
Timed Consistency for Shared Distributed Objects?
Francisco J. Torres-Rojas Mustaque Ahamad

College of Computing College of Computing
Georgia Institute of Technology Georgia Institute of Technology

U.S.A. U.S.A.

torres@cc.gatech.edu mustaq @ cc.gatech.edu

Michel Raynal
IRISA

University of Rennes
France

raynal@ irisa.fr

ABSTRACT

Ordering and time are two different aspects of
consistency of shared objects in a distributed
system. One avoids conflicts between opera-
tions, the other addresses how quickly the
effects of an operation are perceived by the rest
of the system. Consistency models such as
sequential consistency and causal consistency
do not consider the particular time at which an
operation is executed to establish a valid order
among all the operations of a computation.
Timed consistency models require that if a
write operation is executed at time t, it must be
visible to all nodes by time t +A. Timed consis-
tency generalizes several existing consistency
criteria and it is well suited for interactive and
collaborative applications, where the action of
one user must be seen by others in a timely
fashion.

1 INTRODUCTION

Non-local access to objects in a distributed system is expensive due
to high communication costs. In order to alleviate this inefficiency
and to improve the reliability, availability and scalability of the
system, techniques such as caching and replication are normally
used. However, these methods lead to the coexistence of many,
possibly different, versions of the same object. This problem is
addressed by defining convenient consistency models for the state
of the distributed objects. A consistency model establishes a series
of guarantees about the valid relationships among the operations

t This work was supported in part by NSF grants CCR-9619371 and INT-9724774.

Permission to make digital or hard copies of all or part of this work for
personal or classroon~ use is granted without fee procidd that copies
are no1 rnadc or dixtrihuwd for prolit or comnvxcial advantage and thor
copies bear this notiw and the full citation on the first page. ‘l’o a~py
otherwise. to republish. to post on servers or to redistribute to lists.
requires prior specific permission and:or a fee.

PODC ‘99 Atlanta GA USA
Copyright ACM 1999 l-581 13-099-6/99/05...$5.00

executed by the sites of the system, which in turn constrain the
possible values that shared objects can return when read operations
are executed.

In many consistency models, real-time is not explicitly captured.
For example, sequential consistency only requires that it is possible
to serialize all the operations executed in the distributed system
[25]. Causal consistency, a weaker model, only requires that caus-
ally related operations be seen in the same order by all the sites of
the system, while concurrent operations may be perceived in differ-
ent orders by different sites [2]. On the other hand, strict serializ-
ability [14,30] and linearizability 1201 require that the serializations
respect real-time ordering between transactions and operations,
respectively. The notion of time has also been explored in commu-
nications systems such as delta causal broadcast [7, 81, in memory
systems that have a temporal consistency model (e.g., delta consis-
tency [34]) and in several World-Wide Web (WWW) cache consis-
tency protocols [lo, 11, 191.

We propose a rimed consistency model which defines a maximum
acceptable threshold of time after which the effects of a write oper-
ation must be observed by all the sites of a distributed system.
Timed consistency not only meets the needs of many applications
that must observe updates to dynamically changing objects in a
timely fashion, but also unifies existing consistency models such as
sequential consistency and linearizability. We focus our attention on
timed serial consistency (TX) and timed causal consistency
(TCC) models. We will show that sequential consistency and lin-
earizability are special cases of TX.

In Section 2, we define the consistency criteria contemplated in this
paper. We present the concept of timed consistency and the particu-
lar cases of TSC and TCC in Section 3. Some applications are pre-
sented in Section 4. In Section 5, we describe a possible
implementation of these consistency levels. The paper is concluded
in Section 6.

2 CONSISTENCY CRITERIA

The global history H of a distributed system is a partially ordered
set of all operations occurring at all sites of the system. Hi is the
sequence of operations that are executed on site i. If a occurs before
b in H, we say that a precedes b in program order. We assume that
all the operations in Hare either read or write (in order to simplify,
it is assumed that each value written is unique). These operations
take a finite, non-zero time to execute, hence there is an interval that
goes from the time when a read or write “starts” to the time when

163

such an operation “finishes”. However, for the purposes of timed
consistency, we associate an instant to each operation called the
efiective rime of the operation. The effective time of an operation
corresponds to some instant between its start and its end. For short,
if the effective time of a is t, we say that a was “executed” at time t.

If D is a set of operations, then a serialization of D is a linear
sequence S containing exactly all the operations of D such that each
read operation to a particular object returns the value written by the
most recent (in the order of S) write operation to that same object.
Let - be an arbitrary partial order relation defined over D, we say
that serialization S “respects -” if Va,b E D such that a - b, it
happens that a precedes b in S.

History H satisfies fineurizubility (LIN) if there is a serialization of
H that respects the order induced by the effective times of the oper-
ations [20]. Srrict serializability is defined over histories formed by

transactions, and it requires the existence of a serialization of H that
respects the real-time order of the transactions [14,301. LIN can be
seen as a particular case of strict serializability where each transac-
tion is a predefined operation on a single object. Norma@ as pro-
posed in [171, is equivalent to LIN when operations on objects are
unary, but it is strictly weaker than LIN when operations can span
several objects.

A weaker level of consistency is offered by sequential consistency
(SC). This model, defined by Lamport in [25], does not guarantee
that a read operation returns the most recent value with respect to
real-time, but just that the result of any execution is the same as if
the operations of all sites were executed in some sequential order,
and the operations of each individual site appear in this sequence in
the order specified by its program. History H satisfies SC if there is
a serialization of H that respects the program order for each site in
the system. The power and implementation costs of SC and LIN
are compared by Attiya and Welch in [6].

