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Abstract
Broadcast Disks have been proposed as a means to efficiently

deliver data to clients in “asymmetric” environments where the
available bandwidth from the server to the clients greatly exceeds
the bandwidth in the opposite direction. A previous study investi-
gated the use of cost-based caching to improve performance when
clients access the broadcast in a demand-driven manner [AAF95].
Such demand-driven access however, does not fully exploit the
dissemination-based nature of the broadcast, which is particularly
conducive to client prefetching. With a Broadcast Disk, pages con-
tinually flow past the clients so that, in contrast to traditional envi-
ronments, prefetching can be performed without placing additional
load on shared resources. We argue for the use of a simple prefetch
heuristic called

���
and show that

���
balances the cache residency

time of a data item with its bandwidth allocation. Because of this
tradeoff,

���
is very tolerant of variations in the broadcast program.

We describe an implementable approximation for
���

and examine
its sensitivity to access probability estimation errors. The results
show that the technique is effective even when the probability esti-
mation is substantially different from the actual values.

1 Introduction
1.1 Broadcast Disks

Many new network-based applications must address the problem
of communications asymmetry, in which there is significantly more
bandwidth from the server to the client than in the opposite direc-
tion. In the presence of such asymmetry, applications must conserve
the use of the limited back-channel capability. Communications
asymmetry can arise as a property of the hardware, as in cable tele-
vision networks, or as a property of the application environment, as
in Advanced Traffic Information Systems (ATIS)[ShL94], in which
hundreds of thousands of motorists may simultaneously require data
from the server. In some extreme cases, such as disconnection in
mobile computing environments, there may be no upstream (from
clients to servers) communication capacity at all.

Broadcast Disks ([AAF95], [AFZ95]) was introduced as a tech-
nique for delivering data to clients in asymmetric environments. It is
a push-based technique— data transfer from the server to clients is
initiated by the server, rather than by explicit client requests (as in a
traditional pull-based system). Data items (i.e., pages) are broadcast
to the client population optimistically, in anticipation of the need for
those items at the clients. The broadcast is repetitive — simulating a
rotating storage medium or a disk. In this scheme, groups of pages
with different broadcast frequencies are multiplexed on the same
channel to create the illusion of multiple disks each spinning at a
different speed. The fastest disk is closest to the client in the sense
that the expected wait time for a particular page is lowest, while the
pages on the slowest disk are farthest since they will, in general, take
a longer time to access. A designer has the flexibility to choose the

number of disks, the size of each disk, the relative spinning speed
of each disk, and the placement of pages across disks. Thus, a de-
signer can create an arbitrarily fine-grained memory hierarchy that
is tailored to meet the needs of any particular client population.

In [AAF95], we demonstrate how the multi-disk scheme can
produce performance improvements over a flat (one-disk) broadcast
when the client access pattern is skewed. We also show that perfor-
mance can be improved further for the multi-disk case if the client
uses a cost-based caching policy that is sensitive to the frequency of
broadcast as well as the access probability. We propose such a policy
(called

�����
) that chooses as a victim the cached page with lowest

value for the quantity �	��
 where � is the page’s access probability
and 
 is its frequency of broadcast . We also present an algorithm,� ���

, that approximates
�����

and is easily implementable.
In this paper, we explore the use of prefetching to further improve

client performance in the broadcast environment. The Broadcast
Disks technique is particularly conducive to prefetching because
pages are continuously presented to clients via the broadcast, al-
lowing the client to bring some of these pages into its cache in
anticipation of future accesses. The dissemination-oriented nature
of the environment changes the tradeoffs commonly associated with
prefetching in more traditional environments, such as database and
file systems. In particular, prefetching in a traditional system places
additional load on shared resources (disks, network etc.), which can
be potential bottlenecks. In contrast, prefetching from a Broadcast
Disk only impacts the local client resources. Thus, the risks in
prefetching are significantly lower than in a more traditional system.

1.2 Prefetching - A Motivating Example
For Broadcast Disks (as in most systems), the goal of prefetching

is to improve the response time for the clients. Response time
improvements are typically achieved in two ways: 1) by improving
the client cache hit rate, and 2) by reducing the cost of a cache miss.
The

���
�
algorithm and its approximation (

� �
�
), have been shown

to achieve an effective balance between these two issues. They both
accept a slightly lower client hit rate in order to achieve a reduction
in the number of pages that must be obtained from the slower disks
in a multi-disk broadcast.�����

and
� ���

are strictly demand-driven strategies in which
pages are brought from the broadcast into a client cache only as the
result of a request for that page. The introduction of prefetching
provides an additional way for pages to be brought into the cache,
the potential benefits of which are illustrated by the following simple
example (Figure 1). Consider a client that is interested in accessing
two pages ( 
 and � ) with equal probability (i.e., ����������� 0 � 5),
and has only a single cache slot available. In this example (as shown
in the figure), the server places these two pages 180 degrees apart on
the broadcast (for simplicity, a single, flat disk is used).

Under a demand-driven strategy, the client would cache one of
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Figure 1: Tag-team Caching

the pages, say 
 , as the result of a request for that page. Subsequent
accesses to 
 can be satisfied locally from the cache, and thus have
no delay. If however, the client needs page � , it waits for � to come
by on the broadcast, and then replaces 
 with � in the cache. Page
� then remains cache-resident until 
 is brought in again. With this
strategy, the expected delay on a cache miss is one half of a disk
rotation (because the request can be made at a random time). The
expected cost

���
of accessing a page � is given by the formula:� � � � ����������	
�

where � � is the access probability,
� �

is the expected probability of
a cache miss and

	 �
is the expected broadcast delay for page � . The

expected total cost of access over all pages for this demand-driven
strategy is therefore:�
�
��� ��� ���

� � � � ��� � ��� 0 � 5 � 0 � 5 � 0 � 5 � 0 � 5 � 0 � 5 � 0 � 5 � 0 � 25

i.e., one quarter of a disk rotation.
In contrast, consider a simple prefetching strategy that fetches

page 
 into the cache when it arrives on the broadcast and holds
it until page � is broadcast. At that point, the client caches page
� and drops 
 . When 
 is broadcast again, � is dropped and 
 is
cached. We call this strategy tag-team caching because pages 
 and
� continually replace each other in the cache. The expected cost of
the tag-team strategy for this example is:�
���
� ��� ���

��� � � � � � � � 0 � 5 � 0 � 5 � 0 � 25 � 0 � 5 � 0 � 5 � 0 � 25 � 0 � 125

Thus, the average tag-team cost is one eighth of a disk rotation —
one half the expected cost of the demand-driven strategy.

