
Replication and Consistency:
Being Lazy HelDs Sometimes 4.

Yuri Breitbart Henry F. Korth
Bell Laboratories

Lucent Technologies Inc.

‘700 Mountain Avenue

Murray Hill, NJ 07974

yuri@beIl-labs.com

BeII Laboratories

Lucent Technologies Inc.

‘700 Mountain Avenue

Murray Hi, NJ 07974

hfk@beII-labs.com

Abstract
The issue of data replication is considered in the context of
a restricted system model motivated by certain distributed
data-warehousing applications. A new replica management
protocol is defined for this model in which gIobaI serializ-
ability is ensured, while message overhead and deadlock fre-
quency are less than in previously published work. The ad-
vantages of the protocol arise from its use of a lazy approach
to update of secondary copies of replicated data and the use
of a new concept, virtual sites, to reduce the potential for
conflict among global transactions.

1 Introduction

The problem of consistent access to replicated data

has re-emerged as a challenge in recent years [CRR96,
GHOS96, HHB96, PL91, SAB+96] with the advent of
distributed data warehouses and data marts at the high
end, and distributed data in often-disconnected mobile
computers at the low end [KI96]. The fundamental
problem, as identified by [GHOS96], is that the standard
transactional approach to the propagation of updates to
replicas is unstable - deadlocks increase as the cube of

the number of network sites and as the fourth power of
transaction size. This is particularly problematic with
relatively long data-mining queries and with mobile
transactions. The former access many data items; while
the latter effectively live for a long period of time if
the mobile computer is disconnected. Thus, deadlock
is no longer a rare event with a negligible effect on
performance; instead, it is a barrier to the ability of
systems to scale up.

at which update propagation is required. Lazy prop-
agation effectively reduces transaction size but creates
the possibility of two or more transactions committing

conflicting updates to a data item if they operate on
distinct replicas. For example, Tr could update data
item d using the replica at site sr while Tz updates the
replica of d at sz. Assume that both transactions com-
mit. Only when updates are propagated is the conflict

discovered by the system. Such conflicts require either
the use of compensating transactions [KLSSO] or update
reconciliation. Consistency can be ensured despite lazy
propagation by directing all updates to a primary copy

(called the lazy-master approach to update regulation in

[GHOSSG]), and employing an appropriate concurrency-
control protocol. “Appropriate” is the key word in the
preceding sentence since lazy propagation may cause an
update transaction to read “old” replicas of some data,
resulting in an execution that generates an inconsistent
database state, as the following example illustrates:

Example 1: Consider a bank database for checking
and savings accounts that is distributed over two sites,

sr and sz. Site sr contains the primary copy of the
checking-account relation and a replica of the savings-

account relation. Site sz contains the primary copy
of the savings-account relation and a replica of the

checking-account relation. The bank requires only that
the sum of a customer’s checking and savings accounts

be positive.

To ameliorate this problem, one may dispense with
traditional “eager” propagation strategies (see, e.g.,
[Ho1811 for a survey), and employ instead a “lazy” ap-
proach. Under lazy propagation, only one replica is up-
dated by the transaction itself. A separate transaction
runs on behalf of the original transaction at each site

Permission to make digital/hard copies of all or part of this material for
Personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or wmmerci’al advantage, the copy-
right notice. the title ofthe publication and its date appear, and notice is
given that copyn’&t is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission antior fee
PODS ‘97 Tuaon Arizona LISA

Suppose that a husband and wife have joint checking
and savings accounts and the current balances in these
two accounts are $300 and $700, respectively. The
husband withdraws $900 from the checking account
using an ATM at si and, at approximately the same
time, the wife withdraws $900 from the savings account
using an ATM at sz. Due to the delay in update
propagation resulting from the lazy approach, both
transactions may succeed. However, after the updates
are propagated, both accounts have a negative balance,
violating the bank’s constraint that the sum of the
balances must be positive. cl

To avoid anomalies such as the one illustrated above
and nevertheless guarantee global serializability, the

Copyright I997 ACM O-89791-910-6/97/05 ..$3.50

173

lazy-master approach must be augmented with one of
the following:

l Restrictions on how primary copies of data are
selected[CRRSG].

l A global concurrency-control mechanism that mini-
mizes coordination among sites.

In this paper, we choose the latter approach and
present an alternative approach to lazy propagation
that has fewer deadlocks than the approach of [GHOSSG],
permits local read-only transactions to run without the
need to acquire global locks, permits substantial use of
the local database system’s concurrency control for up-
date transactions (for increased efficiency over global
locking), and reduces the distributed transaction man-
agement problem to that of maintaining a globally con-
sistent graph (which we call the replication graph).

In terms of the classifications defined in [GHOS96],
we use master permission regulation and lazy update
propagation. Previous protocols for managing updates
within these assumptions [GHOS96] either fail to guar-
antee both consistency and atomicity of the database
or are subject to a prohibitive number of deadlocks, or
both. We present a protocol based on our replication
graph that ensures global serializability.

Site failures in our approach are handled completely
by relying on the local database system’s recovery
manager. Singleton network partitions (as arise from
the disconnection of a mobile computer) are easily
managed. Only in the case of general partitions do we
need to resort to blocking or reconciliation.

2 Related Work

Initial work on replicated databases has concentrated
on the issues of how to guarantee global serializability
and atomicity in the presense of site failure8 and
communication failures[BHG87]. Global serializability
can be achieved by using a distributed version of
any protocol that guarantees serializability, such as
two-phase locking or timestamp protocols[BHG87], in
combination with one of the replica update propagation
schemes (read-one, write-all or read-any, write-all-
available, etc.). To ensure atomicity despite failures,
the two-phase commit protocol is used. The various
published protocols vary in their degree of central
control and in the specific technique8 used[El177, Tho78,
GS78, Min79]. Such approaches guarantee the ACID
properties[GR93]. The problem, however, is that they
are susceptible to deadlocks, transactions aborts, and
site blocking. As the number of sites, data items, and
the degree of replication grow, the frequency of these
undesirable effects dramatically rises

Recently, Gray et al.[GHOS96] have extended that
work by proposing a taxonomy of replication manage-
ment strategies, based on where an update may be ini-

174

tiated and how an update on one copy is propagated to
the other copies. In particular, the paper introduces:

l Regulation: Group permission, in which any site
holding a replica may initiate an update, ver8u8
master permission, in which only the primary site
for the data item may initiate an update to that
data item.

l Propagation: Eager propagation by the update
transaction itself, versus lazy propagation by a
separate asynchronous transaction.