The causality relation ‘I+” for message passing systems as defined
in [26] can be modified to order the operations of H. Let a,b,c E H,
we say that a + b, i.e., a causally precedes b, if one of the follow-
ing holds:

(i) a and b are executed on the same site and a is executed
before b;
(ii) b reads an object value written by a;
(iii) a + c and c + b.

Two distinct operations a and b are concurrent if none of these con-
ditions hold between them. Let H,+,,, be the set of all the operations
in Hi plus all the write operations in H. History H satisfies Causal
Consistency (CC) if for each site i there is a serialization of Hi+w

that respects causal order “-+” [2]. Thus, if a,b,c E Hare such that
a writes value v in object X, c reads the same value v from object X,
and b writes value v’ in object X, it is never the case that a + b +
C.

CC requires that all the causally related operations be seen in the
same order by all sites, while different sites may perceive concur-
rent operations in different orders. CC is a model of consistency
weaker than SC, but it can be efficiently implemented [2]. CC has

been shown to be sufficient for applications that support asynchro-
nous sharing among distributed users. It has been explored both in
message passing systems [9] and in shared memory and object sys-
tems [3, 4, 5, 21, 23, 24, 391. Relations between SC and CC have
been studied by Ahamad et al. [2] and by Raynal and Schiper 1321.

3 TIMED CONSISTENCY

In neither SC nor CC, real-time is explicitly captured. In SC,
operations may appear out of order in relation to their effective
times. In CC, each site can see concurrent write operations in
different orders. On the other hand, LIN requires that the operations
be observed in an order that respects their real-time ordering [20].
Ordering and time are two different aspects of consistency. One
avoids conflicts between operations, the other addresses how
quickly the effects of an operation are perceived by the rest of the
system.

Timed consistency requires that if the effective time of a write is t,
the value written by this operation must be visible to all sites in the
distributed system by time t + A, where A is a parameter of the exe-
cution. We can see that when A is 0, timed consistency becomes
LIN, i.e., timed consistency is a generalization (or a weakening) of
LIN.

l--A---l

TJ!jf= r)
/ /

rw1 r(x)1 r(x)1

Time

Figure 1. A non-timed sequentially consistent execution.

The execution showed in Figure 1 satisfies SC and CC but not LIN.
Up to the second operation of site I, the execution satisfies timed
consistency for the value of A represented in this figure, but, by that
same instant, LIN is no longer satisfied. After this point, the execu-
tion is not even timed because there are read operations in site 1
that start more than A units of real-time after site 0 writes the value
7 to object x and these read operations do not return this value.

3.1 Reading on Time
In timed models, the set of values that a read may return is
restricted by the amount of time that has elapsed since the
preceding writes. A read occurs on time if it does not return stale
values when there are more recent values that have been available
for more than A units of time. This definition depends on the
properties of the underlying clock used to assign timestamps to the
operations in the execution. First, we assume perfectly
synchronized physical clocks, where T(a) is the real-time instant
corresponding to the effective time of operation a.

Definition 1. Let D c H be a set of operations and S a serialization
of D. Let w, r E D be such that w writes a value into object X that is

164

later read by r, i.e., w is the closest write operation into object x

that appears to the left of r in serialization S. We define the set W,,

associated with r, as:

W, = {w’ E D : (w’ writes a value into object X) A

(T(w) < T(w’) < (T(r) - A)))

We say that operation r occurs or reads on time in serialization S, if
W, = 0. S is timed if every read operation in S occurs on time. Cl

Figure 2 illustrates Definition 1 presenting a possible arrangement
of read and write operations over the same object. Operation r
reads a value previously written by operation w. Since operation w,
was executed before w, it has no effect on whether r is reading on
time or not. Similarly, although w4 is more recent than w, the inter-
val A has not elapsed yet when r is executed, and, thus, it is accept-
able that r does not observe the value written by w4. On the other
hand, operations wZ and ws occur after w, and the values written by
them have been available in the system for more than A units of
time when r is executed. Thus, w2 and ws are in W, and, therefore,
operation r does not occur on time. The shaded area between T(w)
and T(r) - A represents the interval of time associated with the set
W, which, according to Definition 1, must be empty if r reads on
time (i.e., no write operation to the same object read by r can occur
in this interval).

w, m/$%z 4 ,\/I\ 0)i
WI- ,,’ T(w) ,I

I
‘\ T(r)-A ‘._ T(r)

w2 w3 w4

Figure 2. Operation r does not read on time.

3.2 Approximately-synchronized real-time clocks
Physical clocks do not keep perfect time and there will always be
differences among the clocks at different nodes. In approximately-
synchronized real-time clocks, periodic resynchronizations
guarantee that no two clocks differ by more than E units of time.
Typically, it is also guaranteed that the difference between any
clock and the “real” time (as maintained by a time server) is never
more than E/2 [12, 13,22,28,29]. Therefore, if the effective time of
operation a was reported by a particular site as T(a), then, from the
point of view of the time server, this effective time corresponded to
some instant in the interval [T(a) - E/2, T(a) + E/2].