It is important to note that the performance gain of tag-team comes
not from an improved hit rate (both strategies have a hit rate of 50%),
but rather because the cost of a miss using tag-team is half of the cost
of a miss under the demand-driven strategy. With the demand-driven
strategy, a miss can occur at any point in the broadcast. In contrast,
using tag-team, misses can only occur during half of the broadcast.
For example, a miss on a reference to page 
 can only occur during
the part of the broadcast between the arrival (and prefetching) of
page � and the subsequent arrival of page 
 . Tag-team reduces the
cost of cache misses by ensuring that a page is cached for the portion
of the broadcast when the wait for that page would be the longest.

The simple tag-team example can be generalized to multiple
clients and multiple pages over different sized caches. The details
of this formulation are beyond the scope of this paper. In this paper,
we focus on a much simpler prefetching technique called

���
.
���

is a dynamic algorithm that evaluates the worth of each page on the
broadcast to determine if it is more valuable than some other page
that is currently in the cache. If so, it swaps the cache-resident page
with the broadcast page.
1.3 Overview of the Paper

The remainder of the paper describes and experimentally validates
our approach. Section 2 presents a description of the simulation
model. Section 3 describes the basic approach to prefetching and
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Figure 2: Deriving a Server Broadcast Program

explains some of the intuitions that will be useful in understanding the
experiments. In Section 4, we present a series of experimental results
that examine the performance of the

���
prefetching technique.

Section 5 describes an implementable approximation of
���

, and
compares its performance and execution cost with a non-prefetching
cache management algorithm. Section 6 describes related work.
Section 7 summarizes our results and describes future directions.

2 Modelling The Broadcast Environment
Our model of the broadcast environment has been described pre-

viously ([AAF95]). The results presented in this paper are based on
the same underlying model, extended to include prefetching. In this
section we briefly describe the model, focusing on the modifications
that were required to introduce prefetching.

As in [AAF95], we model a broadcast environment that is re-
stricted in several ways:
� The client population and their access patterns do not change.

This implies that the content and the organization of the broad-
cast program remains static.

� Data is read-only; there are no updates either by the clients or
at the servers.

� Clients make no use of upstream communications, i.e., they
provide no feedback to the server.

In the broadcast environment, the performance of a single client
for a given broadcast is independent of the presence of other clients.
As a result, we can study the environment by modeling only a single
client. The presence of multiple clients, however, can potentially
cause the server to generate a broadcast program that is sub-optimal
for any particular client (since it is derived taking into account the
needs of all clients). To account for this phenomenon, we model
the client as accessing logical pages that are mapped to the physical
pages that are broadcast by the server. By controlling the nature of
the mapping, we vary how close the broadcast program of the server
matches the client’s requirements. For example, having the client
access only a subset of the pages models the fact that the server is
broadcasting pages for other clients as well.

2.1 The Server Model
A broadcast disk is a cyclic broadcast of database pages that are

likely to be of interest to the client population. Multiple disks can be
superimposed on a single broadcast channel by broadcasting some
pages more frequently than others. Each disk corresponds to those
pages which have the same broadcast frequency. The desirable char-
acteristics of a broadcast program have been outlined in [AAF95].
Briefly, a good broadcast program is periodic, has fixed (or nearly
fixed) inter-arrival times for repeated occurrences of a page, and
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ServerDBSize No. of distinct pages in broadcast
NumDisks No. of disks
DiskSize

�
Size of disk � (in pages)

∆ Broadcast shape parameter
Offset Offset from default client access
Noise % workload deviation
Scatter Intra-disk spread

Table 1: Server Parameter Description

allocates bandwidth to pages in accordance with their access proba-
bilities.

2.1.1 Broadcast Program Generation
The algorithm used by the server to generate the broadcast program
requires the following inputs: the number of disks, the relative spin
speeds of each disk and assignments of pages to disks on which they
are broadcast. In this paper we explain the broadcast generation
process using a simple example. For a detailed description of the
algorithm, the reader is referred to [AAF95].

Figure 2 shows 11 pages that are divided into three ranges of
similar access probabilities. Each of these ranges will be a separate
“disk” in the broadcast. In the example, pages of the first disk
are to be broadcast twice as often as those in the second and four
times as often as those of the slowest disk. To achieve these relative
frequencies, the disks are split into smaller equal-sized units called
chunks (

� � � refers to the ����� chunk of disk � ); the number of chunks
per disk is inversely proportional to the relative frequencies of the
disks. In other words, the slowest disk has the most chunks while
the fastest disk has the fewest chunks. In the example, the number
of chunks are 1, 2 and 4 for disks � 1 � � 2 and � 3 respectively.
The program is generated by broadcasting a chunk from each disk
and cycling through all the chunks sequentially over all the disks.
The figure shows a major cycle which is one complete cycle of the
broadcast and a minor cycle which is a sub-cycle consisting of one
chunk from each disk. As desired, page 1 appears four times per
major cycle, pages 2 and 3 appear twice and so on.

2.1.2 Server Execution Model
The parameters that describe the operation of the server are shown in
Table 1. The server broadcasts pages in the range of 1 to ServerDB-
Size, where ServerDBSize � AccessRange. These pages are inter-
leaved into a broadcast program as shown in the previous section.
This program is broadcast repeatedly by the server. The structure of
the broadcast program is described by several parameters. NumDisks
is the number of levels (i.e., “disks”) in the multi-disk program.
By convention disks are numbered from 1 (fastest) to N=NumDisks
(slowest). DiskSize

�
, �
	 [1..N], is the number of pages assigned to

each disk � . Each page is broadcast on exactly one disk, so the sum
of DiskSize

�
over all � is equal to the ServerDBSize.