The [GHOS96] protocol is discussed in detail in Sections
5 and 6.

Several authors considered the issues of global seri-
alizability and ensuring atomicity without an atomic
commit protocol [CRR96, SAB+96]. Their approach
is based on either group or master permission and lazy
replica propagation. The problems of deadlock, block-
ing, and transaction aborts are present in this approach
as well. More importantly, there are potential data in-
consistencies resulting from certain copies of replicated
data items holding obsolete data. Thus, there must be
a mechanism that ensures data item replica convergence
[GHOS96].

3 System Model and Assumptions

Our system model is based on a data-warehousing appli-
cation in which large databases (up to a few terabytes)
are connected by a wide-area network. Our motivat-
ing application uses much of the network capacity for
the actual transfer of updates to sites holding replicas,
Thus, network bandwidth is a scarce resource and the
round-trip time for a message and acknowledgement is
relatively large. Each site runs a database system lo-
cally that can ensure the usual ACID properties [GR93]
(including serializability).

Transactions that run at only one site are called local
transactions, while those that run at multiple sites are
called global. Each transaction is restricted to read data
at only one site - the site at which it originates, Thus,
all read-only transactions are local transactions. This
restriction is a consequence of the assumed network
properties. In practice, if a transaction needs to read
data not available locally, a local replica can be created
outside of the transaction’s execution, but we do not
concern ourselves with that issue here.

Each data item has a primary copy located at a par-
ticular site, called its primary site. Only transaction8
originating at a data item’s primary site may update
that data item. A variety of applications that we have
studied fit within these restrictions; and, a8 we shall see,
this restriction is key to the power of our replica man-
agement protocol. Generally, any application in which
each data item has a specific “owner” fits within our
restrictions.

-- -~ -7 --CT-.-, ,_._ I ,,.I .-. e,&.-l -. ,_ . ,. _.., ,-_,. -:.-- .“>.S . J ._ _ . . i I. -, -,
, .-

__.___~___ ..--

IL.
--. ---~

A transaction that updates at least one replicated
data item is a global transaction. A global transaction
is represented by several local sub-transactions - one
for the transaction itself running at its origination site,
and one for each site that holds replicas of one or
more data items updated by the transaction. The sub-
transactions running at remote sites on behalf of a
global transaction do not begin executing until after
the corresponding sub-transaction at the origination
site has committed. For convenience of notation and
discussion, we refer to all these transactions by the same
name (e.g., Ti). Because of our lazy approach to update
propagation, there is no global atomic commit; once
x has committed at its origination site, it eventually
commits independently at the other sites at which it
runs.

4 Replication Management Protocol

Since each site’s local database system ensures serializ-
ability, we could view our problem as one of coordinat-
ing executions among these database systems. However,
treating the local database systems as monolithic “black
boxes” creates an artificially high degree of contention
among global transactions [BGMS92]. For this reason,
we divide each physical site into a dynamically chang-
ing set of virtual sites and our replication management
protocol provides global transaction management over
the set of virtual sites. Local transaction management
within each virtual site is provided by the database sys-
tem running at the physical site containing the virtual
site. Because our protocol is part of an integrated sys-
tem, we are able to use transaction management infor-
mation from the local transaction managers, unlike the
case for multidatabase systems[BGMS92].

4.1 Transaction States

In describing our protocol, we consider a transaction Ti
to be in one of the following 4 global states at any point
in time:

aborted, if Ti has aborted at its origination site;

active, if Ti is active at its origination site;

committed, if Ti is committed at its origination
site, but not yet in the completed state;

completed, if at every site at which Ti executed
Ti has committed and is not preceded (directly or
indirectly) in that site’s local serialization order by
a transaction that has not completed.

In practice, there is, of course, a delay between the
time at which a state transition occurs and the time
remote sites are informed of the transition. While
substantial delays of this sort would harm performance,
we show in Section 7 that our protocol is robust in the
face of arbitrary delays in the communication of state
transitions.

If transaction Ti is in the active or aborted state,
then it has not executed any operations on replicated
data items at any site except its origination site. From
the active state, a transaction may transfer either into
the aborted or committed state. Transactions cannot
transfer directly into the completed state. When a
transaction enters into the aborted state, it remains
there.

If a global transaction is in the committed state,
then it may have performed some of its operations on
secondary copies. From the committed state, a trans-
action can be transferred only into the completed
state. Observe that during the execution of a com-
mitted transaction at sites other than its origination
site, the subtransaction at that site can be aborted by
the local DBMS. However, it would be restarted and
reexecuted at the site so that it eventually commits at
all sites.

If a transaction Ti has committed at all sites at which
it executes, then it does not have any other opera-
tions. But it could be that some non-completed transac-
tions precede Ti. Consequently, Ti is not necessarily in
the completed state as the following example demon-
strates. In the example, we use the notation ri(d) to
denote an operation in which transaction Ti reads data
item d. We use the notation 4(d) for a operation in
which Ti writes data item d at site sj. We denote that
Ti commits at site sj by 4.

Example 2: Consider a database consisting of two
sites: sr and ss. Site sr contains the primary copy of
data items a, b, and c. Site ss contains a secondary copy
of b and c. Consider the following three transactions:

Z: rl(b), W(Q), w(b)
7% %(a), w(c)

T3: T3(b), TV

Transactions Tl and T2 originate at ~1, while Ts
originates at ss. Assume that the global execution order
of the steps is as follows:

rl(b), w:(a), w:(b), c:, a(b), w;(b), cf,
Q(a), w$(c), ~4, w;(c), 4, TV, c$

Then, the following local schedules are generated at each
site:

31: n(b), w(a), w(b), cl, Tz(a), w2(4, ~2

~2: n(b), wl(b), Cl, wz(c), c2, 7.3(c), c3

It is simple to see that the above schedule is not globally
serializable. TI precedes T2 at ~1, while, at sp, T2
precedes T3 which precedes Tl. At the point where Tl
has committed everywhere (just after c: in the global
execution order), Ts is still active. By our definition, TI
is not in the completed state, although it is committed
everywhere. If a global concurrency control protocol
chose no longer to worry about Tl at this point, it would
not be possible to detect the nonserializability of the
execution. Thus, our protocol retains such transactions
until they enter the completed state. Cl

175

4.2 Virtual-Site Management

Each transaction has a virtual site associated with it at
each physical site at which it executes. This virtual site
exists from the time the transaction begins until our
protocol explicitly removes it from consideration. We
denote the virtual site for 3 at physical site sj by VSij.
The set of virtual sites is constructed and maintained
based on the three rules below:

l Locality rule. We require that each local transac-
tion execute at precisely one virtual site. Thus, local
transactions have only one virtual site. A global up-
date transaction, however, has several virtual sites -

,one at each physical site at which it executes.

l Union rule. At every point in time, VSij must
contain the set of data items at physical site sj that
transaction Z has accessed1 up to that point. If an
access to a data item d by Ti causes a conflict2 with
Tk at physical site sj, then their virtual sites at site
sj must be the same (i.e., V&j = VSkj) and must
contain all data at sj accessed SO far by Ti or by Tk.

