
Replication and Consistency: 
Being Lazy HelDs Sometimes 4. 

Yuri Breitbart Henry F. Korth 
Bell Laboratories 

Lucent Technologies Inc. 

‘700 Mountain Avenue 

Murray Hill, NJ 07974 

yuri@beIl-labs.com 

BeII Laboratories 

Lucent Technologies Inc. 

‘700 Mountain Avenue 

Murray Hi, NJ 07974 

hfk@beII-labs.com 

Abstract 
The issue of data replication is considered in the context of 
a restricted system model motivated by certain distributed 
data-warehousing applications. A new replica management 
protocol is defined for this model in which gIobaI serializ- 
ability is ensured, while message overhead and deadlock fre- 
quency are less than in previously published work. The ad- 
vantages of the protocol arise from its use of a lazy approach 
to update of secondary copies of replicated data and the use 
of a new concept, virtual sites, to reduce the potential for 
conflict among global transactions. 

1 Introduction 

The problem of consistent access to replicated data 

has re-emerged as a challenge in recent years [CRR96, 
GHOS96, HHB96, PL91, SAB+96] with the advent of 
distributed data warehouses and data marts at the high 
end, and distributed data in often-disconnected mobile 
computers at the low end [KI96]. The fundamental 
problem, as identified by [GHOS96], is that the standard 
transactional approach to the propagation of updates to 
replicas is unstable - deadlocks increase as the cube of 

the number of network sites and as the fourth power of 
transaction size. This is particularly problematic with 
relatively long data-mining queries and with mobile 
transactions. The former access many data items; while 
the latter effectively live for a long period of time if 
the mobile computer is disconnected. Thus, deadlock 
is no longer a rare event with a negligible effect on 
performance; instead, it is a barrier to the ability of 
systems to scale up. 

at which update propagation is required. Lazy prop- 
agation effectively reduces transaction size but creates 
the possibility of two or more transactions committing 

conflicting updates to a data item if they operate on 
distinct replicas. For example, Tr could update data 
item d using the replica at site sr while Tz updates the 
replica of d at sz. Assume that both transactions com- 
mit. Only when updates are propagated is the conflict 

discovered by the system. Such conflicts require either 
the use of compensating transactions [KLSSO] or update 
reconciliation. Consistency can be ensured despite lazy 
propagation by directing all updates to a primary copy 

(called the lazy-master approach to update regulation in 

[GHOSSG]), and employing an appropriate concurrency- 
control protocol. “Appropriate” is the key word in the 
preceding sentence since lazy propagation may cause an 
update transaction to read “old” replicas of some data, 
resulting in an execution that generates an inconsistent 
database state, as the following example illustrates: 

Example 1: Consider a bank database for checking 
and savings accounts that is distributed over two sites, 

sr and sz. Site sr contains the primary copy of the 
checking-account relation and a replica of the savings- 

account relation. Site sz contains the primary copy 
of the savings-account relation and a replica of the 

checking-account relation. The bank requires only that 
the sum of a customer’s checking and savings accounts 

be positive. 

To ameliorate this problem, one may dispense with 
traditional “eager” propagation strategies (see, e.g., 
[Ho1811 for a survey), and employ instead a “lazy” ap- 
proach. Under lazy propagation, only one replica is up- 
dated by the transaction itself. A separate transaction 
runs on behalf of the original transaction at each site 
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Suppose that a husband and wife have joint checking 
and savings accounts and the current balances in these 
two accounts are $300 and $700, respectively. The 
husband withdraws $900 from the checking account 
using an ATM at si and, at approximately the same 
time, the wife withdraws $900 from the savings account 
using an ATM at sz. Due to the delay in update 
propagation resulting from the lazy approach, both 
transactions may succeed. However, after the updates 
are propagated, both accounts have a negative balance, 
violating the bank’s constraint that the sum of the 
balances must be positive. cl 

To avoid anomalies such as the one illustrated above 
and nevertheless guarantee global serializability, the 
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lazy-master approach must be augmented with one of 
the following: 

l Restrictions on how primary copies of data are 
selected[CRRSG]. 

l A global concurrency-control mechanism that mini- 
mizes coordination among sites. 

In this paper, we choose the latter approach and 
present an alternative approach to lazy propagation 
that has fewer deadlocks than the approach of [GHOSSG], 
permits local read-only transactions to run without the 
need to acquire global locks, permits substantial use of 
the local database system’s concurrency control for up- 
date transactions (for increased efficiency over global 
locking), and reduces the distributed transaction man- 
agement problem to that of maintaining a globally con- 
sistent graph (which we call the replication graph). 

In terms of the classifications defined in [GHOS96], 
we use master permission regulation and lazy update 
propagation. Previous protocols for managing updates 
within these assumptions [GHOS96] either fail to guar- 
antee both consistency and atomicity of the database 
or are subject to a prohibitive number of deadlocks, or 
both. We present a protocol based on our replication 
graph that ensures global serializability. 

Site failures in our approach are handled completely 
by relying on the local database system’s recovery 
manager. Singleton network partitions (as arise from 
the disconnection of a mobile computer) are easily 
managed. Only in the case of general partitions do we 
need to resort to blocking or reconciliation. 

2 Related Work 

Initial work on replicated databases has concentrated 
on the issues of how to guarantee global serializability 
and atomicity in the presense of site failure8 and 
communication failures[BHG87]. Global serializability 
can be achieved by using a distributed version of 
any protocol that guarantees serializability, such as 
two-phase locking or timestamp protocols[BHG87], in 
combination with one of the replica update propagation 
schemes (read-one, write-all or read-any, write-all- 
available, etc.). To ensure atomicity despite failures, 
the two-phase commit protocol is used. The various 
published protocols vary in their degree of central 
control and in the specific technique8 used[El177, Tho78, 
GS78, Min79]. Such approaches guarantee the ACID 
properties[GR93]. The problem, however, is that they 
are susceptible to deadlocks, transactions aborts, and 
site blocking. As the number of sites, data items, and 
the degree of replication grow, the frequency of these 
undesirable effects dramatically rises 

Recently, Gray et al.[GHOS96] have extended that 
work by proposing a taxonomy of replication manage- 
ment strategies, based on where an update may be ini- 
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tiated and how an update on one copy is propagated to 
the other copies. In particular, the paper introduces: 

l Regulation: Group permission, in which any site 
holding a replica may initiate an update, ver8u8 
master permission, in which only the primary site 
for the data item may initiate an update to that 
data item. 

l Propagation: Eager propagation by the update 
transaction itself, versus lazy propagation by a 
separate asynchronous transaction. 