To quantify the relative speeds of the disks we introduce a pa-
rameter called ∆, which determines the relative frequencies of the
disks in a restricted manner. Using ∆, the frequency of broadcast�
��� ���
����� ��� of each disk � , can be computed relative to �
��� ���
����� N � ,
the broadcast frequency of the slowest disk (disk N) as follows:

����� ��������� � ������ ��������� N � = (N - i)∆ + 1

When ∆ is zero, the broadcast is flat: all disks spin at the same
speed. As ∆ is increased, the speed differentials among the disks
increase. For example, for a 3-disk broadcast, when ∆ � 1, disk 1
spins three times as fast as disk 3, while disk 2 spins twice as fast as
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Figure 3: Organizing the Broadcast

disk 3. When ∆ � 3, the relative speeds are 7, 4, and 1 for disks 1, 2,
and 3 respectively. It is important to note that ∆ is used in the study
only to organize the space of disk configurations that we examine
and is not a feature of the disk model.

The remaining three parameters, Offset, Scatter and Noise, are
used to modify the mapping between the logical pages requested
by the client and the physical pages broadcast by the server. When
Offset and Noise are both set to zero, and the disk is Unscattered,
then the logical to physical mapping is simply the identity function.
In this case, the DiskSize1 hottest pages from the client’s perspective
(i.e., 1 to DiskSize1) are placed on Disk #1, the next DiskSize2 hottest
pages are placed on Disk #2, etc. However, this mapping may be
sub-optimal due to client caching. Some client cache management
policies tend to fix certain pages in the client’s buffer which makes
broadcasting them frequently a waste of bandwidth. In such cases,
the best broadcast can be obtained by shifting the hottest pages from
the fastest disk to the slowest. Offset is the number of pages that are
shifted in this manner. An offset of ! shifts the access pattern by
! pages, pushing the ! hottest pages to the end of the slowest disk
and bringing colder pages to the faster disks.

In contrast to Offset, which is used to provide a better broadcast
for the client, the parameter Noise is used to introduce disagreement
between the needs of the client and the broadcast program generated
by the server. Disagreement can arise in many ways, including
dynamic client access patterns and conflicting access requirements
among a population of clients. Noise determines the percentage of
pages for which there may be a mismatch between the client and the
server. Noise is introduced as follows: for each page in the mapping,
a coin weighted by Noise is tossed. If, based on the coin toss, a
page � is selected, then a disk

	
is chosen randomly to be its new

destination. To make way for � , an existing page � on
	

is chosen
randomly, and � and � swap mappings.1

A new parameter that is necessitated by prefetching is called
Scatter. As the results of Section 4 will show, the performance
benefits of prefetching can improve if pages are spread over the
broadcast rather than clustered together by access probability. When
Scatter is turned on, every page is randomly swapped with another
page on its own disk causing a random shuffle of pages within a disk.

The generation of the server broadcast program works as follows.
First, the mapping from logical to physical pages is generated as
the identity function. Second, this mapping is shifted by Offset
pages as described above. Third, if Scatter is on, pages in each
disk are shuffled among themselves. Finally, the outcome of a coin
toss weighted by Noise determines if a page is potentially swapped
to a new disk. The complete process is shown in Figure 3 for
the toy example of Figure 2. The top two rows show the identity
function (Offset = 0) and the shifting of the four hottest pages to the

1Note that a page may be swapped with a page on its own disk. Such a
swap does not affect performance in the steady state, so Noise represents the
upper limit on the number of changes.
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CacheSize Client cache size (in pages)
ThinkTime Time between client page accesses

(in broadcast units)
AccessRange # of pages in range accessed by client

Zipf Distribution�
Zipf distribution parameter

RegionSize # of pages per region

Table 2: Client Parameter Description

slowest disk (Offset = 4). The third row demonstrates the Scatter
effect. Finally, the bottom row shows how Noise moves pages across
different disks.

2.2 The Client Model
The parameters that describe the operation of the client are shown

in Table 2. The simulator measures performance in logical time
units called broadcast units. A broadcast unit is the time required
to broadcast a single page. The actual response time will depend on
the amount of real time required to transmit a page on the broadcast
channel. It is important to note that the relative performance benefits
are independent of the bandwidth of the broadcast medium.

The client has a cache that can hold CacheSize pages. After every
access, the client waits ThinkTime broadcast units and then makes
the next request. The ThinkTime parameter allows the cost of client
processing relative to page broadcast time to be adjusted, thus it can
be used to model workload processing as well as the relative speeds
of the CPU and the broadcast medium.

The client accessespages from the range 1 to AccessRange,which
can be a subset of the pages that are broadcast. All pages outside
of this range have a zero probability of access at the client. In this
study we assumed two models of access distributions:

� Uniform Distribution: The client accesses all pages in the
AccessRange uniformly with the same probability. We use this
distribution for pedagogical reasons to show the benefits of
prefetching.

� Zipf Distribution([Knu81]): The Zipf distribution with a pa-
rameter

�
is frequently used to model non-uniform access. It

produces access patterns that become increasingly skewed as
�

increases — the probability of accessing any page numbered �
is proportional to � 1 � ��� � . Similar to earlier models of skewed
access [DDY90], we partitioned the pages into regions of Re-
gionSize pages each, such that the probability of accessing any
page within a region is uniform; the Zipf distribution is applied
to these regions. Regions do not overlap and thus, there are
AccessRange/RegionSize regions.

When prefetching, the cache manager continually samples the
broadcast for potential prefetch candidates. This is in contrast to
demand-based caching, in which the broadcast is sampled only in
response to a page fault. The same heuristic for determining a page
replacement victim is used for both replacements due to demand-
driven access (i.e., page faults) and those due to prefetch.