The locality and union rules are requirements for cor-
rectness. The next rule is aimed at necessary perfor-
mance improvements for the protocol to be practical.
The power of the protocol arises from keeping virtual
sites as small as possible. Thus, when a transaction Ti
enters the aborted or completed state, it is desirable
to use this information to split or shrink virtual sites.

l Split Rule. When physical site sj determines that
X has entered either the aborted or completed
state, any data items accessed exclusively by Ti are
removed from VSij and the reilication protocol need
no longer consider Ti. If there is no Tk distinct
from Ti such that VSij = vskj, this effectively
removes VSij . Otherwise, we may recompute the
virtual sites at site Sj for all transactions Tk such
that VSij = vskj using the locality and union
rules. This computation can be optimized using
transaction conflict information to reduce overhead.

As we shall see once we introduce the replication graph,
keeping virtual sites small is critical to our protocol.
The overhead of the split rule is entirely that of local
processing on a per-site basis. We shall see that it pays
significant dividends in terms of global concurrency in
the distributed system.

4.3 Replication Graph

We associate a replication graph with an execution to
represent conflicts arising from updates to replicated
data. There is a single, global replication graph for

lA transaction is said to access a data item d at site s if it has
esecuted a read of d at s or has execute a write of any replica of
d regardless of site.

2We assume the usual notion of con&t among reads and
writes.[BHGS’I]

-_ 0 - _----A ’ _ -_

vs 1
={a,b,c} VS,={b) VS3=(c)

Figure 1: Acyclic Replication Graph for Example 3

T1 T2

vs 1 = Ia, b, cl VS2 = {b,c)

Figure 2: Cyclic Replication Graph for Example 3

the entire distributed system. For now, we assume
perfect global knowledge of this graph, and relax this
assumption later. A replication graph is an undirected
bipartite graph RG =< T U V, E >, where T is a set
of transactions and V is the set of all virtual sites for
transactions in T. Edge < VSij ,Tk > belongs to E if
and only if Tk performs a write operation on a replicated
data item that is in VSij.

We say that RG =< TU V, E > is a replication graph
for a schedule S if T is the set of all transactions in
S and V is constructed in compliance with the locality
and union rules. We do not require that E be empty
initially. Thus, replication graph for a global schedule
is not necessarily unique, as is shown by the following
example:

Example 3: Consider a database consisting of two
sites: sr and ss. Site sr contains the primary copy of a,
b, and c. Site s2 contains a secondary copy of b and c.
Consider the following three transactions:

Z: n(b), WI(~), w(b)
T2: 72(a), w2(4

T3: ~3(c)

Transactions Tr and T2 originate at sr, while T3
originates at 9.

Then the following local schedules may be generated
at sites sr and 9:

~1: rl(b), w:(a), w:(b), PZ(Q), w&(c)
$2: w;(c), ~3(4, w;(b)

A replication graph for global schedule given above is
shown in Figure 1. An alternative replication graph is
shown in Figure 2. The first of these graphs is acyclic
while the second one is cyclic. 0

176

Theorem 1 Let S be a global schedule. If there is
an acyclic replication graph for S, then S is globally
serializable.

Proof Sketch: If S is not globally serializable, then
the union of the local serialization graphs must contain
a cycle. Consider one such cycle, TO + Ti + . . . +
T n-i 4 TO. Since each local site ensures serializability,
there must be two or more global transactions in the
cycle (otherwise the cycle is wholely contained within
one local site). Let Ti and Tj be global transactions
such that i < j, Ti + Ti+l + . . . --+ Tj-1 + Tj,

and {Ti+l,Ti+2,. . -,Tj-1) are local transactions. Then

?-i+1rZ+2,...,Tj-1 all execute at the same local site,

which we denote Sk. Since Ti and Ti+l conflict, and Ti+l
is local to Sk, Ti and Ti+l conflict at Sk. Likewise, Tj
and Tj-1 conflict at Sk. Therefore, Vsik = VS(i+i),k =
. . . = vSG-i),$ = vsjk and there exist edges in the RG
between this virtual site and both Ti and Tj . A simple
induction on the number of global transactions in the
cycle (with 2 as a basis) proves that a cycle exists in
any RG for S. q

The above theorem provides a sufficient though not
necessary condition for serializability. Non-necessity is
shown by the example below:

Example 4: Consider a database consisting of two
sites: sr and ~2. Site si contains the primary copy of
data item a. Site sz contains a secondary copy of a.
Consider the following two transactions:

Transactions Ti and T2 originate at si. Assume that
the following schedules are generated at each site:

s1: 44,ZU2(U),Cl,C2

s2: w(+J2(+l,c2

Clearly, the execution is globally serializable. However,
just prior to the commit of Tl at sit the replication
graph is cyclic. q

As Theorem 1 suggests, our interest in the replication
graph will be in checking for cycles as our protocol
generates schedule S. Thus, in practice, we do not need
to keep an entire replication graph for S, but rather it
suffices to maintain a dynamic replication graph with
the property that avoiding a cycle in this graph suffices
to ensure serializability.

From the replication graph definition, it follows that
only global update transactions need be present among
transactions nodes of the graph, since no edges could be
incident upon other transaction nodes. Furthermore, it
suffices to maintain the graph only over transactions
that are in the active or committed states; that
is, transactions can be ignored once they make a
transition to either the aborted or completed states.

Clearly, keeping virtual sites small and splitting them
when possible reduces the frequency of cycles in the
replication graph. We summarize these ideas in the
statement of our Global Serializability (GS) Protocol
below.

4.4 The Protocol and Its Properties

In this section, we state the Global Serializability (GS)
Protocol using the above-defined notions of virtual sites
and replication graphs. Following that, we state some
results pertaining to the protocol. Our presentation is
informal for the sake of brevity and intuitiveness.