The [GHOS96] protocol is discussed in detail in Sections 
5 and 6. 

Several authors considered the issues of global seri- 
alizability and ensuring atomicity without an atomic 
commit protocol [CRR96, SAB+96]. Their approach 
is based on either group or master permission and lazy 
replica propagation. The problems of deadlock, block- 
ing, and transaction aborts are present in this approach 
as well. More importantly, there are potential data in- 
consistencies resulting from certain copies of replicated 
data items holding obsolete data. Thus, there must be 
a mechanism that ensures data item replica convergence 
[GHOS96]. 

3 System Model and Assumptions 

Our system model is based on a data-warehousing appli- 
cation in which large databases (up to a few terabytes) 
are connected by a wide-area network. Our motivat- 
ing application uses much of the network capacity for 
the actual transfer of updates to sites holding replicas, 
Thus, network bandwidth is a scarce resource and the 
round-trip time for a message and acknowledgement is 
relatively large. Each site runs a database system lo- 
cally that can ensure the usual ACID properties [GR93] 
(including serializability). 

Transactions that run at only one site are called local 
transactions, while those that run at multiple sites are 
called global. Each transaction is restricted to read data 
at only one site - the site at which it originates, Thus, 
all read-only transactions are local transactions. This 
restriction is a consequence of the assumed network 
properties. In practice, if a transaction needs to read 
data not available locally, a local replica can be created 
outside of the transaction’s execution, but we do not 
concern ourselves with that issue here. 

Each data item has a primary copy located at a par- 
ticular site, called its primary site. Only transaction8 
originating at a data item’s primary site may update 
that data item. A variety of applications that we have 
studied fit within these restrictions; and, a8 we shall see, 
this restriction is key to the power of our replica man- 
agement protocol. Generally, any application in which 
each data item has a specific “owner” fits within our 
restrictions. 
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A transaction that updates at least one replicated 
data item is a global transaction. A global transaction 
is represented by several local sub-transactions - one 
for the transaction itself running at its origination site, 
and one for each site that holds replicas of one or 
more data items updated by the transaction. The sub- 
transactions running at remote sites on behalf of a 
global transaction do not begin executing until after 
the corresponding sub-transaction at the origination 
site has committed. For convenience of notation and 
discussion, we refer to all these transactions by the same 
name (e.g., Ti). Because of our lazy approach to update 
propagation, there is no global atomic commit; once 
x has committed at its origination site, it eventually 
commits independently at the other sites at which it 
runs. 

4 Replication Management Protocol 

Since each site’s local database system ensures serializ- 
ability, we could view our problem as one of coordinat- 
ing executions among these database systems. However, 
treating the local database systems as monolithic “black 
boxes” creates an artificially high degree of contention 
among global transactions [BGMS92]. For this reason, 
we divide each physical site into a dynamically chang- 
ing set of virtual sites and our replication management 
protocol provides global transaction management over 
the set of virtual sites. Local transaction management 
within each virtual site is provided by the database sys- 
tem running at the physical site containing the virtual 
site. Because our protocol is part of an integrated sys- 
tem, we are able to use transaction management infor- 
mation from the local transaction managers, unlike the 
case for multidatabase systems[BGMS92]. 

4.1 Transaction States 

In describing our protocol, we consider a transaction Ti 
to be in one of the following 4 global states at any point 
in time: 

aborted, if Ti has aborted at its origination site; 

active, if Ti is active at its origination site; 

committed, if Ti is committed at its origination 
site, but not yet in the completed state; 

completed, if at every site at which Ti executed 
Ti has committed and is not preceded (directly or 
indirectly) in that site’s local serialization order by 
a transaction that has not completed. 

In practice, there is, of course, a delay between the 
time at which a state transition occurs and the time 
remote sites are informed of the transition. While 
substantial delays of this sort would harm performance, 
we show in Section 7 that our protocol is robust in the 
face of arbitrary delays in the communication of state 
transitions. 

If transaction Ti is in the active or aborted state, 
then it has not executed any operations on replicated 
data items at any site except its origination site. From 
the active state, a transaction may transfer either into 
the aborted or committed state. Transactions cannot 
transfer directly into the completed state. When a 
transaction enters into the aborted state, it remains 
there. 

If a global transaction is in the committed state, 
then it may have performed some of its operations on 
secondary copies. From the committed state, a trans- 
action can be transferred only into the completed 
state. Observe that during the execution of a com- 
mitted transaction at sites other than its origination 
site, the subtransaction at that site can be aborted by 
the local DBMS. However, it would be restarted and 
reexecuted at the site so that it eventually commits at 
all sites. 

If a transaction Ti has committed at all sites at which 
it executes, then it does not have any other opera- 
tions. But it could be that some non-completed transac- 
tions precede Ti. Consequently, Ti is not necessarily in 
the completed state as the following example demon- 
strates. In the example, we use the notation ri(d) to 
denote an operation in which transaction Ti reads data 
item d. We use the notation 4(d) for a operation in 
which Ti writes data item d at site sj. We denote that 
Ti commits at site sj by 4. 

Example 2: Consider a database consisting of two 
sites: sr and ss. Site sr contains the primary copy of 
data items a, b, and c. Site ss contains a secondary copy 
of b and c. Consider the following three transactions: 

Z: rl(b), W(Q), w(b) 
7% %(a), w(c) 

T3: T3(b), TV 

Transactions Tl and T2 originate at ~1, while Ts 
originates at ss. Assume that the global execution order 
of the steps is as follows: 

rl(b), w:(a), w:(b), c:, a(b), w;(b), cf, 
Q(a), w$(c), ~4, w;(c), 4, TV, c$ 

Then, the following local schedules are generated at each 
site: 