3 A Simple Prefetching Heuristic
When prefetching data from a Broadcast Disk, the importance of

an arriving page must be estimated to determine if it should replace
a less valuable cache-resident page. In this section we describe a
simple heuristic algorithm to do this. The algorithm, called

���
,

computes the value of a page by taking the product of the probabil-
ity(P) of access of the page with the time(T) that will elapse before

Page Access Broadcast Freq. Repetition pix
Probability (per Period) Period Value

A P 2 10 units P/2
B P/2 2 10 units P/4
C P/2 1 20 units P/2

Table 3: Access and Broadcast Freq. for ��� example
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Figure 4: pt vs. Time

that page appears on the broadcast again. This is called the page’s
pt value.

���
finds the page in the cache with the lowest pt value,

and replaces it with the currently broadcast page if the latter has a
higher pt value. It should be noted that pt values are dynamic —
they change with every “tick” of the broadcast.

In our previous study, we describe a non-prefetching algorithm
called

�����
, which uses the probability (P) of access divided by

the broadcast frequency (X) (i.e., the pix value) as a replacement
metric. This quantity provides a means of including the cost of a
cache miss in the determination of which pages to keep cached. In
contrast topt values, however,pix valuesremain unchangedduring
a broadcast cycle. Thus, in the absence of accesses, the contents of
the cache using

�����
remain static; the cache will tend to acquire

the pages with the highest pix values. In this paper we show that a
good prefetch metric should be dynamic, i.e., sensitive to the current
position of the broadcast.

The pt value of a page is dynamic because the time parameter
of the metric is constantly changing. When a page is broadcast, t is
highest since ignoring the page at that point will put the client at a
maximal distance from the page. In other words, the moment that a
page passes by is the moment at which there will be the longest wait to
get it again. From that point on, the time parameter steadily decreases
until subsequent re-broadcast of the page, thus creating a sawtooth
function of time for

���
. Figure 4 traces this saw tooth effect for

three pages � , � and
�

. The access probabilities and broadcast
frequencies for the three pages are given in Table 3. Consider time
unit 5. At this point, page � is broadcast and its pt value shoots up
to its peak. A similar effect happens for � at time units 2, 12, 22 ���	� ;,
however its maximum pt value is only half that of � because of its
lower access probability.

�
, which has the same access probability

as � , has the same maximum pt value (at times 4, 24, 44 ����� ) as �
because of its longer broadcast period. The line along the bottom of
the figure shows the potential replacement victim at each time unit.
Note that unlike

�����
, in which � is always the least valued page

among the three, there are time intervals when
���

would choose
�

or even � as a replacement victim.
Due to this saw-tooth behavior,

���
will tend to drop high prob-

ability items just before they are re-broadcast. Items are most sticky
right after they are brought into the cache.

���
is in effect adjusting

the allocation of cache slots to pages so that (subject to cache size)
they are likely to be in the cache during those portions of the broad-
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ThinkTime 2.0
ServerDBSize 3000
AccessRange 1000
CacheSize 1 (0.1%) to 1000(100%)
∆ 1,2, � � � 4�

0.95
Offset 0, CacheSize
Noise 0%, 15%, 30%, 45%, 60%
Scatter On, Off
RegionSize 50

Table 4: Parameter Settings

cast cycle when they would be most expensive to acquire from the
broadcast. Note that this effect of cycling in and out of the cache is
suggestive of tag-team caching. In fact, the results of the next sec-
tion show that

���
is able to achieve the performance of the tag-team

example described previously.
It should be noted that any time-based prefetch scheme is poten-

tially very expensive to implement as it could require computing the
metric for every item in the cache at every clock tick. While we use
pure

���
as an ideal case in this study, we examine an implementable

approximation to
���

(called
� ���

), in Section 5.

4 Experiments and Results
In this section, we use the simulation model to explore the benefits

of prefetching in a broadcast environment. The primary performance
metric used is the average response time (i.e., the expected delay) at
the client measured in broadcast units. Table 4 shows the parameter
settings for these experiments. The server database size (ServerDB-
Size) was 3000 pages and the client access range (AccessRange) was
1000 pages. The client cache size was varied from 1 (i.e., no caching)
to 1000 (i.e., the entire access range). The results in these exper-
iments were obtained once the client performance reached steady
state. The cache warm-up effects were eliminated by beginning our
measurements 4000 accesses after the cache was full.

The first four experiments examine the relative performance of���
and

�����
for combinations of uniform or skewed client access

patterns with flat or multi-level disks. Analyzing the performance
of
���

under these varying conditions provides insight into how
prefetching exploits client cache resources to reduce the expected
delay for page requests.

4.1 Expt. 1: Uniform Access, Flat Disk
In the first experiment, we examine the performance of the

���
prefetching heuristic when the client access pattern is uniform (i.e.,
all pages in the AccessRange are accessed with equal probability),
and the broadcast is a single, flat disk (i.e., ∆ � 0) and the Access-
Range is scattered. Figure 5 shows the expected delay for

���
and�����

algorithms as the client cache size is varied from a single page
to 1000 pages. In this case,

���
and

���
�
have identical perfor-

mance at either end of the spectrum, but
���

has better performance
throughout the entire intermediate range. When the cache size is 1
page, the client can perform no caching or prefetching and thus, the
expected delay is 1500 pages (this is one half of the time for one
disk rotation) for both algorithms. As the cache size increases, the
performance improves under both algorithms, until at a cache size of
1000 pages, the response time for both is zero (because all accessed
pages are cached at this point).