Protocol GS
We begin by defining a test, which we call RGtest,

that is applied by GS when a transaction Ti submits
an operation at its origination site. The test consists
of tentatively applying the locality and union rules to
virtual sites in the replication graph and tentatively
adding any edges that would be mandated by the
definition of the replication graph. If no cycle results,
the test succeeds and the tentative changes to the
replication graph are applied.

The protocol rules are as follows:

1.

2.

3.

4.

If Ti submits a read or write operation at its
origination site:

If RGtest succeeds, allow the operation to exe-
cute.

If RGtest fails and Ti is local, z submits the
abort operation.

If RGtest fails and Ti is global, test the tentative
replication graph to see if any cycle includes
a transaction in the committed state. If so,
Ti submits the abort operation, else the local
subtransaction of Ti waits.

If 2;- submits a write operation at a site other than
its origination site, allow the operation to proceed.

If Ti submits the commit operation, proceed with
execution. If Ti is in the completed state, remove
it by deleting it from the replication graph (if it was
present) and applying the split rule. Check whether
any waiting transactions can be activated or aborted
as a result of rule 1.

If Ti submits the abort operation at its origination
site, remove all edges incident on Ti from the
replication graph, and remove subtransactions of
Ti from any waiting queues in which they appear.
Apply the split rule. Check whether any waiting
transactions can be activated.

Protocol GS prevents the problem we illustrated in
Example 1 by causing a cycle in the replication graph

177

at the point that the latter of the two transactions is
attempted. To illustrate our protocol further, consider
the following example:

Example 5: Consider a database consisting of two
sites: si and ss. Site si contains the primary copy of
data items a, e, and f. Site ss contains the primary
copy of data item c, and a secondary copy of data items
e and f. Consider the following five transactions:

T4: r4(e), 74(c)
T5: e(c), 7.5(f)

Transactions TI, Tz, and Ts originate at site sr, while
transactions T4 and T3 originate at site ss. Note that
Tl and T3 update replicated data whereas T2 and T4 are
local update transactions (that is, they do not update
replicated data). TS is a read-only transaction. Suppose
that execution has proceeded at s1 and ss as indicated
below:

s1: n(a), w(f), cl, w2(a), r2(e), ~2, w3(e>, ~3

S2: w3(e), c3, ?4(e), 2oq(c), ~4, ~5(c)

The replication graph at this point is shown in Figure
3. In the figure, T/S1 = V&J = I/&,1 = VS3,1, and
VS2 = VS3,2 = VS4,s = V&,2, and VS3 = V&,2.

Observe that after T3 has committed at both sites, it
is not removed immediately from the graph. The reason
is that T3 is preceded by Tl at site sr (Tl --f T3 + T3)
and Tl is not yet committed at both sites. Data item
e, which is accessed exclusively by local transaction T2
remains in virtual site VSl even after T2 has committed.
The reason is that Ts is preceded at site sr by Ti and
TI is not yet committed at all sites. Likewise, data item
c remains in virtual site VS2 after local transaction T4
commits.

Suppose that Ts submits its last operation, rs(f). In
processing this operation, RGtest merges VS2 with
VS3, thus creating a cycle. Therefore, RGtest fails
and T5 is aborted. Observe that the cycle included
Ti, which had committed at ss. Subsequently, Tl may
execute its replica update for f (w;(f)) at site ss, all
active transactions commit and complete, and Ts can
be restarted. 0

A transaction cannot be removed from the replication
graph until it enters the completed state, even if it
has committed at all sites. Recall that we have shown
the necessity of this in Example 2. In fact, while
local transactions are never nodes of the replication
graph, they play a role in deciding whether a global
transaction can be removed from the graph. The next
two examples illustrate how local transactions affect the
execution of global transactions by merging virtual sites.
The first example also demonstrates that the chain of
everywhere-committed and non-completed transactions
in the replication graph can be arbitrary long.

178

--- .‘.---------.

Example 6: Consider a distributed database located
at k Site% sl, S2,..., Sk. site Si (i = 2,3,,,.,h)

contains the primary copy of data item ai and a
secondary copy of the data item ai-1. Site si contains
the primary copy of ai and a secondary copy of al;.

Consider the following set of 21c transactions:

z: W&i) (i = 1,2,. . . , h)
Tktl: Tktl(Ul), rkt&k)

Tk+i: Tk+i(ai), rkti(ai-1) (i = 2,3,. . .,k)

Transactions Ti and T&.i originate at site si (i =

1,2 , . . . , /c). Assume that the executions at sites sr and
ss proceed as follows:

Sl: %(QIl),Cl

S2: ~2(~2),1"kt2(~2),~kt2(al), Ckt2r wl(al)ICl

Assume that, at this point, transaction Tl is removed
from the replication graph. Observe that Tr is not
completed yet, since it is preceded in the serialization
order at site ss by transaction Tz, which has not
completed.

Suppose that execution proceeds and the following
local schedules are generated at sites sr, ~2, , . . , Sk,

respectively:

Sl: W(al), Cl, rktl(al), rk+l(Qk), Cktl, Wk(ak), Cktl

S2: W2(02), C2, rkt2(~2),rk+2(~1), Ck-t.2, w(al), cl

Sk: Wk(ak), Ck, r2k(ak),r2k(ak-l), C2kt Wk-l(Qk-1)r Ck-1

The global schedule is not serializable, and would not
have been generated under protocol GS. Under protocol
GS, none of the transactions TI, T2, . . . , Tj, could have
been removed after they had committed, since none
of them would be in the completed state. In this
situation, when the operation r&a&1) was submitted,
protocol GS would abort T2k and the resulting schedule
would be globally serializable. cl

Observe that only global transactions can be present
as nodes in the replication graph. However, read-only
and local update transactions can delay removal of a
global transaction from the replication graph for an
arbitrarily long time, as demonstrated by the following
example.

Example 7: Let h > 0 be an even number. Consider
a database consisting of (k + 2)/2 sites. Site si contains
a secondary copy of data items ao, al, . . . , a&l. Site

ss contains the primary copy of data items as and Q-1,
Any other site si (i = 3,4, . . . , (Ic + 2)/2) contains the
primary copy of as(i-s)-r and as+2).

