CO, May 1991, pp 377-386.

[St95] D. Stacey, \Replication: DB2, Oracle, or Sybase?", SIGMOD Record, Vol. 24, No. 4,
Dec. 1995.

[Sc94] G. Schussel, \Database Replication: Playing Both Ends Against the Middleware,"
Client/Server Today, Nov.1994, pp 57-67.

[SKS91] N. R. Soparkar, H. F. Korth, and A. Silberschatz, \Failure-resilient Transaction Man-
agement in Multidatabases", IEEE Computer, 24(12), 1991, pp 28-36.

[St79] M. Stonebraker, \Concurrency Control and Consistency of Multiple Copies of Data
in Distributed INGRES," IEEE Trans. Soft. Engineering., Vol. SE-5, No. 3, May.
1979, pp 188-194.

[SN77] M. Stonebraker and E. Neuhold, \A Distributed Database Version of INGRES," Proc.
2nd Berkeley Workshop on Distributed Databases and Computer Networks, Berkeley,
CA, May 1977, pp 19-36.

[Sy] Sybase Corporation, \SYBASE Replication Server Technical Overview", White Pa-
per.

[Th79] R. H. Thomas, \AMajority Consensus Approach to Concurrency Control for Multiple
Copy Databases", ACM TODS, Vol. 4, No. 2, June 1979, pp 180-209.

[WV90] A. Wolski and J. Veijalainen, \2PC Agent Method: Achieving Serializability in Pres-
ence of Failures in a Heterogeneous Multidatabase", Proc. of the International Con-
ference on Database Parallel Architectures and Their Applications, Miami, FL, 1990

22