31: n(b), w(a), w(b), cl, Tz(a), w2(4, ~2 

~2: n(b), wl(b), Cl, wz(c), c2, 7.3(c), c3 

It is simple to see that the above schedule is not globally 
serializable. TI precedes T2 at ~1, while, at sp, T2 
precedes T3 which precedes Tl. At the point where Tl 
has committed everywhere (just after c: in the global 
execution order), Ts is still active. By our definition, TI 
is not in the completed state, although it is committed 
everywhere. If a global concurrency control protocol 
chose no longer to worry about Tl at this point, it would 
not be possible to detect the nonserializability of the 
execution. Thus, our protocol retains such transactions 
until they enter the completed state. Cl 
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4.2 Virtual-Site Management 

Each transaction has a virtual site associated with it at 
each physical site at which it executes. This virtual site 
exists from the time the transaction begins until our 
protocol explicitly removes it from consideration. We 
denote the virtual site for 3 at physical site sj by VSij. 
The set of virtual sites is constructed and maintained 
based on the three rules below: 

l Locality rule. We require that each local transac- 
tion execute at precisely one virtual site. Thus, local 
transactions have only one virtual site. A global up- 
date transaction, however, has several virtual sites - 

,one at each physical site at which it executes. 

l Union rule. At every point in time, VSij must 
contain the set of data items at physical site sj that 
transaction Z has accessed1 up to that point. If an 
access to a data item d by Ti causes a conflict2 with 
Tk at physical site sj, then their virtual sites at site 
sj must be the same (i.e., V&j = VSkj) and must 
contain all data at sj accessed SO far by Ti or by Tk. 

The locality and union rules are requirements for cor- 
rectness. The next rule is aimed at necessary perfor- 
mance improvements for the protocol to be practical. 
The power of the protocol arises from keeping virtual 
sites as small as possible. Thus, when a transaction Ti 
enters the aborted or completed state, it is desirable 
to use this information to split or shrink virtual sites. 

l Split Rule. When physical site sj determines that 
X has entered either the aborted or completed 
state, any data items accessed exclusively by Ti are 
removed from VSij and the reilication protocol need 
no longer consider Ti. If there is no Tk distinct 
from Ti such that VSij = vskj, this effectively 
removes VSij . Otherwise, we may recompute the 
virtual sites at site Sj for all transactions Tk such 
that VSij = vskj using the locality and union 
rules. This computation can be optimized using 
transaction conflict information to reduce overhead. 

As we shall see once we introduce the replication graph, 
keeping virtual sites small is critical to our protocol. 
The overhead of the split rule is entirely that of local 
processing on a per-site basis. We shall see that it pays 
significant dividends in terms of global concurrency in 
the distributed system. 

4.3 Replication Graph 

We associate a replication graph with an execution to 
represent conflicts arising from updates to replicated 
data. There is a single, global replication graph for 

lA transaction is said to access a data item d at site s if it has 
esecuted a read of d at s or has execute a write of any replica of 
d regardless of site. 

2We assume the usual notion of con&t among reads and 
writes.[BHGS’I] 
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vs 1 
={a,b,c} VS,={b) VS3=(c) 

Figure 1: Acyclic Replication Graph for Example 3 

T1 T2 

vs 1 = Ia, b, cl VS2 = {b,c) 

Figure 2: Cyclic Replication Graph for Example 3 

the entire distributed system. For now, we assume 
perfect global knowledge of this graph, and relax this 
assumption later. A replication graph is an undirected 
bipartite graph RG =< T U V, E >, where T is a set 
of transactions and V is the set of all virtual sites for 
transactions in T. Edge < VSij ,Tk > belongs to E if 
and only if Tk performs a write operation on a replicated 
data item that is in VSij. 

We say that RG =< TU V, E > is a replication graph 
for a schedule S if T is the set of all transactions in 
S and V is constructed in compliance with the locality 
and union rules. We do not require that E be empty 
initially. Thus, replication graph for a global schedule 
is not necessarily unique, as is shown by the following 
example: 

Example 3: Consider a database consisting of two 
sites: sr and ss. Site sr contains the primary copy of a, 
b, and c. Site s2 contains a secondary copy of b and c. 
Consider the following three transactions: 

Z: n(b), WI(~), w(b) 
T2: 72(a), w2(4 

T3: ~3(c) 

Transactions Tr and T2 originate at sr, while T3 
originates at 9. 

Then the following local schedules may be generated 
at sites sr and 9: 

~1: rl(b), w:(a), w:(b), PZ(Q), w&(c) 
$2: w;(c), ~3(4, w;(b) 

A replication graph for global schedule given above is 
shown in Figure 1. An alternative replication graph is 
shown in Figure 2. The first of these graphs is acyclic 
while the second one is cyclic. 0 
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Theorem 1 Let S be a global schedule. If there is 
an acyclic replication graph for S, then S is globally 
serializable. 

Proof Sketch: If S is not globally serializable, then 
the union of the local serialization graphs must contain 
a cycle. Consider one such cycle, TO + Ti + . . . + 
T n-i 4 TO. Since each local site ensures serializability, 
there must be two or more global transactions in the 
cycle (otherwise the cycle is wholely contained within 
one local site). Let Ti and Tj be global transactions 
such that i < j, Ti + Ti+l + . . . --+ Tj-1 + Tj, 

and {Ti+l,Ti+2,. . -,Tj-1) are local transactions. Then 

?-i+1rZ+2,...,Tj-1 all execute at the same local site, 

which we denote Sk. Since Ti and Ti+l conflict, and Ti+l 
is local to Sk, Ti and Ti+l conflict at Sk. Likewise, Tj 
and Tj-1 conflict at Sk. Therefore, Vsik = VS(i+i),k = 
. . . = vSG-i),$ = vsjk and there exist edges in the RG 
between this virtual site and both Ti and Tj . A simple 
induction on the number of global transactions in the 
cycle (with 2 as a basis) proves that a cycle exists in 
any RG for S. q 

The above theorem provides a sufficient though not 
necessary condition for serializability. Non-necessity is 
shown by the example below: 

Example 4: Consider a database consisting of two 
sites: sr and ~2. Site si contains the primary copy of 
data item a. Site sz contains a secondary copy of a. 
Consider the following two transactions: 

Transactions Ti and T2 originate at si. Assume that 
the following schedules are generated at each site: 

s1: 44,ZU2(U),Cl,C2 

s2: w(+J2(+l,c2 

Clearly, the execution is globally serializable. However, 
just prior to the commit of Tl at sit the replication 
graph is cyclic. q 

As Theorem 1 suggests, our interest in the replication 
graph will be in checking for cycles as our protocol 
generates schedule S. Thus, in practice, we do not need 
to keep an entire replication graph for S, but rather it 
suffices to maintain a dynamic replication graph with 
the property that avoiding a cycle in this graph suffices 
to ensure serializability. 