The following transactions originate at site si :

X: ri(ai-I), ri(uj) (i = 1,3,. . . , /z - 1)

The following transactions originate at site ss:

- -Am I. - 1 -

---. _I---

To: WO(~O>
Tk: Wk(ak-1)

Tk+1: ~k'k+&O)'+k-t&k-1)

Note that TO and Tk are global. The following

transactions originate at site Sj for j = 3,4,. . ., (k +

2)/2:

z: W&i.q), W&i) (i = 2,4,. . .) k)

Suppose that the following schedules at sites ~1,
s2, . . . Sk-1 were generated just before the operation
rk+r(Uk-r) was submitted for execution (to simplify

the presentation, we assume in this example that the
transaction commits at the site as soon as it submits its
last operation at the site):

7=3(U3) , . . . ,Tk-l(Uk-Z), Wk-2(Uk-Z), Wk(Uk-1)

s2: W&O), rk+l(UO), Tk+l(Uk-l), Wk(Uk-1)

Sj: Wi(Ui-1)~ Wi(Ui)

(i=2,4,..., X:and j=3,4,...,(lc+2)/2)

None of the global update transactions have been
removed by Protocol GS, since each time the global
transaction is committed at all sites, there is either
a read-only transaction that precedes it and is not
completed, or there is another non-completed global
transaction that precedes it. After operation Tk+r(Uk-r)
is submitted, Protocol GS discovers a cycle in the
replication graph and aborts Tk+r . After that all
transactic , in the graph will be removed at the same
time. cl

Theorem 2 Protocol GS guarantees global serializabil-
ity.

Proof Sketch: Let S be a schedule generated by
protocol GS that is not globally serializable. Then the
serialization graph of S contains a cycle which we denote
TO + Tr 4 . . . --f Tn-r --, TO. This results (by the
technique used in the proof of Theorem 1) to a cycle in
any replication graph for S of the form Go - VSo - G1 -
. . . G,-1 - VS,-, - GO, where {Go,Gl, . . . , G,-1) is
the set of global transactions in {TO, Tl, . . . , T,-r]. This
cycle must have gone undetected by protocol GS due to
one or more instances of

l removal of a global transaction in the cycle, resulting
in the removal of edges and applications of the split
rule

l removal of a local transaction in the cycle, resulting
in an application of the split rule

prior to the actual creation of the cycle.
Let us consider the state of the system immediately

before the first such transaction removal. Let Ti de-
note that first transaction. Ti must have been in the
completed state, and thus not preceded (directly or

179

VS 1 = {a, e, fl

Site s,

VS2= (c, e)

Site s2

VS3 = {f)

Figure 3: Replication Graph for Example 5.

indirectly) by an active transaction in any local se-
rialization order. Since, in the serialization graph,
Ti-1 (mod n) + Ti, Tim1 trnod n) must have executed at
some site in common with Ti. Therefore Ti-r (mod n)
must have committed. If Ti-1 (mod n) has committed,

then 'Z-2 (modn) must have started so that it could
precede directly z-1 (mod n)- But if x-2 (mod n)
started and cannot be active (due to Ti being com-
pleted), it, too, must have committed. By a simple in-
duction, all of {To, Tl, . . . , T,-1) have committed. But

then the cycle Go - VSo - GI - . . . G,-1 - VS,-1 -Go
must have existed prior to any transaction removals by
protocol GS, contradicting Theorem 1. Cl

5 Protocol GHOS

In this section, we compare protocol GS with the
protocol given in [GHOS96] (we term it protocol GHOS)
that uses the lazy-master replication approach (as does
protocol GS). In protocol GHOS, each transaction must

request a read lock from the primary site of each data
item that it reads. Transactions must submit update
operations to the primary site of the data item being
updated. Thus, read and update operations conflict
at the primary site of the data item. Until an update
is completed for all replicas of data item u, no other
transaction can read a. Write operations on secondary
copies are synchronized using the Thomas Write Rule

(TWR) [BHG87]. Th us, in the terminology of [BHG87]
the concurrency control mechanism uses the Thomas
write rule to synchronize ww conflicts and a form of
two-phase locking to synchronize TW and wr conflicts.

The specific form of two-phase locking, which we term
two-phase locking with respect to TeUdS, or 2PL-R, is
as follows. A transaction must hold a shared lock on
any data item it reads. A transaction may not request
a shared lock if it has already released a shared lock.
A transaction must obtain an exclusive lock on a data
item prior to writing it. An exclusive lock obtained
on a data item must be retained until all writes to
all replicas are completed, at which time the lock is
released. Note the two-phase requirement applies only
to shared locks. There is no two-phase requirement
pertaining to exclusive locks.

In order to guarantee global serializability, protocol

GHOS must use the strict 2PL-R protocol. That
is, shared iocks must be held until the end of the

completed everywhere. Because of lazy propagation,

transaction. Otherwise, the global serializability may
this cannot occur until TO commits at its origination

be violated as the following example demonstrates:
site. Therefore, To commits at its origination site
before Tr does.

Example 8: Consider a database consisting of two
sites: si and ss. Site si contains the primary copy of
data items a and d, and a secondary copy of data item
b. Site s2 contains the primary copy of data items b and
c, and a secondary copy of data item d. Let Ti, Ts, Ts,
and T4 be transactions defined as follows:

TI: n(a), w(d)
572: et(b), w(a)

Et: ~3(c), ~3(b)

7’4: T&j, zoq(c)

l ww: Write-write conflicts are handled in protocol
GHOS by the Thomas Write Rule (TWR). The
timestamps assigned by the TWR are based on
commit time at the transaction’s origination site, If
To 4 Ti, then To must have done its write before
Tl (logically, at least, even though late writes are
ignored under TWR). Thus, TO must have a lower
timestamp than Tr and To must have committed at
its origination site before Tl.

Transactions Tr and T2 originate at site si and trans-
actions Ts and T4 originate at site ss. Observe that
transactions TZ and T4 are local update transactions
and transactions Tr and Ts are global update transac-
tions.

We thus conclude that To must have committed at its
origination site before Tr . A simple induction generates
the contradiction that completes the proof. cl

6 Deadlocks

Suppose that transaction operations were submitted
and executed in the following global order:

$X4, $4, wi(c), 4, Tl’(a>, d(b), w:(a),
c;, w:(b), c:, d(b), 4, w:(d), 4, w:(d), c:

The resulting schedule is not globally serializable.
However, the above schedule can be generated by
non-strict SPL-R. Including the strictness requirement
suffices to rule out the above schedule.