Similarly to [35], we say that, Qa, b E H, a defiitely occurred
before b if T(a) + E/2 < T(b) - t?J2, or, equivalently, if T(a) + E <
T(b). If neither a nor b definitely occurred before the other one, we
say that their timestamps are non-comparable or concurrent (i.e.,
the imprecision of the clocks does not allow us to decide which
operation occurred earlier).’

Let w, r E D G H be such that w writes a value into object x that is
later read by r. Let w’ E D also update object X. If T(w’) definitely
occurred before T(w), or if (T(r) - A) definitely occurred before
T(w’), then it is clear that w’ does not affect the fact that r occurs on
time. Now, if either T(w’) and T(w) are concurrent, or if (T(r) - A)
and T(w’) are concurrent, there is no evidence of w’ being more
recent than w, or of w’ occurring more than A units of real-time
before r, respectively. In these cases, we can still claim that r occurs
on time. Conversely, r is not reading on time if T(w) definitely
occurred before T(w’) and if T(w’) definitely occurred before the
instant (T(r) - A). Therefore:

Definition 2. Let D c H be a set of operations and S a serialization
of D. Let w, r E D be as presented in Definition 1. We define the set
W,., associated with r, as:

W, = (w’ E D : (w’ writes a value into object x) A

(T(w) + E < T(w’)) A
(T(w’) + & < T(r) - A))

We say that operation r occurs or reads on time in serialization S, if
W, = 0. S is timed if every read operation in S occurs on time. B

Figure 3 shows the same example presented in Figure 2, but assum-
ing approximately-synchronized clocks. As before, operations wt
and w4 do not affect whether or not r reads on time. Given the
imprecision of the clocks used to timestamp the events, operations
w and w2 are considered concurrent. Besides, it cannot be decided
if operation ws occurred more than A units of time before r. Hence,

the set W, is empty, and r occurs on time. Notice how the interval
associated with the set W, is 2& units of time shorter than the one

presented in Figure 2. When E = 0, Definition 2 reduces to Defini-
tion 1.

A 7/////,///$///
4 I\+ 4 Ii 4 II

WI
,” T(w) ,I

,
‘> T(r)-A ‘,. T(r)

w2 w3 w4

Figure 3. Operation r reads on time.

3.3 TSC and TCC
We now combine the requirements of well-known consistency
models such as SC and CC with the requirements of reading on
time:

Definition 3. History H satisfies timed serial consistency (TSC) if
there is a timed serialization S of H that respects the program order
for each site in the system. CJ

I. In this context “definitely occurs before” only refers to the order of the operations
in real-time and not necessarily implies any causal relationship.

165

Definition 4. History H satisfies timed causul consistency (TCC) if
for each site i there is a timed serialization 5, of Hi+,,, that respects
causal order “+“. P

Let UN, SC, CC, TSC and Z’CC be the sets of all the executions
that, respectively, satisfy LIN, SC, CC, TSC and TCC. Figure 4.a
presents the hierarchy of these sets. If an execution satisfies LIN it
satisfies SC as well, but the contrary is not always true. If a set of
operations D satisfies LIN, then it is always possible to produce a
serialization S of D such that all the operations are ordered by their
respective effective times. In turn, S satisfies Definition 1, even for
A = 0. Then, LIN is a case of TSC where A = 0, and therefore LIN

c TSC. It is easy to see that SC c CC.

a) Hierarchy of Consistency Models

b) Varying the value of A

Figure 4.

Let T be the set of all the timed executions. From Definition 3, we
have that:

TSC= Tn SC+ TSCc SCc CC

From Definition 4, we have that:

TCC= Tn CC=s TCCc CC

Then:

TCCn SC= Tn CCn SC = Tn SC= TSC

Figure 4.b shows, for the case of TSC, the effects of different val-
ues of A (i.e., both SC and LIN can be seen as particular cases of
TSC).

3.4 Examples
Figure 5.a presents a sequentially consistent execution. Operation
Wi(X)V is executed at site i and writes value v into object X;
operation r,(X)v is executed at site i and reads value v from object
X. Each operation has an associated real-time instant that
corresponds to its effective time. Let 0 be the initial value for any
object. Figure 5.b presents a possible serialization of all the
operations that respects the program order of each site. This
serialization proves that the execution satisfies SC, but it does not
capture the real-time ordering of the effective times of the
operations since, in fact, several are observed in reversed order
(e.g., w,,(C)6 and wz(B)S, or r4(C)6 and wz(C)7).

The definition of TSC depends on the particular value of A. For
instance, site 0 updates the value of object C to 6 at instant 338 and
site 2 updates the value of the same object c to 7 at instant 340. At
instant 436, site 4 reads object C and the value returned is 6. If, for
instance, A = 50 this execution does not satisfy TSC because by
instant 436, site 4 must be aware of the write operation wz(c)7. On
the other hand, for A > 96 this execution satisfies TSC. Similarly,
site 2 updates the value of object B to 5 at instant 274, but, at instant
301, site 3 reads value 2 from object B; if A < 27 then this execution
does not satisfy TSC.

Figure 6.a presents an execution that satisfies CC but not SC
(among other things, operation ro(B)4 disallows a serialization of
all the operations that respects the program order of each site’). Fig-
ure 6.b shows serializations for each local history, marked by the
shaded boxes, plus all the external writes, that respect the causality
of the operations. These serializations do not necessarily follow the
real-time ordering of the operations and, in several of the serializa-
tions, concurrent write operations are perceived in different orders.
The chosen value of A establishes whether or not the execution sat-
isfies TCC. For instance, if A = 30 then operation r4(c)0 executed
at instant 155 violates TCC because it ignores operation wz(C)3
that was executed at instant 122.