From the replication graph definition, it follows that 
only global update transactions need be present among 
transactions nodes of the graph, since no edges could be 
incident upon other transaction nodes. Furthermore, it 
suffices to maintain the graph only over transactions 
that are in the active or committed states; that 
is, transactions can be ignored once they make a 
transition to either the aborted or completed states. 

Clearly, keeping virtual sites small and splitting them 
when possible reduces the frequency of cycles in the 
replication graph. We summarize these ideas in the 
statement of our Global Serializability (GS) Protocol 
below. 

4.4 The Protocol and Its Properties 

In this section, we state the Global Serializability (GS) 
Protocol using the above-defined notions of virtual sites 
and replication graphs. Following that, we state some 
results pertaining to the protocol. Our presentation is 
informal for the sake of brevity and intuitiveness. 

Protocol GS 
We begin by defining a test, which we call RGtest, 

that is applied by GS when a transaction Ti submits 
an operation at its origination site. The test consists 
of tentatively applying the locality and union rules to 
virtual sites in the replication graph and tentatively 
adding any edges that would be mandated by the 
definition of the replication graph. If no cycle results, 
the test succeeds and the tentative changes to the 
replication graph are applied. 

The protocol rules are as follows: 

1. 

2. 

3. 

4. 

If Ti submits a read or write operation at its 
origination site: 

If RGtest succeeds, allow the operation to exe- 
cute. 

If RGtest fails and Ti is local, z submits the 
abort operation. 

If RGtest fails and Ti is global, test the tentative 
replication graph to see if any cycle includes 
a transaction in the committed state. If so, 
Ti submits the abort operation, else the local 
subtransaction of Ti waits. 

If 2;- submits a write operation at a site other than 
its origination site, allow the operation to proceed. 

If Ti submits the commit operation, proceed with 
execution. If Ti is in the completed state, remove 
it by deleting it from the replication graph (if it was 
present) and applying the split rule. Check whether 
any waiting transactions can be activated or aborted 
as a result of rule 1. 

If Ti submits the abort operation at its origination 
site, remove all edges incident on Ti from the 
replication graph, and remove subtransactions of 
Ti from any waiting queues in which they appear. 
Apply the split rule. Check whether any waiting 
transactions can be activated. 

Protocol GS prevents the problem we illustrated in 
Example 1 by causing a cycle in the replication graph 
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at the point that the latter of the two transactions is 
attempted. To illustrate our protocol further, consider 
the following example: 

Example 5: Consider a database consisting of two 
sites: si and ss. Site si contains the primary copy of 
data items a, e, and f. Site ss contains the primary 
copy of data item c, and a secondary copy of data items 
e and f. Consider the following five transactions: 

T4: r4(e), 74(c) 
T5: e(c), 7.5(f) 

Transactions TI, Tz, and Ts originate at site sr, while 
transactions T4 and T3 originate at site ss. Note that 
Tl and T3 update replicated data whereas T2 and T4 are 
local update transactions (that is, they do not update 
replicated data). TS is a read-only transaction. Suppose 
that execution has proceeded at s1 and ss as indicated 
below: 

s1: n(a), w(f), cl, w2(a), r2(e), ~2, w3(e>, ~3 

S2: w3(e), c3, ?4(e), 2oq(c), ~4, ~5(c) 

The replication graph at this point is shown in Figure 
3. In the figure, T/S1 = V&J = I/&,1 = VS3,1, and 
VS2 = VS3,2 = VS4,s = V&,2, and VS3 = V&,2. 

Observe that after T3 has committed at both sites, it 
is not removed immediately from the graph. The reason 
is that T3 is preceded by Tl at site sr (Tl --f T3 + T3) 
and Tl is not yet committed at both sites. Data item 
e, which is accessed exclusively by local transaction T2 
remains in virtual site VSl even after T2 has committed. 
The reason is that Ts is preceded at site sr by Ti and 
TI is not yet committed at all sites. Likewise, data item 
c remains in virtual site VS2 after local transaction T4 
commits. 

Suppose that Ts submits its last operation, rs(f). In 
processing this operation, RGtest merges VS2 with 
VS3, thus creating a cycle. Therefore, RGtest fails 
and T5 is aborted. Observe that the cycle included 
Ti, which had committed at ss. Subsequently, Tl may 
execute its replica update for f (w;(f)) at site ss, all 
active transactions commit and complete, and Ts can 
be restarted. 0 

A transaction cannot be removed from the replication 
graph until it enters the completed state, even if it 
has committed at all sites. Recall that we have shown 
the necessity of this in Example 2. In fact, while 
local transactions are never nodes of the replication 
graph, they play a role in deciding whether a global 
transaction can be removed from the graph. The next 
two examples illustrate how local transactions affect the 
execution of global transactions by merging virtual sites. 
The first example also demonstrates that the chain of 
everywhere-committed and non-completed transactions 
in the replication graph can be arbitrary long. 
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Example 6: Consider a distributed database located 
at k Site% sl, S2,..., Sk. site Si (i = 2,3,,,.,h) 

contains the primary copy of data item ai and a 
secondary copy of the data item ai-1. Site si contains 
the primary copy of ai and a secondary copy of al;. 

Consider the following set of 21c transactions: 

z: W&i) (i = 1,2,. . . , h) 
Tktl: Tktl(Ul), rkt&k) 

Tk+i: Tk+i(ai), rkti(ai-1) (i = 2,3,. . .,k) 

Transactions Ti and T&.i originate at site si (i = 

1,2 , . . . , /c). Assume that the executions at sites sr and 
ss proceed as follows: 

Sl: %(QIl),Cl 

S2: ~2(~2),1"kt2(~2),~kt2(al), Ckt2r wl(al)ICl 

Assume that, at this point, transaction Tl is removed 
from the replication graph. Observe that Tr is not 
completed yet, since it is preceded in the serialization 
order at site ss by transaction Tz, which has not 
completed. 