It is interesting to note that the above global schedule
results in local schedules that are locally feasible under
standard two-phase locking. We show these schedules
below:

The deadlock phenomenon in our protocol differs from
traditional deadlock. Waits in protocol GS are induced
by an operation that would cause a cycle in the
replication graph. Such waiting transactions are not
waiting for a specific transaction to “go awayI)) but
rather they are waiting for any transaction in the cycle
to be removed or any virtual site to be split in a way
that breaks the cycle. This motivates a more general
definition of deadlock that applies both to protocol GS
and to the standard notion of deadlock as it exists in
lock-based protocols in the local database systems3

~1: n(a), m(b), w(a), ~2, w(b), ~3, wl(d), CI
32: ~3(c), r&j, w4(c), ~4, w(b), ~3, wl(d), cl

cl

6.1 Definition of Deadlock

A set D of transactions is said to be in deadlock if every
transaction in D has submitted an operation that either

1. waits for another member of D within the concur-
rency control of some local database system,

Theorem 3 Protocol GHOS guarantees global serializ-
ability

Proof Sketch: Assume there exists a nonserializable
schedule generated by protocol GHOS. Then, there
exists a cycle in the serialization graph of the form:

2. waits under protocol GS due to RGtest generating
a cycle involving only transactions in D (and their
associated virtual sites).

To + Tl --f . . . --f Tn-1 ---f To

For simplicity in our discussion, we shall always
assume that a deadlock set is minimal. The following
example illustrates a deadlock caused by protocol GS:

Consider To and Ti. Since TO --f Tl, To and Tl must
conflict on some data item, d. We consider the three
possible types of conflicts:

l TW: If To reads d before Tr writes it, then Tl cannot
have accessed d until To releases its shared lock on d
when it commits. Therefore, To commits before TI
commits anywhere.

Example 9: Consider a database located at three
sites. Site sr contains the primary copy of data items a
and c, and a secondary copy of data items d and e. Site
ss contains the primary copy of data items b and d and
a secondary copy of data item a. Site ss contains the
primary copy of data item e, and a secondary copy of
data items b and c.

Let TI, T2, and T3 be transactions originating at sites
sr, ss, and s3, respectively and defined as follows:

l WK If Tr reads the value of d written by To, then
it must wait until To releases its exclusive lock
on d. This cannot happen until the write has

3We assume that all local waits arise from data-item conflicts,
That is, if Tl waits for T2, then they confiict on some data item
and T2 accessed that data item first.

180

vs 1 = (a.44 VS2= (a,b} VS 3 = (b,c)

Site s, Site s2 Site s3

Figure 4: Replication Graph for Example 9

Z: n(d), n(e), w(a), w(c)
T2: ~2(4, 7~~2@), 7~~2(4

7’3: I, m(c), de)

Suppose that, so far, transaction operations ri(d), rr(e),
~~(a), Q(U), urs(b), ~$6) and Q(C) were submitted and
executed at sites of their origination. This execution
generates the local schedules shown below:

~1: n(d), n(e), 44
s2: 7.2(a), 7JJz(b)

s3: 7.3(b), 7.3(c)

The replication graph at the point is as shown in Figure
4. When Tl submits TQ(C) at site sr, protocol GS will
make Tr wait, since otherwise the cycle TI - vsg - T2 -
vss - Tl would occur in the replication graph. When T2
submits wz(d), it will have to wait too, since otherwise
the cycle Tl - vsr - T2 - vss - Tr would occur. Finally,
when T3 submits ws(e), it also will have to wait since
otherwise, the cycle TI - vsl - T3 - 21.~3 - T2 - vsz - TI
would occur. Consequently, none of these transactions
can proceed, and a deadlock occurs. cl

Due to our model’s restrictions on the types of
transactions that may execute, any distributed deadlock
- that is, a deadlock involving more than one site -
must involve at least one global transaction. As a
consequence of our use of lazy update propagation, a
global transaction executes at only its origination site
until it has committed there. Subsequently, it runs
independent subtransactions at each local site at which
it must propagate updates. Thus, no wait involving a
global transaction spans more than one local database
system unless the wait is due to protocol GS. Thus, our
definition of deadlock takes into account all possible
waits, and, therefore, all possible deadlocks. Another
fortunate consequence of the above argument is that no
distributed deadlock may consist entirely of committed
transactions.

We shall use the term local deadlock to refer to non-
distributed deadlock.

6.2 Managing Deadlocks

Deadlocks involving only waits within one local database
system are managed by that DBMS. We shall not con-
cern ourselves with the specific manner in which these
deadlocks are managed.

Deadlocks that involve waits generated by protocol
GS are particularly difficult to detect. In a standard
wait-for graph, a straightforward cycle detection algo-
rithm can be executed. However, waits generated by
part 2 of our definition of deadlock are waits for any
member of the cycle found by RGtest, not all of them
and not any specific one. To detect such deadlocks al-
gorithmically, we thus need to create an and/or graph
of waits. Deadlock detection in such graphs has been
studied previously [CMH83, KKNR83]. In practice, we
wouId avoid this complexity by implementing a timeout-
based scheme to abort transactions that have been wait-
ing “too long,” and are therefore likely to be in deadlock.
Such an approach to deadlock management is accept-
abIe only if those deadlocks that are not exclusive to

local database systems occur very infrequently. As we
shah see below, this is indeed the case - global deadlock
under our protocol is much less likely asymptotically
than deadlock within a local database system.

As we have noted earlier, sub-transactions that up-
date secondary copies of data may be aborted and
restarted as needed. Thus, local deadlocks involv-

ing sub-transactions of committed global transactions
present no difficulties.

6.3 Probability of Deadlock in Protocol GS

We begin our consideration of deadlock probability by

showing that deadlock sets must have cardinality 3 or
greater unless the deadlock is local.

Theorem 4 Assume that in any local database system,
waits result only from data-item conflicts (as in locking).
Let Tl, Tz, . . . , Tt be a set of global transactions that are
involved into a distn’buted deadlock. Then t > 2.

Proof Sketch: Consider a deadlock set D. If D
contains only one global transaction, then the deadlock
must be contained within one local database system
and not involve protocol GS. Such a deadlock is not
a distributed deadlock.

Next consider the case that D contains exactly two
global transactions: Ti and T2.

First consider the case where Tr and T2 originate at
the same site. If Tl waits for T2 at site Sk, and the
conflict includes a replicated data item, then Tl and T2
are in a cycle in the replication graph. Since such cycles
are forbidden by protocol GS, any deadlock must be
local.