Between the two endpoints, the prefetching performed by
���

leads to better performance than
���
�

. Note the case when the
cache can hold exactly half of the accessed pages (Cache size =

500). At this point, the response time of
���

is half that of
�����

.
This performance improvement is exactly what is predicted by the
tag-team example described in Section 1.2, and occurs for similar
reasons. In this case,

���
and

�����
have the same cache hit rates,

but
���

is able to reduce the cost of cache misses by better scheduling
the cache residency of pages. To see why

���
achieves the tag-team

effect in this experiment, it is necessary to recall how the
���

value
of a given page changes over time (as described in Section 3). A
page’s

���
value is at its maximum immediately after the page has

been broadcast; it then linearly decreases until reaching zero at the
instant the page is re-broadcast. As a result, using

���
, pages are

more likely to be replaced from the cache as they get closer to being
re-broadcast. In this experiment, which has uniform access and a flat
disk, a cache size of half of the AccessRange allows

���
to ensure

that pages are cache resident for the first (most expensive) half of
their inter-arrival gap, so that no cache misses occur during that half
of the gap. Thus, as in tag-team caching, the heuristic used by

���
improves performance by reducing the penalty of cache misses.

In relative terms (i.e., % difference)
���

’s advantage over
�����

grows with the cache size up to the point at which the entire access
range is cached. However, the advantage in absolute terms (i.e.,
time) reaches its maximum at a cache size of 500, and decreases
beyond that point in this experiment. The reason for this behavior is
that every cache slot that is added to the cache adds 0.1% (i.e. 1 out
of 1000 pages) to the client hit rate for both algorithms. The cost of
a miss remains constant for

�����
but decreases with the cache size

for
���

, because the latter algorithm uses the additional cache slot to
also fractionally shorten the delay for all pages. Thus, the marginal
benefit of an additional cache slot is constant for

�����
(each slot

reduces the expected delay by 1.5 units), as can be seen by the linear
decrease in response time for

�����
. In contrast, beyond the 500

page point, the marginal benefit of an additional cache slot decreases
for

���
, so that the absolute benefit of

���
over

�����
decreases.

4.2 Expt. 2: Skewed Access, Flat Disk
The previous experiment examined the case when the client’s

access pattern is uniform and the disk is flat. In this experiment
instead study the case when the client’s access pattern is highly
skewed (according to the Zipf distribution described in Section 2.2).
The results of this experiment can be seen in Figure 6, which shows
the response time for

���
and

���
�
when used on two different flat

disk configurations: Scattered and Unscattered. The Unscattered
disk lays out all the pages in the AccessRange sequentially. When
the Zipf distribution is used, this results in a layout where the accesses
are highly clustered to a small region of the disk. This clustering
is avoided in the Scattered disk by randomizing the location of the
pages on the flat disk (as described in Section 2.1).

Turning to Figure 6, it can be seen that all four curves have
similar performance. As in the previous case, performance improves
with additional cache, but is non-linear due to the skewed access
pattern. As the cache becomes larger, the marginal performance
gain from a new slot decreases here. When the Unscattered disk is
used,

���
provides no performance improvement over

�����
. With

pages clustered together,
���

cannot fully exploit the cache for tag-
teaming pages with similar access probability, as the hot (i.e., high
access probability) pages that appear earlier in the cluster tend to be
pushed out of the cache by the hot pages that are ordered later in the
cluster. The expected delay for the earlier pages, thus approaches
half a rotation — as would be expected for a non-prefetching scheme.
When the Scattered disk is used,

���
has a noticeable performance

improvement over
�����

demonstrating the benefits of randomizing
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Figure 7: Uniform Access, 3-level Disk
Cache Size = 100, Varying ∆
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Figure 8: Uniform Access, 3-level Disk
Cache Size = 250, Varying ∆

the (flat) disk contents for
���

-based prefetching. However, the
performance advantage of

���
over

���
�
is somewhat less than the

previous experiment, as the skewed access pattern allows
�����

to
better exploit the client cache. Yet, for a cache size of 500,

���
on

the Scattered disk obtains a 20% improvement over
�����

.

4.3 Expt. 3: Uniform Access, Multi-Level Disk
The third experiment examines the behavior of

���
when a multi-

disk broadcast is used. For simplicity, a uniform client access pattern
is used in this experiment. In this case, the broadcast consists of three
disks, for which the fastest disk holds 300 pages, the medium disk
holds 1200 pages and the slowest disk holds the remaining 1500
pages. The relative spinning speeds of the disks (and hence the
arrival rates of pages on those disks) is varied using the disk skew
parameter ∆(Delta). Figures 7 and 8 show the performance of

���
in this case for client cache size is 100 and 250 pages respectively.

In general, the two figures exhibit similar behavior. Due to the
uniform client access pattern, increasing disk skew (∆) harms perfor-
mance here, as the best broadcast for a uniform access distribution
is a flat broadcast[AAF95]. In both graphs,

���
outperforms

���
�
and is less sensitive to ∆ in the range of 0 (flat disk) to 4 (at which the
pages on the fastest disk are broadcast nine times more frequently
than pages on the slowest disk). The advantage that

���
has over�����

is larger (in both absolute and relative terms) with a cache size
of 250 pages than for a cache size of 100 pages. This is because

���
can not fully achieve the tag-team effect with a small cache. Like-
wise, if the cache becomes too large, then the absolute advantage
of
���

decreases. In this experiment, at a cache size of 250 pages
(Figure 8),

���
provides a substantial improvement over

�����
, and

this advantage increases as the disk skew (∆) is increased.���
is more tolerant of disk skew than

�����
in this case because

it is effectively able to adjust the cacheresidencies of various pages in
order to cope with their differing arrival rates. The manner in which

Out

In

Out

In

Out

In

0 1 2 3 4 5 6 7 8

Major Cycle Number (Relative)

0.116
(764)

0.775
(5114)

0.0003
(2)Disk 1

Disk 2

Disk 3 (6600)

Figure 9: Cache Residency for ���
Cache Size = 500, ∆ = 2

���
accomplishes this can be seen in Figure 9, which shows the

cache residency of a representative AccessRange page from each of
the three disks of the broadcast. Since all pages in the AccessRange
are accessed with equal probability, comparing the cache residency
times of the three pages demonstrates the way in which

���
exploits

the client cache resources. The figure shown is for the case where
the client cache size is 500 and ∆ is set to 2. Time increases along
the x-axis, which is divided into “major cycles” (i.e., periods of the
entire broadcast). The three curves in the figure correspond to the
pages from the three disks. When the curve is at the high position
(denoted as “In”), the page is resident in the client’s cache, and when
the curve is in the low position (denoted as “Out”), the page is not in
the cache. The figures on the graphs show the fraction of the cycle
each page is cache-resident every time it enters the cache. The figure
in parenthesis is the absolute time in broadcast units.