Suppose that execution proceeds and the following 
local schedules are generated at sites sr, ~2, , . . , Sk, 

respectively: 

Sl: W(al), Cl, rktl(al), rk+l(Qk), Cktl, Wk(ak), Cktl 

S2: W2(02), C2, rkt2(~2),rk+2(~1), Ck-t.2, w(al), cl 

Sk: Wk(ak), Ck, r2k(ak),r2k(ak-l), C2kt Wk-l(Qk-1)r Ck-1 

The global schedule is not serializable, and would not 
have been generated under protocol GS. Under protocol 
GS, none of the transactions TI, T2, . . . , Tj, could have 
been removed after they had committed, since none 
of them would be in the completed state. In this 
situation, when the operation r&a&1) was submitted, 
protocol GS would abort T2k and the resulting schedule 
would be globally serializable. cl 

Observe that only global transactions can be present 
as nodes in the replication graph. However, read-only 
and local update transactions can delay removal of a 
global transaction from the replication graph for an 
arbitrarily long time, as demonstrated by the following 
example. 

Example 7: Let h > 0 be an even number. Consider 
a database consisting of (k + 2)/2 sites. Site si contains 
a secondary copy of data items ao, al, . . . , a&l. Site 

ss contains the primary copy of data items as and Q-1, 
Any other site si (i = 3,4, . . . , (Ic + 2)/2) contains the 
primary copy of as(i-s)-r and as+2). 

The following transactions originate at site si : 

X: ri(ai-I), ri(uj) (i = 1,3,. . . , /z - 1) 

The following transactions originate at site ss: 

--- 
- -Am I. - 1 - 

---. _I--- 



To: WO(~O> 
Tk: Wk(ak-1) 

Tk+1: ~k'k+&O)'+k-t&k-1) 

Note that TO and Tk are global. The following 

transactions originate at site Sj for j = 3,4,. . ., (k + 

2)/2: 

z: W&i.q), W&i) (i = 2,4,. . .) k) 

Suppose that the following schedules at sites ~1, 
s2, . . . Sk-1 were generated just before the operation 
rk+r(Uk-r) was submitted for execution (to simplify 

the presentation, we assume in this example that the 
transaction commits at the site as soon as it submits its 
last operation at the site): 

7=3(U3) , . . . ,Tk-l(Uk-Z), Wk-2(Uk-Z), Wk(Uk-1) 

s2: W&O), rk+l(UO), Tk+l(Uk-l), Wk(Uk-1) 

Sj: Wi(Ui-1)~ Wi(Ui) 

(i=2,4,..., X:and j=3,4,...,(lc+2)/2) 

None of the global update transactions have been 
removed by Protocol GS, since each time the global 
transaction is committed at all sites, there is either 
a read-only transaction that precedes it and is not 
completed, or there is another non-completed global 
transaction that precedes it. After operation Tk+r(Uk-r) 
is submitted, Protocol GS discovers a cycle in the 
replication graph and aborts Tk+r . After that all 
transactic , in the graph will be removed at the same 
time. cl 

Theorem 2 Protocol GS guarantees global serializabil- 
ity. 

Proof Sketch: Let S be a schedule generated by 
protocol GS that is not globally serializable. Then the 
serialization graph of S contains a cycle which we denote 
TO + Tr 4 . . . --f Tn-r --, TO. This results (by the 
technique used in the proof of Theorem 1) to a cycle in 
any replication graph for S of the form Go - VSo - G1 - 
. . . G,-1 - VS,-, - GO, where {Go,Gl, . . . , G,-1) is 
the set of global transactions in {TO, Tl, . . . , T,-r]. This 
cycle must have gone undetected by protocol GS due to 
one or more instances of 

l removal of a global transaction in the cycle, resulting 
in the removal of edges and applications of the split 
rule 

l removal of a local transaction in the cycle, resulting 
in an application of the split rule 

prior to the actual creation of the cycle. 
Let us consider the state of the system immediately 

before the first such transaction removal. Let Ti de- 
note that first transaction. Ti must have been in the 
completed state, and thus not preceded (directly or 
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Site s, 

VS2= (c, e) 

Site s2 

VS3 = {f) 

Figure 3: Replication Graph for Example 5. 

indirectly) by an active transaction in any local se- 
rialization order. Since, in the serialization graph, 
Ti-1 (mod n) + Ti, Tim1 trnod n) must have executed at 
some site in common with Ti. Therefore Ti-r (mod n) 
must have committed. If Ti-1 (mod n) has committed, 

then 'Z-2 (modn) must have started so that it could 
precede directly z-1 (mod n)- But if x-2 (mod n) 
started and cannot be active (due to Ti being com- 
pleted), it, too, must have committed. By a simple in- 
duction, all of {To, Tl, . . . , T,-1) have committed. But 

then the cycle Go - VSo - GI - . . . G,-1 - VS,-1 -Go 
must have existed prior to any transaction removals by 
protocol GS, contradicting Theorem 1. Cl 

5 Protocol GHOS 

In this section, we compare protocol GS with the 
protocol given in [GHOS96] (we term it protocol GHOS) 
that uses the lazy-master replication approach (as does 
protocol GS). In protocol GHOS, each transaction must 

request a read lock from the primary site of each data 
item that it reads. Transactions must submit update 
operations to the primary site of the data item being 
updated. Thus, read and update operations conflict 
at the primary site of the data item. Until an update 
is completed for all replicas of data item u, no other 
transaction can read a. Write operations on secondary 
copies are synchronized using the Thomas Write Rule 

(TWR) [BHG87]. Th us, in the terminology of [BHG87] 
the concurrency control mechanism uses the Thomas 
write rule to synchronize ww conflicts and a form of 
two-phase locking to synchronize TW and wr conflicts. 

The specific form of two-phase locking, which we term 
two-phase locking with respect to TeUdS, or 2PL-R, is 
as follows. A transaction must hold a shared lock on 
any data item it reads. A transaction may not request 
a shared lock if it has already released a shared lock. 
A transaction must obtain an exclusive lock on a data 
item prior to writing it. An exclusive lock obtained 
on a data item must be retained until all writes to 
all replicas are completed, at which time the lock is 
released. Note the two-phase requirement applies only 
to shared locks. There is no two-phase requirement 
pertaining to exclusive locks. 