4 APPLICATIONS OF TIMED
CONSISTENCY

In spite of the usefulness and importance of consistency models
such as SC and CC, their formal definition and practical
implementation permit executions that ignore the real-time
occurrence of certain events. In many cases this could be
considered an advantage that allows efficient and convenient
implementations. For instance, CC is well suited to mobility
applications and has the ability to handle disconnections smoothly
[3, 41. Mechanisms to gracefully weaken the consistency
requirements (e.g. from SC to CC) are described in [23], giving
control to the application to voluntarily disconnect.

Many applications require more support to detect and exploit the
correct real-time relationships between events. The trivial execution
presented in Figure 1 satisfies SC, since it is possible to serialize all
the operations corresponding to site 2 before the write operation of

2. In general, determining whether or not an execution satisfies SC is a NP-complete
problem [18, 361.

166

Site 0
,$ $9 ,JT ,~
+ + + II\

WdBM WdC)6 r”(A)9 K"(B)5

,?P @ 6 p 4
Site 1

+ + +
r,(B)2 r,(A)0

9 +
W,(A)9 r,(B)5 r,(C)7

Sire 2
,+ 6 ,p ,,p & ,G

+ ++e
W%C)3 r,(A)0 W,(B)5 W,(C)7

+ +
w&A)6 w,(A)10

$ @
+

r,(B)0 w,(B)1 r,(A)0 r,(B)2 r,(B)5

.p
Sire 4 $ % +

8 4%

r&N W,(B)2 r,CD
+

r,(c)6 r,(c)7
Time

a) Sequentially Consistent Execution

r,(C)0 r.,(B)0 w,(B)4 w,(C)3 r*(A)0 WXB)l r>(A)0 w,(B)2 r,(C)3 r,(B)2 r,(B)2 r,(A)0 w&C)6

w,(A)9 rdA)9 w,(B)5 r,(B)5 r&B)5 r,(B)5 r,(C)6 w,(C)7 r,(C)7 r,(C)7 w*(A)6 w,(A)10

b) Serialization that respects program order

Figure 5.

Sire 1

,s
Sire 3 $ $ +

r,(B)0 w,(B)1 r,(A)0

r,(C)0 w,(B)2 r&)0

,4

+
r&)3

p

+
r&W

7he

a) Causally Consistent Execution

s, : w,(B)2 wndc)sl a,(A)9 p[AA)9 r&)4 r?(C)3 t+(B)5 w#)7 w,(A)6 w,(A)1 w,(B)1

s,: w&)3 wz(B)5 w,(B)2 rr(B)2 r,(A)0 n,(A)9 r1(B)2 w,(C)7 w&B)4 w&)6 W,(A)8 w,(A)10 wj*J(BD

s,: W,(C)3 r&A)0 wAB)S WAC)? W,[A)S ~%A)10 w,(B)2 wo(B)4 w&)6 w,(A)9 w.,(B)1

w&)6 W,(A)9 r,(C)3 wI(B)5 w,(C)7 w,(A)8 ~~(A)10

b) Serializations that respect causal order

Figure 6.

167

site I or vice versa. However, the last read operation of site 2 may
occur several hours after the write operation of site 1 and the value
7 is yet to be seen. Evidently, this violates TSC and TCC (the
shaded area represents the span of A). If this execution corre-
sponded to an application of, for instance, multi-user virtual envi-
ronments, this behavior may not be acceptable because the most
recent write could imply a serious alteration of the environment
that is not perceived on time by site 2.

Timed consistency models are useful in applications where the
observance of the passing of real time and their effects is part of the
definition of correctness. In the same way as it occurs in nature, we
can allow the passing of a finite period of time before the effects of
an operation are known to all the sites in the system. This period is
precisely the parameter A. For instance, it is valid that the first read
executed by site 2 in Figure 1 retums,the value 1, because the new
value of X has not yet been made visible to the entire system.

The simulation of interactive virtual environments is explored by
Singla et al. in [34], where the concept of “delta consistency” is
defined as a correctness criterion to control accesses to a shared
memory. This timed consistency model is particularly appropriate
for expressing the requirements of interactive application domains.

The notion of A-causality in unreliable networks is presented by
Baldoni et al. in [7, 81, this protocol supports multimedia real-time
collaborative applications. In order to deliver a message to a pro-
cess, it is verified that the causal order of messages is met (similar
to [9]) and that the lifetime A of the message has not yet expired.
Their approach is slightly different than the one expressed in Defi-
nition 3 because late messages are never delivered, and it is
assumed that a more updated message will eventually be received.

The features of Semantic Distributed Shared Objects (S-DSO) are
presented by West et al. in [41]. In order to improve performance,
this system exploits application-level temporal and spatial con-
straints on shared objects, allowing applications to specify when
and which processors should see the effects of write operations to
shared objects. A multimedia application based on S-DSO is also
described in [41].

Web cache consistency protocols can be modeled as timed consis-
tency protocols, and if the causal relationships between documents
are considered then TSC or TCC are appropriate models. The use
of an adaptive time-to-live (TTL) protocol based on the Alex file
system [l l] for World-Wide Web documents is favored by the
results of Gwertzman and Seltzer [19]. They found that this cache
consistency protocol reduces network bandwidth consumption and
server loads in comparison to other protocols. On the other hand,
the results of Cao and Liu [lo] advocate a consistency protocol
based on invalidations of outdated cached web documents that are
initiated by the server sites. Both [191 and [lo] distinguish between
“weak” and “strong” consistency of web documents, which can be
modeled with different values of A.