The top curve in the figure shows the cache residency of a page
that is stored on the slowest disk (Disk #3). Pages on Disk #3 are
broadcast once per major cycle, and therefore,

���
removes the page
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Figure 10: Skewed Access, 3-level Disk(Cache = 100)
∆ = 2, Varied Noise
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Figure 11: Skewed Access, 3-level Disk(Cache = 500)
∆ = 2, Varied Noise
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Figure 12: Skewed Access, 3-level Disk(Cache = 100)
Varied ∆, Noise = 0.30
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Figure 13: Skewed Access, 3-level Disk(Cache = 500)
Varied ∆, Noise = 0.30

from the cache once per major cycle. As the arrival time of the page
nears, its

���
value decreases, until the point it is replaced from the

cache. The page is prefetched into the cache when it arrives again.
The middle curve is for the page from the middle disk (Disk #2).
Since ∆ is set to 2, pages on this disk appear three times per major
cycle, and therefore (as shown in the figure)

���
expels the page

from the cache three times during the cycle. Again,
���

keeps the
page in cache after it arrives, and expels it at the time closest to when
it is due to arrive again. Comparing the curves for Disk #3 and Disk
#2, it can be seen that

���
gives more than twice the cache residency

time to the page on the slower Disk #3 (77% per cycle) than to the
page on Disk #2 (0 � 116 � 3 � 35% per cycle).���

is effectively determining the proper residency time for each
page (based on its probability of access and its frequency of broad-
cast), and then distributing this time over the major cycle in a way
that minimizes the expected delay for pages that have been removed
from the cache. Finally, the bottom curve of Figure 9 shows the
cache residency for a page that is stored on the fastest disk (Disk
#1). Since this page is broadcast relatively frequently (5 times per
major cycle),

���
does not allocate any cache residency time to it.

As a result, the page is brought into the cache only when there is
an outstanding client request for it, and is replaced from the cache
immediately. This is reflected by the fact that it stays only for 2
broadcast units (0.0003% of the cycle) in the cache – the think time
before the next access. This behavior can be observed as the random
spikes on the lower curve in the figure.

4.4 Expt. 4: Skewed Access, Multi-Level Disk
The fourth experiment investigates the combination of a skewed

Zipf client access pattern (as was used in Expt. 2) with the multi-
disk broadcast. Figures 10 and 11 show the performance of

���
and�����

as Noise is varied using the 3-disk broadcast of the previous
experiment with ∆ set to 2, for the cache sizes of 100 pages and

500 pages respectively. Recall that increasing the noise parameter
increases the discrepancy between the client access probabilities and
the page broadcast frequencies chosenby the server. A higher degree
of noise models the effect of a larger client population with differing
access profiles.

When the cache is small (Figure 10), the performance of both
algorithms is similar, and both are negatively impacted by increasing
noise. With the larger cache (Figure 11), the performance of

���
is

much more robust.
���

’s tolerance of noise is due to its ability to
fine tune the cache residencies of pages to account for their broadcast
frequencies (as was described in the previous experiment). When
the server places an important page on the slow disk,

���
is able to

compensate by giving that page more time in the cache, and ensuring
that the time when the page is not cache resident is placed as close
as possible to the subsequent arrival of the page on the broadcast.

Figures 12 and 13 show data points from the same experiment,
with noise fixed at 30%, and ∆ varied from 0 (i.e., a flat disk) to 4. In
this case, it can be seen that with a large cache,

���
is able to provide

a significant performance improvement over
�����

for a wide range
of different disk shapes. Thus, it can be seen that

���
is a very

robust metric — it can better exploit client cache resources across a
range of client access distributions, and broadcast programs, and can
also help mitigate the negative performance impact of disagreement
between client access probabilities and server broadcast frequencies
(as represented by “noise”).

5 Implementing
���

The previous sections have shown the potential benefits of
prefetching in a broadcast environment. However, the prefetch-
ing heuristic

���
in its pure form is impractical— it requires� � ���	��
 �
� ��� � � operations at every “tick” of the broadcast to de-

termine the page with the lowest pt value. As a result, we have
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designed an implementable approximation of
���

, called
� ���

,
based on the insights gained from studying

���
.

� ���
begins with the space of cached pages ordered by prob-

ability of access and partitions this ordering into contiguous, non-
overlapping regions. All pages in a region are assumed to have the
same probability of access. Thus, each region has only one potential
candidate for a replacement victim — the page in the region which
arrives next on the broadcast, (i.e., the one with the smallestt value).
� ���

evaluates pt values for each of these potential victims and
evicts the one with the lowest pt. Consequently, the eviction de-
cision for

� ���
has a complexity of

� ����� ��� � ������	 ��
 � �
��� � as
opposed to

� � ���	��
 � � ��� � � for
���

. Two remaining implementa-
tion problems must be addressed: 1) maintaining in constant time
the next broadcast page in each region, and 2) determining the access
probabilities of the client. We next address these problems in order.

Consider Figure 14. It shows an
� ���

implementation with three
probability regions for a flat (single-disk) broadcast. The pages in
a region are organized in a doubly-linked circular chain sorted by
their order of arrival in the broadcast. Region 1 shows examples of
pointers connecting neighboring slots. Each region also has a pointer
to that region’s potential replacement victim ( � 	�� ), (i.e., the page
with the smallest t). In the figure these are shown as shaded slots
(pages 
 � � and � ). Thus, one of the � 	�� must be the page with
the smallest pt value since all pages in a region are assumed to have
the same access probability. When a � 	�� is evicted (say 
 ), the
page following the old � 	�� becomes the new � 	�� (in this case,
page



). Let the client access a new page � and � be chosen as the

victim. Region 3 is then updated by freeing the slot for � and making� the new � 	�� . The new page is assigned a region based on its
current estimated probability of access. Let � be allocated to Region
2. It is then inserted into the second chain before the � 	�� ( � in
the figure) because the � 	�� has not yet been broadcast and the new
page will have the largest value for t. The size of the chains change
dynamically as can be seen for regions 2 and 3 in the figure.