In order to guarantee global serializability, protocol 



GHOS must use the strict 2PL-R protocol. That 
is, shared iocks must be held until the end of the 

completed everywhere. Because of lazy propagation, 

transaction. Otherwise, the global serializability may 
this cannot occur until TO commits at its origination 

be violated as the following example demonstrates: 
site. Therefore, To commits at its origination site 
before Tr does. 

Example 8: Consider a database consisting of two 
sites: si and ss. Site si contains the primary copy of 
data items a and d, and a secondary copy of data item 
b. Site s2 contains the primary copy of data items b and 
c, and a secondary copy of data item d. Let Ti, Ts, Ts, 
and T4 be transactions defined as follows: 

TI: n(a), w(d) 
572: et(b), w(a) 

Et: ~3(c), ~3(b) 

7’4: T&j, zoq(c) 

l ww: Write-write conflicts are handled in protocol 
GHOS by the Thomas Write Rule (TWR). The 
timestamps assigned by the TWR are based on 
commit time at the transaction’s origination site, If 
To 4 Ti, then To must have done its write before 
Tl (logically, at least, even though late writes are 
ignored under TWR). Thus, TO must have a lower 
timestamp than Tr and To must have committed at 
its origination site before Tl. 

Transactions Tr and T2 originate at site si and trans- 
actions Ts and T4 originate at site ss. Observe that 
transactions TZ and T4 are local update transactions 
and transactions Tr and Ts are global update transac- 
tions. 

We thus conclude that To must have committed at its 
origination site before Tr . A simple induction generates 
the contradiction that completes the proof. cl 

6 Deadlocks 

Suppose that transaction operations were submitted 
and executed in the following global order: 

$X4, $4, wi(c), 4, Tl’(a>, d(b), w:(a), 
c;, w:(b), c:, d(b), 4, w:(d), 4, w:(d), c: 

The resulting schedule is not globally serializable. 
However, the above schedule can be generated by 
non-strict SPL-R. Including the strictness requirement 
suffices to rule out the above schedule. 

It is interesting to note that the above global schedule 
results in local schedules that are locally feasible under 
standard two-phase locking. We show these schedules 
below: 

The deadlock phenomenon in our protocol differs from 
traditional deadlock. Waits in protocol GS are induced 
by an operation that would cause a cycle in the 
replication graph. Such waiting transactions are not 
waiting for a specific transaction to “go awayI)) but 
rather they are waiting for any transaction in the cycle 
to be removed or any virtual site to be split in a way 
that breaks the cycle. This motivates a more general 
definition of deadlock that applies both to protocol GS 
and to the standard notion of deadlock as it exists in 
lock-based protocols in the local database systems3 

~1: n(a), m(b), w(a), ~2, w(b), ~3, wl(d), CI 
32: ~3(c), r&j, w4(c), ~4, w(b), ~3, wl(d), cl 

cl 

6.1 Definition of Deadlock 

A set D of transactions is said to be in deadlock if every 
transaction in D has submitted an operation that either 

1. waits for another member of D within the concur- 
rency control of some local database system, 

Theorem 3 Protocol GHOS guarantees global serializ- 
ability 

Proof Sketch: Assume there exists a nonserializable 
schedule generated by protocol GHOS. Then, there 
exists a cycle in the serialization graph of the form: 

2. waits under protocol GS due to RGtest generating 
a cycle involving only transactions in D (and their 
associated virtual sites). 

To + Tl --f . . . --f Tn-1 ---f To 

For simplicity in our discussion, we shall always 
assume that a deadlock set is minimal. The following 
example illustrates a deadlock caused by protocol GS: 

Consider To and Ti. Since TO --f Tl, To and Tl must 
conflict on some data item, d. We consider the three 
possible types of conflicts: 

l TW: If To reads d before Tr writes it, then Tl cannot 
have accessed d until To releases its shared lock on d 
when it commits. Therefore, To commits before TI 
commits anywhere. 

Example 9: Consider a database located at three 
sites. Site sr contains the primary copy of data items a 
and c, and a secondary copy of data items d and e. Site 
ss contains the primary copy of data items b and d and 
a secondary copy of data item a. Site ss contains the 
primary copy of data item e, and a secondary copy of 
data items b and c. 

Let TI, T2, and T3 be transactions originating at sites 
sr, ss, and s3, respectively and defined as follows: 

l WK If Tr reads the value of d written by To, then 
it must wait until To releases its exclusive lock 
on d. This cannot happen until the write has 

3We assume that all local waits arise from data-item conflicts, 
That is, if Tl waits for T2, then they confiict on some data item 
and T2 accessed that data item first. 
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vs 1 = (a.44 VS2= (a,b} VS 3 = (b,c) 

Site s, Site s2 Site s3 

Figure 4: Replication Graph for Example 9 

Z: n(d), n(e), w(a), w(c) 
T2: ~2(4, 7~~2@), 7~~2(4 

7’3: I, m(c), de) 

Suppose that, so far, transaction operations ri(d), rr(e), 
~~(a), Q(U), urs(b), ~$6) and Q(C) were submitted and 
executed at sites of their origination. This execution 
generates the local schedules shown below: 

~1: n(d), n(e), 44 
s2: 7.2(a), 7JJz(b) 

s3: 7.3(b), 7.3(c) 

The replication graph at the point is as shown in Figure 
4. When Tl submits TQ(C) at site sr, protocol GS will 
make Tr wait, since otherwise the cycle TI - vsg - T2 - 
vss - Tl would occur in the replication graph. When T2 
submits wz(d), it will have to wait too, since otherwise 
the cycle Tl - vsr - T2 - vss - Tr would occur. Finally, 
when T3 submits ws(e), it also will have to wait since 
otherwise, the cycle TI - vsl - T3 - 21.~3 - T2 - vsz - TI 
would occur. Consequently, none of these transactions 
can proceed, and a deadlock occurs. cl 

Due to our model’s restrictions on the types of 
transactions that may execute, any distributed deadlock 
- that is, a deadlock involving more than one site - 
must involve at least one global transaction. As a 
consequence of our use of lazy update propagation, a 
global transaction executes at only its origination site 
until it has committed there. Subsequently, it runs 
independent subtransactions at each local site at which 
it must propagate updates. Thus, no wait involving a 
global transaction spans more than one local database 
system unless the wait is due to protocol GS. Thus, our 
definition of deadlock takes into account all possible 
waits, and, therefore, all possible deadlocks. Another 
fortunate consequence of the above argument is that no 
distributed deadlock may consist entirely of committed 
transactions. 