Next, assume Tl and T2 originate at distinct sites,
sr and ss, respectively. Then, they cannot update
any data items in common (since only primary copies
can be updated directly). If they conflict directly or
indirectly at sr, their virtual sites must be the same

(VSl = V&l = V&J) and must include a replicated
data item. Thus, there must be a path Tr - VSI -T2 in
the replication graph. A similar situation at ss would
cause a cycle in the graph and be forbidden. Thus any
deadlock must either be local or include some virtual

181

site at a third physical site Sk. But then any conflict
at Sk involving Tr and TZ must include a replicated
data item (since neither transaction originated at Sk),
and such conflicts create a path TI - VS2 - T2 in
the replication graph (where (vsz = V&,k = v&,k).
Therefore, any distributed deadlock must be preceded
by a cycle in the replication graph, and protocol GS
disallows this. Cl

We now consider the probability of deadlocks that
involve protocol GS. In order to simplify our analysis,
we make several assumptions:

l There are n transactions that are not yet completed,
and all these transactions are global.

l Each transaction accesses T data items.

l There are m data items, all of which are fully
replicated at each physical site.

l Data accesses are uniformly distributed, and all
accesses are writes.

l Each transaction is half-executed and, thus, has
accessed r/2 data items.

The uniformity assumptions ignore the possibility of hot
spots. One may view the m data items as being the
hot spots and, likewise, the r accesses by a transaction
as being its accesses to hot spots. Overall, the above
assumptions will cause us to overstate the probability
of deadlock since, in practice, there would be read
operations, not all data would be replicated, and data
that is replicated would not all be fully replicated. Our
assumptions, though pessimistic, correspond to those of
[GHOS96, GHK081].

Because of our assumption of update-only transac-
tions, there is a path in the replication graph-between
a pair of transactions if and only if they conflict di-
rectly or indirectly on data accesses. The probability
that an operation submitted by Ti conflicts with some
already-submitted operation of Tj is $. The proba-
bility that any remaining unsubmitted operation of Ti
conflicts with some already-submitted operation of Tj is

slightly less that & (and equal if we ignore the chance
that two transactions may have more than one opera-
tion in conflict).

Now consider a chain To -TI - . . . -Tt-1 such that Ti
conflicts with Z+r for i = 0, 1, . . .,-t-2. The probability
of such a’chain is

p2 t-1

(> 4m

Now consider a set D = {To, TI, . . . ,Tt,l} and consider
the probability that this set is a deadlock set. Each
transaction in D must have submitted an operation
that would cause a cycle in the replication graph.
Thus, there must be an ordering of D such that for
i = 0, 1, . . . , t - 2, Ti and Ti+l share a virtual site

and, therefore, conflict. Without loss of generality, we
assume that the transactions in D are so numbered.

The probability that an operation submitted by a
transaction in D conflicts with another transaction in
D is bounded above by 9 for T2, Ta, . . . , Tt-2, and

by e for TI and Tt-1. The (t - 2) factor arises
from Theorem 4, which implies that in a conflict chain
To-TI-...- Tt-1, if Ti has submitted an operation on
replicated data conflicting with Ti+l, then Ti+l cannot
have caused a deadlock by submitting an operation
conflicting with Ti.

Thus, the probability that D is a deadlock set is the
probability that there is a chain of conflicts To - Tl -
. . . -Tt-r times the probability that each Ti submits an
operation conflicting with some other transaction Tj,
This probability is bounded above by

Observe that, as expected from Theorem 4, this
probability is zero for t = 1 and t = 2.

For simplicity, we weaken our upper bound as follows:

(zJ-‘(~)’

Combining terms, we get:

,3t-2tt

To obtain the overall probability of deadlock, we need
to consider not only one set D of t transactions, but
rather, all ways that such a set oft transactions can be
chosen. Since there are n transactions, for each value of
t there are (7) sets to consider. This gives

n
n

a1

,3t-2tt

t=3 t 23t-2m2t-1

The summations starts at 3 because we already know
that the probability is zero for t = 1 and t = 2.
Assuming nr << m (a reasonable assumption)l the
t = 3 term dominates in the sum. We thus conclude
that the probability that the system is in distributed
deadlock is

n3r7
PDgs =O -

(> m5

The probability that a given transaction deadlocks is
PD/k.

4 Without this assumption the overall contention rate is so high
that one would impose admission control on transactions, and, as
a result ensure that nr << m.

182

6.4 Comparison With Protocol GHOS

To put this result in perspective, we compare it to that
of [GHOS96], which relies on global strict locking (2PL-
R). In [GHOS96] the probability that the system is in
deadlock is (using our notation)‘:

n2r4
pD,hos = 0 7

()

The ratio of the probability of distributed deadlocks in
our protocols to that of [GHOS96] is:

PDgs _ n3r7/rn5 _ nr3

pD,h,,- n2r4/m2 m3

This difference is significant since nr << m.
Unlike our protocol, [GHOSSG] relies on global two-

phase locking, and thus, the asymptotic probability of
deadlock is the same as in any lock-based system (e.g.
[GHKON]). In our protocol, the probability of purely

local deadlocks is 0 $$ as in [GHOS96], but the
(>

probability of distributed deadlock is much less than
in [GHOSSG]. The source of this difference is our use
of the replication graph and virtual sites to eliminate
distributed deadlock cycles of length 2, the likeliest

kind.
We show below that if protocol GS deadlocks then so

does protocol GHOS.

Theorem 5 If both protocols GHOS and GS have
executed a prefix of a schedule for transaction set T =
{Z,T2,..., Tk) and all members of T are active, then if
protocol GS deadlocks at this point, then so does protocol
GHOS.

Proof Sketch: Consider an execution of transactions
in the two protocols. Assume that so far the execution
order is the same for both algorithms. Tl,T2, . . ., Tk
active transctions that are in a deadlock as a result of

protocol GS. This means that the operation submitted
by each member of T creates a cycle in the replication
graph. A cycle in the replication graph can be created
for one of the two reasons:

1. a new edge is introduced that creates a cycle;

2. two virtual sites are merged as a result of the union
rule

In the first case, the introduced edge indicates that
there is a conflict between active transactions at some
virtual site. Since transactions are active, the lazy
updates at secondary sites have not yet begun and thus
exclusive locks taken by protocol GHOS could not have
been released yet. Therefore, protocol GHOS causes a
wait in this case as well. In the second case, consider
the transaction Ti waiting due to a virtual-site merger

5Unlike [GHOS96], we include all transactions in n; and thus,
we do not have a separate variable for the number of sites.

that lead to a cycle in the tentative replication graph

of RGtest. There must be a conflict (directly or

indirectly) between Ti and the transaction with whose
virtual site a merger is being attempted. Thus, under
protocol GHOS, Ti would wait as well. Cl

It is easy to design an example of a schedule where
protocol GHOS would deadlock while protocol GS

would not.

7 Fault Tolerance

Our protocol is robust in the presence of site failures,
though it cannot handle network partitions. If a site
fails, we assume that the local database system recovers

correctly. Thus, no committed local transactions
are lost. Any sub-transactions that were performing
updates to secondary copies and that were active during
a failure can be resubmitted.