The level of consistency provided by TCC is useful even in appli-
cations in which clients cache objects for read-only access. Assume
that an user cached a web page containing the Dow Jones index and
a CNN web page, with no causal relations between them. This state
of the cache satisfies CC. At a later point in time, the user down-

loads a more recent version of the CNN web page describing a sud-
den fall in the Dow Jones index, with a link to the page containing
the Dow Jones index. Clearly, accessing the outdated web page
with the old Dow Jones index after reading the CNN article violates
CC, therefore the old Dow Jones page must be invalidated. On the
other hand, if the user does not download new versions of any of the
original web pages for weeks, the cache still satisfies CC, but, for a
value of A set to a few hours, does not satisfy TCC.

5 IMPLEMENTATION

SC and CC can be implemented in a variety of ways, with varying
degrees of flexibility and performance [1,2, 3,4, 6,9,20, 23, 251.
We explore implementations of TSC and TCC based on the
lifetime of distributed objects as presented in [39].

5.1 Lifetime Based Consistency Protocol
This technique provides consistency across different but related set
of objects. We assume an architecture where each object has a set of
server sites that provide long term storage for the object and where
client sites cache objects before accessing them. Cache misses are
handled by a server site, which either has a copy of the requested
object or can obtain it.

Let the set Ci denote the cache of site i, in which it stores copies of
objects that have been accessed recently. If a cache miss occurs
when accessing object X, some server provides a copy of its current
version of X. Once this copy is stored in C,, we denote it as Xi. The

start time of Xi, denoted as Xia, is the time when the value of Xi was
written. The latest time when the value stored in Xi is known to be

valid is its ending time and it is denoted as Xi? The interval [xi*,

Xi”] is the currently known lifetime of the value stored in Xi.

The values of X; and yi (cached in Ci) are mutually consistent if

mar(Xiu, Yia) I min(Xjo, Yi”), i.e., their lifetimes overlap and, thus,

they coexisted at some instant. Ci is consistent if the maximum start

time of any object value in Ci is less than or equal to the minimum

ending time of any object value in C,, i.e., every pair of objects in Ci
is mutually consistent.

In general, the lifetime of arbitrary object values is not known.
When site i updates object version Xi at time t, timestamp t is

assigned to both xia and Xi? We have to discover as we go that no
object copy Xj (i #]I has been overwritten and use this information

to advance Xi? Details of protocols that determine if object copy Xi

is valid at time t’ > xiw can be found in [24,39].

A local timestamp variable called Contexti is associated with C,. Its
initial value is 0, and it is updated with the rules:

1. When a copy of object X is brought into C, (becoming Xi):

Contexti := mux(Xiu, Context,)

2. When object copy xi is updated at time t:

Context, := X,a := t

168

Contexti keeps the latest start time of any object value that is or has
been stored in C,. When a copy of object X is brought into C,, its
ending time must not be less than Context, if necessary, other serv-
ers or client sites are contacted until a version of X that satisfies the
condition is found. Furthermore, any object Y~E C, such that Y,"<

Context, is invalidated. It is proved in [39] that this protocol
induces SC on the execution.

5.2 TSC Implementation
Notice that, under the lifetime protocol described in the previous
section, site i accesses a state of the objects that was consistent at
time Context, but the current time can be much later. By
controlling that the difference between the current time and
Contexti is less than or equal to A, we are actually inducing TX.
Object values whose ending times are older than A units of real-
time in the past are locally invalidated. This is easily accomplished
by adding an extra rule for the updating of Context, (let ti be the
current time at site i):

3. Context, := max(ti - A, Contexti)

This works nicely with objects whose ending times are well-known
(e.g., write-once objects, leased objects, periodic objects, etc.), but
as [39] indicates, it may generate unnecessary invalidations for
arbitrary objects whose lifetimes are not known accurately. Several
optimizations are possible, for instance, when Contexti is updated,
those objects whose ending times are less than Context, are not
invalidated but just marked as old. Any future access to an old
object initiates a validation operation through one of the servers,
which either advances the ending time of the object value or pro-
vides a newer version of the object. Much of this can be done by
just comparing timestamps, which avoids the unnecessary sending
of large objects. This is similar to the ‘ITL approach used by the
current HTTP protocol [161: if a document whose TTL has expired
is accessed, the client site polls the server with an if-modijkd-since
request including the URL of the document and its current times-
tamp. The server checks whether the document has been modified
since the timestamp; if this is the case a newer version of the docu-
ment is returned, otherwise the server just informs the client that its
cached copy is still valid [lo, 191. Alternatively, an asynchronous
component of the system may update old versions of certain cached
objects before they are accessed, i.e., a push update-propagation
policy.

In general, the faster a client site communicates a recent update of
an object value to a server site, the more efficient the system
becomes; however, this does not affect the correctness of the proto-
col.

5.3 TCC Implementation
The lifetime protocol described in section 5.1 is modified in [39] to
induce CC on the executions. All the timestamps used in the system
(i.e., local clock, Context, and the start and ending times of object
values) are now taken from vector clocks [15,271 or from plausible
clocks [37]. The rules of the protocols are slightly modified to
consider concurrent timestamps. This variant of the lifetime
protocol does not require physical clocks and generates
considerably less communications overhead than its SC
counterpart.