The implementation described above is for a flat broadcast; how-
ever, splitting each region into smaller sub-regions, each correspond-
ing to a disk, allows us to extend this technique to handle a multi-disk.
We do not give the details here due to space limitations. This exten-
sion requires no additional space and only a small constant number
of extra pointer operations proportional to the number of disks.

As the number of regions (NumRegions) increases, the closer the
caching decisions will approach those of

���
. Making NumRegions

too large, however, will have an adverse effect on the performance
of

� ���
itself since its complexity is proportional to the number of

regions. Our studies have shown that four regions give acceptable
performance for the distribution under consideration. In the ex-
periments that follow, we determined the probability range of each
region by dividing the difference of the highest and the lowest access

probability of any page in the database into NumRegions equal sized
ranges. For example, let 0.001 and 0.041 be the lowest and the high-
est probability values and let the number of regions be four. Then
the ranges of the regions are [0,0.011), [0.011,0.021), [0.021,0.031)
and [0.031,1). Note that the first and the last regions have been ex-
tended to 0 and 1 to account for any pages which may, at some point,
fall outside the range. A page’s current probability determines the
region it gets assigned to. This simple approach gave us acceptable
performance.

Unlike demand-driven caching, prefetching also requires the ac-
cess probabilities of pages not in the cache to determine if they are
worth prefetching. We use a technique similar to the 2Q approach
proposed in [JoS94] of maintaining a second queue (twoQ). When a
page is evicted from the cache, its page number and its probability
of access is entered into the twoQ in a FIFO fashion. A page is
considered to be a prefetch candidate only if it is in the twoQ.

5.1 Expt. 5: ����� vs. �����
In this section, we compare the performance of

� ���
with

� ���
.� ���

was introduced in [AAF95] as an efficient constant time ap-
proximation of

�����
.
� ���

maintains an LRU-style chain ordered
by probability of access for each disk of a multi-disk broadcast.� ���

also keeps a running probability estimate for each broadcast
page based on its past history of access.

The probability estimate for a page divided by its frequency of
broadcast (a constant for each chain) is said to be the lix value of
that page.

� ���
evaluates the lix values of the pages at the bottom

of each chain and then evicts the page with the lowest lix value. The
new page then enters the queue corresponding to the disk it is on.� ���

uses a very simple formula to estimate the probability of a
page. To be fair, we also ran

� ���
using the same probability model

as was used by
� ���

. We call this algorithm
� ���

(2).
Consider Figure 15. It shows the same simulation space as Fig-

ure 12, i.e., CacheSize=OffSet=100 and a Noise of 30%. The size
of twoQ in this experiment was twice the cache size, i.e, 200 pages.
In this experiment,

� �
�
performs the worst and quickly degrades

as ∆ increases beyond 1.
� ���

(2) does significantly better than� ���
reflecting the difference between the two probability estima-

tion techniques. The last two lines show the performance of
� ���

and
���

. The ideal algorithm
���

outperforms
� ���

by a small mar-
gin.

� ���
improves on the response time of

� �
�
(2) by 10-30%.

In these experiments NumRegions was set at 4.
We performed similar experiments for larger cache sizes. As

the cache size increases,
� �
�

(2)’s performance improvement over� ���
decreases and

� ���
does not follow

���
as closely as in the

case of the small cache. This is a manifestation of the probability
model used by

� ���
(and

� ���
(2)). The probability model (which

is described in the next section) produces poorer approximations for
pages with low actual probability of access. Since the pages which
are not cache-resident are those with a low probability of access,
� ���

(and
� ���

(2)) tend to make more errors. In spite of this
handicap,

� ���
provides a significant performance improvement

over
� �
�

and
� ���

(2) and is more robust over a wider spectrum of
disk configurations (as determined by ∆).

So far, we have been assuming that the client has a fairly good
knowledge of its access probabilities. This might be too strong an
assumption. In the next section, we develop a probability model and
investigate how accurate these probabilities must be in order to retain
the acceptable performance. (The results presented in this section
for

� ���
and

� �
�
(2) were for a mean error in the probabilities of
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Cache = 100, Varied ∆, Noise = 0.30

Learning Run Length Mean Error Variance
500 1.380042 1.764039
1000 1.062268 0.739920
2000 0.705625 0.319217
5000 0.437711 0.146137
20000 0.227719 0.035724
35000 0.176085 0.022073
50000 0.146691 0.016047

Table 5: Error vs. Length of Run

about 0 � 4. The precise definition of error will be given in the next
section.)

5.2 Expt. 6: Sensitivity of �����
As we observed earlier, the

� ���
algorithm relies on the client’s

knowing its own access probabilities. We assume that the client
builds a model of these probabilities by sampling its own requests
over some period of time. We count the number of accesses for
a page and divide this number by the total number of accesses to
compute the page’s probability. As long as the access pattern is not
changing, a longer sampling period should produce more accurate
results. Such counting-basedschemes have been proposed before for
estimating probabilities for page replacement. The CLOCK [SPG90]
and the frequency-based cache management algorithm introduced in
[RoD90] are two examples.

In general, such a probability model will likely not be completely
accurate. This section describes experiments which analyze

� ���
’s

sensitivity to inaccuracies in the probability estimation. Different
levels of accuracy are generated by varying the sample length in the
learning run.