We shall use the term local deadlock to refer to non- 
distributed deadlock. 

6.2 Managing Deadlocks 

Deadlocks involving only waits within one local database 
system are managed by that DBMS. We shall not con- 
cern ourselves with the specific manner in which these 
deadlocks are managed. 

Deadlocks that involve waits generated by protocol 
GS are particularly difficult to detect. In a standard 
wait-for graph, a straightforward cycle detection algo- 
rithm can be executed. However, waits generated by 
part 2 of our definition of deadlock are waits for any 
member of the cycle found by RGtest, not all of them 
and not any specific one. To detect such deadlocks al- 
gorithmically, we thus need to create an and/or graph 
of waits. Deadlock detection in such graphs has been 
studied previously [CMH83, KKNR83]. In practice, we 
wouId avoid this complexity by implementing a timeout- 
based scheme to abort transactions that have been wait- 
ing “too long,” and are therefore likely to be in deadlock. 
Such an approach to deadlock management is accept- 
abIe only if those deadlocks that are not exclusive to 

local database systems occur very infrequently. As we 
shah see below, this is indeed the case - global deadlock 
under our protocol is much less likely asymptotically 
than deadlock within a local database system. 

As we have noted earlier, sub-transactions that up- 
date secondary copies of data may be aborted and 
restarted as needed. Thus, local deadlocks involv- 

ing sub-transactions of committed global transactions 
present no difficulties. 

6.3 Probability of Deadlock in Protocol GS 

We begin our consideration of deadlock probability by 

showing that deadlock sets must have cardinality 3 or 
greater unless the deadlock is local. 

Theorem 4 Assume that in any local database system, 
waits result only from data-item conflicts (as in locking). 
Let Tl, Tz, . . . , Tt be a set of global transactions that are 
involved into a distn’buted deadlock. Then t > 2. 

Proof Sketch: Consider a deadlock set D. If D 
contains only one global transaction, then the deadlock 
must be contained within one local database system 
and not involve protocol GS. Such a deadlock is not 
a distributed deadlock. 

Next consider the case that D contains exactly two 
global transactions: Ti and T2. 

First consider the case where Tr and T2 originate at 
the same site. If Tl waits for T2 at site Sk, and the 
conflict includes a replicated data item, then Tl and T2 
are in a cycle in the replication graph. Since such cycles 
are forbidden by protocol GS, any deadlock must be 
local. 

Next, assume Tl and T2 originate at distinct sites, 
sr and ss, respectively. Then, they cannot update 
any data items in common (since only primary copies 
can be updated directly). If they conflict directly or 
indirectly at sr, their virtual sites must be the same 

(VSl = V&l = V&J) and must include a replicated 
data item. Thus, there must be a path Tr - VSI -T2 in 
the replication graph. A similar situation at ss would 
cause a cycle in the graph and be forbidden. Thus any 
deadlock must either be local or include some virtual 
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site at a third physical site Sk. But then any conflict 
at Sk involving Tr and TZ must include a replicated 
data item (since neither transaction originated at Sk), 
and such conflicts create a path TI - VS2 - T2 in 
the replication graph (where (vsz = V&,k = v&,k). 
Therefore, any distributed deadlock must be preceded 
by a cycle in the replication graph, and protocol GS 
disallows this. Cl 

We now consider the probability of deadlocks that 
involve protocol GS. In order to simplify our analysis, 
we make several assumptions: 

l There are n transactions that are not yet completed, 
and all these transactions are global. 

l Each transaction accesses T data items. 

l There are m data items, all of which are fully 
replicated at each physical site. 

l Data accesses are uniformly distributed, and all 
accesses are writes. 

l Each transaction is half-executed and, thus, has 
accessed r/2 data items. 

The uniformity assumptions ignore the possibility of hot 
spots. One may view the m data items as being the 
hot spots and, likewise, the r accesses by a transaction 
as being its accesses to hot spots. Overall, the above 
assumptions will cause us to overstate the probability 
of deadlock since, in practice, there would be read 
operations, not all data would be replicated, and data 
that is replicated would not all be fully replicated. Our 
assumptions, though pessimistic, correspond to those of 
[GHOS96, GHK081]. 

Because of our assumption of update-only transac- 
tions, there is a path in the replication graph-between 
a pair of transactions if and only if they conflict di- 
rectly or indirectly on data accesses. The probability 
that an operation submitted by Ti conflicts with some 
already-submitted operation of Tj is $. The proba- 
bility that any remaining unsubmitted operation of Ti 
conflicts with some already-submitted operation of Tj is 

slightly less that & (and equal if we ignore the chance 
that two transactions may have more than one opera- 
tion in conflict). 

Now consider a chain To -TI - . . . -Tt-1 such that Ti 
conflicts with Z+r for i = 0, 1, . . .,-t-2. The probability 
of such a’chain is 

p2 t-1 

( > 4m 

Now consider a set D = {To, TI, . . . ,Tt,l} and consider 
the probability that this set is a deadlock set. Each 
transaction in D must have submitted an operation 
that would cause a cycle in the replication graph. 
Thus, there must be an ordering of D such that for 
i = 0, 1, . . . , t - 2, Ti and Ti+l share a virtual site 

and, therefore, conflict. Without loss of generality, we 
assume that the transactions in D are so numbered. 

The probability that an operation submitted by a 
transaction in D conflicts with another transaction in 
D is bounded above by 9 for T2, Ta, . . . , Tt-2, and 

by e for TI and Tt-1. The (t - 2) factor arises 
from Theorem 4, which implies that in a conflict chain 
To-TI-...- Tt-1, if Ti has submitted an operation on 
replicated data conflicting with Ti+l, then Ti+l cannot 
have caused a deadlock by submitting an operation 
conflicting with Ti. 

Thus, the probability that D is a deadlock set is the 
probability that there is a chain of conflicts To - Tl - 
. . . -Tt-r times the probability that each Ti submits an 
operation conflicting with some other transaction Tj, 
This probability is bounded above by 

Observe that, as expected from Theorem 4, this 
probability is zero for t = 1 and t = 2. 