Since a failed site cannot do any work before it
recovers, it cannot take any action to change the
replication graph while it is down. Thus, other sites
may proceed. Of course, global transactions that cannot
complete due to a site failure must remain in the
replication graph, thus causing blocking.

In the event of a network partition, each partition
may modify the replication graph, resulting in inconsis-

tency.

Finally, we note that our reliance on local DBMSs for
recovery simplifies the problem of recovery at the global
level. A site needs to maintain an accurate view of the
replication graph only as it pertains to its virtual sites

and to transactions originating at that site in order to
enable recovery. Suppose that a site s1 crashes. Upon
recovery, any transaction that was active at sr but did
not originate at sr must be completed by accessing the
primary copy of the data the failed transaction was
updating.

8 Performance Issues

The key determinant of the practicality of our protocol
is the overhead of maintaining the replication graph. If
we assume centralized graph maintenance and compare
this with centralized global locking, we can show that
graph maintenance requires fewer messages since

1. only global writes generate new edges, and

2. updates to VSij can be generated only by site ej,
so a site need perform graph maintenance globally
only if it determines locally that virtual sites must
be merged. Furthermore, by propagating only paths
between transactions globally, local sites can avoid
the need to distribute the actual set of data items in
each virtual site.

The split rule can be applied lazily to conserve network
resources.

Clearly, centralized graph maintenance may present
problems of performance and recoverability. To enhance
performance, we may use an optimistic approach in
which updates to the replication graph are distributed
to the physical sites on a best-effort basis. Prior to
transaction commit, a validation test is run and, if the

transaction is in a cycle, it is aborted.
Performance studies to test tradeoffs between opti-

mism and pessimism are underway. We are also study-
ing the performance of a Zversion scheme which ensures
that read-only transactions are never delayed.

9 Conclusion

We have presented a protocol for managing replicated
data that offers lower message overhead and asymptoti-
cally fewer deadlocks than previous results. Our proto-
col ensures serializability and is robust in the presence of
site failures. Two concepts are key to our protocol. One
is the use of virtual sites instead of physical sites and
the dynamic management of virtual sites to keep them
small. The second is the replication graph, which, in
effect, reduces the problem of replica management over
a large set of data items to the problem of managing a
global graph whose size is on the order of the number
of global transactions executing at a given time.

Acknowledgements

The authors wish to thank Rick Stellwagen of NCR for
helping us understand the role of replication in data
warehouses, and Phil Gibbons, Yossi Mat&, Rajeev
Rastogi, and Avi Silberschatz of Bell Labs for helpful
comments during this work.

References
[BGMS92] Y. Breitbart, H. Garcia-Molina, and A. Silber-

schatz. Overview of multidatabase transaction
management. VLDB Journal, l(2), 1992.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Good-
man. Concurrency Control and Recouery in
Database Systems. Addison-Wesley, Reading,
MA, 1987.

[CMH83] K. M. Chandy, J. M&a, and L. M. Haas. Dis-
tributed deadlock detection. ACM Transactions
on Computer Systems, 1(2):144-156, May 1983.

[CRR96] P. Chundi, D. J. Rosenkrantz, and S. S. Ravi.
Deferred updates and data placement in dis-
tributed databases. In Proceedings of the Twel-
ueth International Conference on Data Engi-
neering, New Orleans, Louisiana, 1996.

[ElI77] C. A. Ellis. Consistency and correctness of
duplicate database systems. Operating Systems
Review, U(5), November 1977.

[GHK081] J. Gray, P. Homan, H. F. Korth, and R. Ober-
marck. A strawman analysis of the probability
of wait and deadlock. Technical Report RJ2131,
IBM San Jose Research Laboratory, 1981.

184

[GHOS96] J. Gray, P. Helland, P. O’Neil, and D. Shasha,

[GR93]

[GS78]

[HHB96]

[Ho1811

[KI96]

The dangers of replication and a solution,
In Proceedings of ACM-SIGMOD 1996 Intcr-
national Conference on Management of Data,
Montreal, Quebec, pages 173-182, 1996,

J. Gray and A. Reuter. nansaction Processing:
Concepts and Techniques. Morgan-I&rfmnnn,
San Mateo, CA, 1993.

E. Gelenbe and K. Sevcik. Analysis of update
synchronization for multiple copy data-bases. In
Proceedings of the Third Berkeley Works/top on
Distributed Databases and Computer Networks,
pages 69-90, August 1978.

A. A. HelaI, A. A. Heddaya, and B. B, Bhargava,
Replication Techniques in Distributed Systems,
Kluwer Academic Publishers, 1996.

E. Holler. Multiple copy update. In Lccturo
Notes in Computer Science, Distributed Systems
- Architecture and Implementation: An Ad-
vanced Course. Springer-Verlag, Berlin, 1981.

H. F. Korth and T. I. Imielinski. Introduction to
mobile computing. In Mobile Computing, pa&s
l-39. Kluwer Academic Publishers, 1996.

[KKNR83] H. F. Korth, R. Krishnamurthy, A. Nigam, and
J. T. Robinson. A framework for understand-
ing distributed (deadlock detection) ai8orithms.
In Proceedings of the Second ACM SIGACT-
SIGMOD Symposium on Principles of Database
Systems, Atlanta, pages 192-201, 1983.

[KLSSO]

[Min79]

[PL91]

[SAB+96]

[Tho78]

H. F. Korth, E. Levy, and A. Silberschatz,
A formal approach to recovery by compensat-
ing transactions. In Proceedings of the Six-
teenth International Conference on Very Larga
Databases, Brisbane, pages 95-106, August
1990.

T. Minoura. A new concurrency control Argo-
rithm for distributed database systems. In Pro-
ceedings of the Fourth Berkeley Workshop on
Distributed Databases and Computer Networks,
pages 221-234, August 1979.

C. Pu and A. Leff. Replica control in distributed
systems: An asynchronous approach. In Pro-
ceedings of ACM-SIGMOD 1991 International
Conference on Management of Data, Denver,
Colorado, pages 377-386, May 1991.

J. Side& P. M. Aoki, S. Barr, A. Sah, C. Staclin,
M. Stonebraker, and A. Yu. Data replication
in Mariposa. In Proceedings of the Twelueth
International Conference on Data Engineering,
New Orleans, Louisiana, 1996.

R. H. Thomas. A solution to the concurrency
control problem for multiple copy databases, In
CompCon78,1978.