We use probability distributions that are derived from an initial
run whose length (InitRun) ranges from 500 to 50,000 accesses.
Let � � and � � be the approximate learned probability and the real
probability of page � respectively. The error � � for page � is given by
the formula: � � � � � � ��� � � � � � � �

Thus, when � � � 1, 0 � � � � 2 � � . The cumulative error in
the distribution is expressed by the mean and the variance for these
individual error values over all pages. The cumulative errors for the
learned distributions that we used in the experiments are summarized
in Table 5.

Figure 16 shows the response time of
� ���

for different lengths
of the learning run (InitRun). The simulation space is the same as
Figure 15, i.e., CacheSize=OffSet=100, Noise = 30%. In general,
higher sampling rates produce better performance. For the shorter
initial runs of 500 and 1000 accesses, the response time is somewhat
higher than the rest. However, beyond 5000 accesses, the perfor-
mance does not improve substantially. The results in Section 5.1

were for sample length of 5000. From Table 5, the error rate for this
length of run is 0.437 with a variance of 0.146. This means that the
approximate probability can be anywhere from half to 1.5 times the
real probability. In spite of this error,

� ���
does significantly better

than
� �
�

.
We conclude from this that

� ���
is fairly insensitive to perfect

knowledge of the access distribution. This is the case since
� ���

categorizes pages based on probabilities and in our distribution, the
hot pages are very hot and the cold pages are quite cold. Thus, it is
unlikely that pages will be incorrectly categorized. This is accept-
able since multi-disks are beneficial only in environments where the
access distributions are skewed.

Increasing the number of regions up to a point improved
� ���

’s
performance as is expected. However, beyond that threshold, the
response time degrades. Creating too many regions causes pages
to get wrongly classified since a small error in probability can shift
a page to the wrong region. As the accuracy of the probability
estimation increases this effect is no longer seen. As described
earlier, increasing the number of regions also linearly increases the
cost of the algorithm. For the simulation space studied, four regions
performed best.

6 Related Work
The basic idea of broadcasting information has been discussed

before ([BGH92], [Gif90], [IVB94]). Our studies deviate from these
in that we consider multi-level disks and their relationship to cache
management.

Prefetching has been studied extensively as a technique to im-
prove user performance in various areas including databases, oper-
ating systems and processor architectures. Prefetching techniques
usually fall into two categories – prefetching based on user hints and
prefetching based past access history.

[PaG94] proposes Transparent-Informed Prefetching which ex-
ploits I/O concurrency in disk arrays using hints from applications.
Pre-paging based on hints was suggested in [Tri79]. The other class
of prefetching algorithms is based on inferring access patterns from
a stream user requests ([CKV93], [KoE91], [PaZ91], [GrA94] to
name a few). Each of these techniques uses the access stream to
develop a model of the user behavior. Our work leans towards the
second category in the sense that we develop a model of client be-
havior based on past accesses. However, performance improvement
in a broadcast environment comes not from achieving a higher hit
rate but from reducing the cost of a cache miss. Consequently, the
crux of our prefetching heuristic is not developing a better access
model (which is sufficient to produce a better hit rate) but rather, us-
ing that knowledge to efficiently evaluate the cost metric like the pt

9



value. Our simple counting-based probability estimator can, thus, be
replaced by any of the other more sophisticated models to produce
even better results.

There has also been some work on prefetching in Teletext sys-
tems([Amm87], [Won88]). In [Amm87], a caching strategy called
the Linked Page scheme is described which uses embedded links
in each page to decide what to prefetch next. Stashing and Hoard-
ing used in the mobile computing environment ([KiS92], [TLA95])
are very similar to prefetching. However, their focus is to improve
availability in the file system as opposed to performance.

7 Summary and Conclusions
In a previous work [AAF95], we described our notion of a multi-

level broadcastdisk and examined techniques for managing the client
cache in this style of broadcastenvironment. In this work, we discuss
the possibility of using the broadcast disk as a way to prefetch data
into the client cache before the client requests it. We introduce a new
prefetching heuristic called

���
that takes into account the current

position in the disk’s rotation. We show that this style of prefetching
can provide significant performance improvements. An important
result of this work is that

���
achieves better performance not by

increasing the client hit rate, as in traditional systems like databases
and file systems, but instead by reducing the cost of a cache miss.

We briefly introduced a simple technique that we have named
tag-team caching. Tag-team caching illustrates that it is possible
to increase the effective size of the cache by rotating pages in and
out of the cache such that the cache residency time for a page is
proportional to its probability of access and is inversely proportional
to the amount of bandwidth allocated to that page in the broadcast.
This, in effect, decreases the cost of a cache miss and is the primary
intuition for analyzing our prefetch experiments.

The experiments showed that the
���

heuristic does a very good
job of balancing the bandwidth allocation with the cache residency
time. It is also a robust metric— it can exploit the cache better across
a wide range of broadcast programs and also, mitigate the negative
impact of any disagreement between the client access pattern and
the server program (as represented by “noise”). We then described
� ���

, a constant time approximation to
���

. Experiments with
� ���

show that it is a good approximation to
���

even when the
estimated probabilities are significantly different from the real values.
We showed that even a very simple learning scheme that infers the
client access probabilities by sampling the access stream can provide
reasonable results.

The techniques described in this paper along with their experi-
mental validation suggest that the potential of a broadcast disk can
be enhanced by adding a prefetcher to the client cache manager. The
risks of prefetching in this setting are much less than that in conven-
tional client/server systems since only local client resources are used
to prefetch an item.

In terms of future work, we would like to look at other approxi-
mate implementations of

���
. For example, we have been consider-

ing an approach that is based on categorizing pages by time instead
of probability. This could give us an algorithm that is even less
dependent on knowing the access probabilities.

We also plan to revisit the tag-team approach as an alternative
to the

���
-based approaches. In the single client case, we have

preliminary results for setting up tag-team broadcasts for multiple
pages with differing probabilities of access. We would like to extend
this work to include the more general case of multiple clients. If
tag-team caching could be made to perform as well or better than

���
, it would be an attractive alternative, since all decisions are

made statically and impose no additional computational penalty on
the client.
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