Context, is updated with versions of rules 1 and 2 of Section 5.1
adapted to logical clocks. Among other things, this requires com-
puting the muximum and minimum of two logical timestamps that
are taken from either vector clocks or plausible clocks [38]. When
an object copy is brought from a server into C,, we verify that its
ending time is not causally before Context, (however, it may be
concurrent with Context,). If necessary, other servers or client sites
are contacted until a version of the object that satisfies this condi-
tion is found. Any object yis Ci whose ending time is causally

before Context, (i.e. Y;” + Context,) is invalidated. Local copies
of objects could be invalidated when a new object is brought into
the cache, but they are never invalidated as a consequence of the
update of a local object value because the logical ending times of
local object copies are advanced together with the local logical time
of the site [39].

Since TCC requires the use of physical clocks in order to guarantee
that the effects of a write operation are observed before A units of
real-time, we add a new timestamp taken from a physical clock: the
checking time of X, denoted as Xip. This timestamp is the latest real-
time instant when the value stored in Xi is known to be valid.

Let ri be the current real-time of site i. When a copy of object X is
brought from server s into C;, we now also require that x,B 1 ti - A.
Similarly, any local object Yie Ci such that Y/k ti - A is invalidated
or marked as old. These rules guarantee that the site always reads
on time, because object values suspected to be old are either vali-
dated or replaced by newer versions.

Under the same circumstances, this implementation of TCC tends
to invalidate more objects than the implementation of CC presented
in [39], but less than the implementation of TSC described in Sec-
tion 5.2. The optimizations mentioned for TSC are also applicable
to TCC.

5.4 TCC using logical clocks
Implementations that induce CC with just the use of logical clocks
are described in [3, 23, 24, 33, 391. TCC can be approximated in a
distributed system whose sites only share a logical clock. We define
a map 5 from the set of logical timestamps to the set of real
numbers. The parameter A will no longer be expressed in real time
units, but as a real number that defines the maximum difference
between the values that 5 produces for certain logical timestamps
(e.g., the timestamp associated with the event that updates the value
v of a particular object and the timestamp associated with any
operation that reading this same object retrieves value v’f v).

Definition 5. Function 5 maps timestamps taken from a logical
clock to the set of real numbers. Let t and u be two logical times-
tamps, 5 has the following properties:

Informally, G(t) represents the “amount” of global activity of the
system that is known when the event associated with timestamp t is
generated. Even if timestamps t and u are concurrent, we want that
if at time u the system is aware of more global activity than at time

169

t, then c(t) > c(u). For instance, the concurrency measures proposed
in [31] can be adapted for the definition of convenient and coherent
maps 5 from logical timestamps to real numbers. In any case, the
definition of 5 depends on the particular representation of logical
time used and there is not a unique or best way to compute it.

Definition 4 is valid with logical clocks if we just redefine the con-
cept of reading on time given in Definition 1. If a E H, we say that
L(a) is the logical time at which a is executed.

Definition 6. Let D G H be a set of operations and S a serialization
of D. Let w, r E D be as presented in Definition 1. We define the set
W, associated with r, as:

W, = (w’ E D: (w’ writes a value into object X) A
(WwN < 5(&9 c W(r)) - 4) 1

We say that operation r occurs or reads on time in serialization S, if
W, = 0. S is timed if every read operation in S occurs on time. Ct

Therefore, timed consistency requires that if a write operation is
executed at logical time t, it must be visible at site i before {(ti) -
k(t) > A, where fi is the logical time of site i.

Consider an example of a mapping E, for vector clocks: if t is a vec-
tor timestamp used in a distributed system with N sites, we can
define:

i=O

Thus, k(t) is the number of global events that are known to a site
when its current logical time is t. This map satisfies Definition 5
and gives us a way to summarize the information conveyed in a
vector clock. For instance, if the current logical time of a site is
c35,4,0, 72>, then this site is aware of 111 global events. Now, if
its current copy of object x was written at logical time ~2, 1 , 0,18>,
then this version of X was created by a site which was aware of 21
global events. For any value of A c 90, this object version is either
invalidated or marked as old.

Another interesting version of 5 that allows a geometric interpreta-
tion of vector clocks is:

IN- 1

This formula is the length of a vector in a YINvector space. Figure 7
shows some examples for the simplest case with just 2 sites. Figure
7.a presents the length for the timestamp c3, 4>. Since timestamp
c3,2> + c3,4>, then @c3, 2>) c &c3,4>), i.e. 3.61 c 5, as illus-
trated by Figure 7.b. Furthermore, the area enclosed by the first
timestamp is totally covered by the area enclosed by the second
timestamp. This is a direct consequence of the definition of “c” for
vector clocks [15, 271 and it is valid for larger values of N (but its
geometric interpretation is not as evident for N > 3). Conversely,
two concurrent timestamps such as c2,4> and c3, 2> define areas

which are not totally contained one into another. However, it is pos-
sible to argue that timestamp c2, 4> denotes a global state of the
system that is aware of a larger global activity than timestamp c3,
2> and therefore 5(c3,2>) c &c2,4>), i.e. 3.6 c 4.47, as presented
in Figure 7.~.