For simplicity, we weaken our upper bound as follows: 

(zJ-‘(~)’ 

Combining terms, we get: 

,3t-2tt 

To obtain the overall probability of deadlock, we need 
to consider not only one set D of t transactions, but 
rather, all ways that such a set oft transactions can be 
chosen. Since there are n transactions, for each value of 
t there are (7) sets to consider. This gives 

n 
n 

a1 

,3t-2tt 

t=3 t 23t-2m2t-1 

The summations starts at 3 because we already know 
that the probability is zero for t = 1 and t = 2. 
Assuming nr << m (a reasonable assumption)l the 
t = 3 term dominates in the sum. We thus conclude 
that the probability that the system is in distributed 
deadlock is 

n3r7 
PDgs =O - 

( > m5 

The probability that a given transaction deadlocks is 
PD/k. 

4 Without this assumption the overall contention rate is so high 
that one would impose admission control on transactions, and, as 
a result ensure that nr << m. 
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6.4 Comparison With Protocol GHOS 

To put this result in perspective, we compare it to that 
of [GHOS96], which relies on global strict locking (2PL- 
R). In [GHOS96] the probability that the system is in 
deadlock is (using our notation)‘: 

n2r4 
pD,hos = 0 7 

( ) 

The ratio of the probability of distributed deadlocks in 
our protocols to that of [GHOS96] is: 

PDgs _ n3r7/rn5 _ nr3 

pD,h,,- n2r4/m2 m3 

This difference is significant since nr << m. 
Unlike our protocol, [GHOSSG] relies on global two- 

phase locking, and thus, the asymptotic probability of 
deadlock is the same as in any lock-based system (e.g. 
[GHKON]). In our protocol, the probability of purely 

local deadlocks is 0 $$ as in [GHOS96], but the 
( > 

probability of distributed deadlock is much less than 
in [GHOSSG]. The source of this difference is our use 
of the replication graph and virtual sites to eliminate 
distributed deadlock cycles of length 2, the likeliest 

kind. 
We show below that if protocol GS deadlocks then so 

does protocol GHOS. 

Theorem 5 If both protocols GHOS and GS have 
executed a prefix of a schedule for transaction set T = 
{Z,T2,..., Tk) and all members of T are active, then if 
protocol GS deadlocks at this point, then so does protocol 
GHOS. 

Proof Sketch: Consider an execution of transactions 
in the two protocols. Assume that so far the execution 
order is the same for both algorithms. Tl,T2, . . ., Tk 
active transctions that are in a deadlock as a result of 

protocol GS. This means that the operation submitted 
by each member of T creates a cycle in the replication 
graph. A cycle in the replication graph can be created 
for one of the two reasons: 

1. a new edge is introduced that creates a cycle; 

2. two virtual sites are merged as a result of the union 
rule 

In the first case, the introduced edge indicates that 
there is a conflict between active transactions at some 
virtual site. Since transactions are active, the lazy 
updates at secondary sites have not yet begun and thus 
exclusive locks taken by protocol GHOS could not have 
been released yet. Therefore, protocol GHOS causes a 
wait in this case as well. In the second case, consider 
the transaction Ti waiting due to a virtual-site merger 

5Unlike [GHOS96], we include all transactions in n; and thus, 
we do not have a separate variable for the number of sites. 

that lead to a cycle in the tentative replication graph 

of RGtest. There must be a conflict (directly or 

indirectly) between Ti and the transaction with whose 
virtual site a merger is being attempted. Thus, under 
protocol GHOS, Ti would wait as well. Cl 

It is easy to design an example of a schedule where 
protocol GHOS would deadlock while protocol GS 

would not. 

7 Fault Tolerance 

Our protocol is robust in the presence of site failures, 
though it cannot handle network partitions. If a site 
fails, we assume that the local database system recovers 

correctly. Thus, no committed local transactions 
are lost. Any sub-transactions that were performing 
updates to secondary copies and that were active during 
a failure can be resubmitted. 

Since a failed site cannot do any work before it 
recovers, it cannot take any action to change the 
replication graph while it is down. Thus, other sites 
may proceed. Of course, global transactions that cannot 
complete due to a site failure must remain in the 
replication graph, thus causing blocking. 

In the event of a network partition, each partition 
may modify the replication graph, resulting in inconsis- 

tency. 

Finally, we note that our reliance on local DBMSs for 
recovery simplifies the problem of recovery at the global 
level. A site needs to maintain an accurate view of the 
replication graph only as it pertains to its virtual sites 

and to transactions originating at that site in order to 
enable recovery. Suppose that a site s1 crashes. Upon 
recovery, any transaction that was active at sr but did 
not originate at sr must be completed by accessing the 
primary copy of the data the failed transaction was 
updating. 

8 Performance Issues 

The key determinant of the practicality of our protocol 
is the overhead of maintaining the replication graph. If 
we assume centralized graph maintenance and compare 
this with centralized global locking, we can show that 
graph maintenance requires fewer messages since 

1. only global writes generate new edges, and 

2. updates to VSij can be generated only by site ej, 
so a site need perform graph maintenance globally 
only if it determines locally that virtual sites must 
be merged. Furthermore, by propagating only paths 
between transactions globally, local sites can avoid 
the need to distribute the actual set of data items in 
each virtual site. 

The split rule can be applied lazily to conserve network 
resources. 



Clearly, centralized graph maintenance may present 
problems of performance and recoverability. To enhance 
performance, we may use an optimistic approach in 
which updates to the replication graph are distributed 
to the physical sites on a best-effort basis. Prior to 
transaction commit, a validation test is run and, if the 

transaction is in a cycle, it is aborted. 
Performance studies to test tradeoffs between opti- 

mism and pessimism are underway. We are also study- 
ing the performance of a Zversion scheme which ensures 
that read-only transactions are never delayed. 

9 Conclusion 

We have presented a protocol for managing replicated 
data that offers lower message overhead and asymptoti- 
cally fewer deadlocks than previous results. Our proto- 
col ensures serializability and is robust in the presence of 
site failures. Two concepts are key to our protocol. One 
is the use of virtual sites instead of physical sites and 
the dynamic management of virtual sites to keep them 
small. The second is the replication graph, which, in 
effect, reduces the problem of replica management over 
a large set of data items to the problem of managing a 
global graph whose size is on the order of the number 
of global transactions executing at a given time. 
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