V
3

Sire 0

a) Length of a Vector Clock

3

Sire 0

b) Causally related events

I ut, = 4.47

2 3

Sire 0

c) Concurrent events

Figure 7. Geometric interpretation of Vector Clocks.

Other examples of the map 5 for vector and plausible clocks are
presented in [40].

6 CONCLUSIONS
Timed consistency models examine interesting temporal
relationships between objects and sites that form a distributed
system, and are able to capture requirements that are not easily
expressed by standard consistency models such as SC and CC. A
timed consistency model defines a maximum acceptable threshold
of time (i.e., parameter A) after which the effects of a write
operation must be available to all the sites of the system.

The value of A is the result of a trade-off between the need of per-
ceiving changes to shared objects in a timely fashion and the avail-
ability of resources in the system. Small values of A require more
communications overhead and may decrease the scalability of the
system (e.g., in extreme cases, local caches become useless), while
large values of A require less expensive methods but reduce the
timeliness of the information and the actual sharing of information

170

by the sites. Since such considerations are typical in interactive and
collaborative applications, and more recently for dynamic content
on the World Wide Web, timed consistency criteria are appropriate
to state the requisites of operations ordering and timeliness of these
applications.

By combining the requirements of timed consistency and those of
consistency criteria such as SC and CC, we propose TSC and
TCC, which are well suited to meet the needs of many applications.
Furthermore, this concept also unifies existing consistency models
such as sequential consistency and linearizability. We explore a
possible implementation of TSC and TCC based on the concept of
lifetimes of object values. Finally, a possible definition of TCC
using just logical clocks was presented.

Several issues of this research are to be addressed as part of future
work. In order to better understand the relationship between the
value of A and the cost of accomplishing that particular level of
timeliness, we are currently completing detailed simulations (and
eventual implementations) of systems based on the consistency cri-
teria described in this paper. Other possible implementations of
TSC and TCC have to be considered. For the case of TCC using
just logical clocks, it is necessary to explore different mappings
from logical timestamps to real numbers, and to provide them with
an appropriate semantics for the selection of the parameter A.

REFERENCES

VI

121

131

t41

[51

Fl

[71

PI

PI

S. Adve and M. Hill, “Implementing Sequential Consistency in
Cache-based Systems”, Proc. of the International Conference
on Parallel Processing. Pennsylvania State University, Univer-
sity Park, pp. 1-47-I-50.

M. Ahamad, G. Neiger, J. Bums, P. Kohli and P. Hutto.
“Causal memory: definitions, implementation, and program-
ming”. Distributed Computing. September 1995.

M. Ahamad, F. Torres-Rojas, R. Kordale, J. Singh, S. Smith,
“Detecting Mutual Consistency of Shared Objects”. Proc. of
Intl. Workshop on Mobile Systems and Appl., 1994.

M. Ahamad, S. Bhola, R. Kordale, F. Torres-Rojas. “Scalable
Information Sharing in Large Scale Distributed Systems”.
Proc. of the Seventh SIGOPS Workshop, August 1996.

M. Ahamad, M.Raynal, and G. Thiakime, ‘An adaptive archi-
tecture for causally consistent services”. Proc. ICDCS’98,
Amsterdam. 1998.

H. Attiya and J. Welch. “Sequential Consistency vs. Lineariz-
ability”. ACM Transactions on Computer Systems. Vol 12,
Number 12. May 1994.

R. Baldoni, A. Mostefaoui and M. Raynal. “Causal delivery of
messages with real-time data in unreliable networks”. Real-
Time Systems, The International Journal of Time-Critical
Computing Systems, 10(3), May 1996.

R. Baldoni, RPrakash, M.RaynaJ and M. Singhal. “Broadcast
with Time and Causality Constraints for Multimedia Applica-
tions”. Proc. of the 22nd. EUROMICRO Conference, Prague,
September 1996.

K. Birman, A. Schiper and P Stephenson, “Lightweight Causal
and Atomic Group Multicast”, ACM Transactions on Com-
puter Systems, Vo19, No. 3, pp. 272-314, Aug. 1991.

[lo] P. Cao and C. Liu, “Maintaining Strong Cache Consistency in
the World-Wide Web”, Proc. of ICDCSP7, pp. 12-21, May
1997.

[ll] V. Cate, “Alex - A Global File System”, Proceedings of the
1992 USENIX File System Workshop, pp. l- 12, May 1992.

[12] F. Cristian, “Probabilistic Clock Synchronization”, Distributed
Computing, Vol 3, pp. 146-158. 1989.

[13] R. Drummond and 0. Babaoglu, “Low-Cost Clock Synchroni-
zation”, Distributed Computing, Vo16, pp. 193-203. 1993.

[14] K.P Eswaran, J.N. Gray, R. Lorie and I.L. Traiger, “The notion
of Consistency and Predicate Locks in a Database System”,
Communications ACM, Vol 19, No. 11, pp. 624-633, Novem-
ber 1976.

[15] C.J. Fidge, “Logical Time in Distributed Computing Systems”,
Computer, vol 24, No. 8, pages 28-33, August 1991.

[16] R. Fielding, J. Gettys, J.C. Mogul, H. Frystyk Nielsen, T. Bem-
ers-Lee, “Hypertext Transfer Protocol H’ITP/l. l”, HTTP
Working Group Internet Draft. March 13, 1997.

[17] V.K. Garg and M. Raynal, “Normality: a consisntency criterion
for concurrent objects”, Parallel Processing Letters, 9(l),
March 1999.

[18] K. Gharachorloo and P Gibbons, “Detecting Violations of
Sequential Consistency”, Proceedings of the 3rd ACM Sympo-
sium on Parallel Algorithms and Architectures, Hilton Head,
SC, pp. 316-326, July 1991.

[19] J. Gwertzman and M. Seltzer, “World-Wide Web Cache Con-
sistency”, Proc. of the 1996 USENIX Technical Conference,
San Diego, CA. January 1996.

[20] M. Herlihy and J. Wing. “Linearizability: A correctness condi-
tion for concurrent objects”. ACM Transactions on Program.
Lang. Systems. 12, 3. July 1990.

[21] R. John and M. Ahamad, “Evaluation of Causal Distributed
Shared Memory for Data-race-free Programs”, Tech. Report,
College of Computing, Georgia Institute of Technology, 1991.

[22] H. Kopetz and W. Ochsenreiter, “Clock Synchronization in
Distributed Real-Time Systems”, IEEE Trans. on Computers,
vol. C-36, pp. 933-940. August 1987.

[23] R. Kordale and M.Ahamad. “A Scalable Technique for Imple-
menting Multiple Consistency Levels for Distributed Objects”.
Proc. of the 16th. International Conference in Distributed
Computing Systems. May 1996.

[24] R. Kordale. “System Support for Scalable Services”. Ph.D. dis-
sertation, College of Computing, Georgia Institute of Technol-
ogy. January 1997.

[25] L. Lamport, “How to make a Multiprocessor Computer that
correctly executes Multiprocess Programs”, IEEE Transactions
on Computer Systems, C-28(9), 690-691, 1979.

[26] L. Lamport, ‘“Time, clocks and the ordering of events in a Dis-
tributed System”, Communications of the ACM, vol 21, pp.
558-564, July 1978.

[2fl F. Mattem, “Virtual Time and Global States in Distributed Sys-
tems”, Conf. (Cosnard et al. (eds)) Proc. Workshop on Parallel
and Distributed Algorithms, Chateau de Bonas, Elsevier, North
Holland, pp. 215-226. October 1988.

171

[28] D. L. Mills, “Internet Time Synchronization: the Network
Time Protocol”, IEEE Transactions on Communications, Vol.
39, No. 10, pp. 1482-1493, October 1991.

[29] D. L. Mills, “Improved Algorithms for Synchronizing Com-
puter Network Clocks”, IEEE Transactions on Networking,
Vol. 3, No. 3, pp. 245254, June 1995.

[30] C.H. Papadimitriou, ‘The Serializability of Concurrent Data-
base Updates”, Journal of ACM, Vol. 26, No. 4, pp. 631-653.
October 1979.

[31] M. Raynal, M. Mizuno and M. Nielsen, “Synchronization and
Concurrency Measures for Distributed Applications”, Proceed-
ings of 12th IEEE International Conference on Distributed
Computing Systems, pp. 700-709, Yokohama, Japan, 1992.

[32] M. Raynal and A. Schiper, “From Causal Consistency to
Sequential Consistency in Shared Memory Systems”, Proc.
15th Int. Conference FST & TCS (Foundations of Software
Technology and Theoretical Computer Science), Springer-Ver-
lag LNCS 1026, pp. 180-194. Bangalore, India, Dec. 1995.

[33] M. Raynal and M. Ahamad, “Exploiting write semantics in
implementing partially replicated causal objects”, Proceedings
of 6th EUROMICRO, Workshop on Parallel and Distributed
Processing, pp. 157-163, Madrid, Spain, January 1998.

[34] A. Singla, U. Ramachandran and J. Hodgins, “Temporal
Notions of Synchronization and Consistency in Beehive”.
Procof the Ninth Annual ACM Symposium on Parallel Algo-
rithms and Architectures, June 1997.

[35] S.D. Stoller, “Detecting Global Predicates in Distributed Sys-
tems with Clocks”. Proc. 11 th International Workshop on Dis-
tributed Algorithms (WDAG 97). Lecture Notes in Computer
Science. Springer-Verlag. 1997

[36] R. Taylor, ‘Complexity of Analyzing the Synchronization
Structure of Concurrent Programs”, Acta Informatica, 19:57-
84. 1983.

[371 F. Torres-Rojas and Mustaque Ahamad, “Plausible Clocks:
Constant Size Logical Clocks for Distributed Systems”, Proc.
10th International Workshop on Distributed Algorithms,
(WDAG 96). Bologna, Italy, October 1996.

[38] F. Torres-Rojas and M. Ahamad. “Computing Minimum and
Maximum of Plausible Clocks”, Technical Report, College of
Computing, Georgia Institute of Technology, 1998.

[39] F. Torres-Rojas, M. Ahamad and M. Raynal, “Lifetime Based
Consistency Protocols for Distributed Objects”, Proc. 12th
International Symposium on Distributed Computing, DISC’98,
Andros, Greece, September 1998.

[40] F. Torres-Rojas, M. Ahamad and M. Raynal, ‘“limed Consis-
tency using Logical Clocks”, Technical Report, College of
Computing, Georgia Institute of Technology, 1999.

[41] R. West, K. Schwan, I. Tacit and M. Ahamad. “Exploiting
Temporal and Spatial Constraints on Distributed Shared
Objects”. Proc. 17th International Conference on Distributed
Computing Systems ICDCS ‘97. Baltimore, U.S.A. May 1997.

172

