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ABSTRACT 

Ordering and time are two different aspects of 
consistency of shared objects in a distributed 
system. One avoids conflicts between opera- 
tions, the other addresses how quickly the 
effects of an operation are perceived by the rest 
of the system. Consistency models such as 
sequential consistency and causal consistency 
do not consider the particular time at which an 
operation is executed to establish a valid order 
among all the operations of a computation. 
Timed consistency models require that if a 
write operation is executed at time t, it must be 
visible to all nodes by time t +A. Timed consis- 
tency generalizes several existing consistency 
criteria and it is well suited for interactive and 
collaborative applications, where the action of 
one user must be seen by others in a timely 
fashion. 

1 INTRODUCTION 

Non-local access to objects in a distributed system is expensive due 
to high communication costs. In order to alleviate this inefficiency 
and to improve the reliability, availability and scalability of the 
system, techniques such as caching and replication are normally 
used. However, these methods lead to the coexistence of many, 
possibly different, versions of the same object. This problem is 
addressed by defining convenient consistency models for the state 
of the distributed objects. A consistency model establishes a series 
of guarantees about the valid relationships among the operations 
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executed by the sites of the system, which in turn constrain the 
possible values that shared objects can return when read operations 
are executed. 

In many consistency models, real-time is not explicitly captured. 
For example, sequential consistency only requires that it is possible 
to serialize all the operations executed in the distributed system 
[25]. Causal consistency, a weaker model, only requires that caus- 
ally related operations be seen in the same order by all the sites of 
the system, while concurrent operations may be perceived in differ- 
ent orders by different sites [2]. On the other hand, strict serializ- 
ability [14,30] and linearizability 1201 require that the serializations 
respect real-time ordering between transactions and operations, 
respectively. The notion of time has also been explored in commu- 
nications systems such as delta causal broadcast [7, 81, in memory 
systems that have a temporal consistency model (e.g., delta consis- 
tency [34]) and in several World-Wide Web (WWW) cache consis- 
tency protocols [lo, 11, 191. 

We propose a rimed consistency model which defines a maximum 
acceptable threshold of time after which the effects of a write oper- 
ation must be observed by all the sites of a distributed system. 
Timed consistency not only meets the needs of many applications 
that must observe updates to dynamically changing objects in a 
timely fashion, but also unifies existing consistency models such as 
sequential consistency and linearizability. We focus our attention on 
timed serial consistency (TX) and timed causal consistency 
(TCC) models. We will show that sequential consistency and lin- 
earizability are special cases of TX. 

In Section 2, we define the consistency criteria contemplated in this 
paper. We present the concept of timed consistency and the particu- 
lar cases of TSC and TCC in Section 3. Some applications are pre- 
sented in Section 4. In Section 5, we describe a possible 
implementation of these consistency levels. The paper is concluded 
in Section 6. 

2 CONSISTENCY CRITERIA 

The global history H of a distributed system is a partially ordered 
set of all operations occurring at all sites of the system. Hi is the 
sequence of operations that are executed on site i. If a occurs before 
b in H, we say that a precedes b in program order. We assume that 
all the operations in Hare either read or write (in order to simplify, 
it is assumed that each value written is unique). These operations 
take a finite, non-zero time to execute, hence there is an interval that 
goes from the time when a read or write “starts” to the time when 
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such an operation “finishes”. However, for the purposes of timed 
consistency, we associate an instant to each operation called the 
efiective rime of the operation. The effective time of an operation 
corresponds to some instant between its start and its end. For short, 
if the effective time of a is t, we say that a was “executed” at time t. 

If D is a set of operations, then a serialization of D is a linear 
sequence S containing exactly all the operations of D such that each 
read operation to a particular object returns the value written by the 
most recent (in the order of S) write operation to that same object. 
Let - be an arbitrary partial order relation defined over D, we say 
that serialization S “respects -” if Va,b E D such that a - b, it 
happens that a precedes b in S. 

History H satisfies fineurizubility (LIN) if there is a serialization of 
H that respects the order induced by the effective times of the oper- 
ations [20]. Srrict serializability is defined over histories formed by 

transactions, and it requires the existence of a serialization of H that 
respects the real-time order of the transactions [ 14,301. LIN can be 
seen as a particular case of strict serializability where each transac- 
tion is a predefined operation on a single object. Norma@ as pro- 
posed in [ 171, is equivalent to LIN when operations on objects are 
unary, but it is strictly weaker than LIN when operations can span 
several objects. 

A weaker level of consistency is offered by sequential consistency 
(SC). This model, defined by Lamport in [25], does not guarantee 
that a read operation returns the most recent value with respect to 
real-time, but just that the result of any execution is the same as if 
the operations of all sites were executed in some sequential order, 
and the operations of each individual site appear in this sequence in 
the order specified by its program. History H satisfies SC if there is 
a serialization of H that respects the program order for each site in 
the system. The power and implementation costs of SC and LIN 
are compared by Attiya and Welch in [6]. 

The causality relation ‘I+” for message passing systems as defined 
in [26] can be modified to order the operations of H. Let a,b,c E H, 
we say that a + b, i.e., a causally precedes b, if one of the follow- 
ing holds: 

(i) a and b are executed on the same site and a is executed 
before b; 
(ii) b reads an object value written by a; 
(iii) a + c and c + b. 

Two distinct operations a and b are concurrent if none of these con- 
ditions hold between them. Let H,+,,, be the set of all the operations 
in Hi plus all the write operations in H. History H satisfies Causal 
Consistency (CC) if for each site i there is a serialization of Hi+w 

that respects causal order “-+” [2]. Thus, if a,b,c E Hare such that 
a writes value v in object X, c reads the same value v from object X, 
and b writes value v’ in object X, it is never the case that a + b + 
C. 

CC requires that all the causally related operations be seen in the 
same order by all sites, while different sites may perceive concur- 
rent operations in different orders. CC is a model of consistency 
weaker than SC, but it can be efficiently implemented [2]. CC has 

been shown to be sufficient for applications that support asynchro- 
nous sharing among distributed users. It has been explored both in 
message passing systems [9] and in shared memory and object sys- 
tems [3, 4, 5, 21, 23, 24, 391. Relations between SC and CC have 
been studied by Ahamad et al. [2] and by Raynal and Schiper 1321. 

3 TIMED CONSISTENCY 

In neither SC nor CC, real-time is explicitly captured. In SC, 
operations may appear out of order in relation to their effective 
times. In CC, each site can see concurrent write operations in 
different orders. On the other hand, LIN requires that the operations 
be observed in an order that respects their real-time ordering [20]. 
Ordering and time are two different aspects of consistency. One 
avoids conflicts between operations, the other addresses how 
quickly the effects of an operation are perceived by the rest of the 
system. 

Timed consistency requires that if the effective time of a write is t, 
the value written by this operation must be visible to all sites in the 
distributed system by time t + A, where A is a parameter of the exe- 
cution. We can see that when A is 0, timed consistency becomes 
LIN, i.e., timed consistency is a generalization (or a weakening) of 
LIN. 

l--A---l 

TJ!jf= r ) 
/ / 

rw1 r(x)1 r(x)1 

Time 

Figure 1. A non-timed sequentially consistent execution. 

The execution showed in Figure 1 satisfies SC and CC but not LIN. 
Up to the second operation of site I, the execution satisfies timed 
consistency for the value of A represented in this figure, but, by that 
same instant, LIN is no longer satisfied. After this point, the execu- 
tion is not even timed because there are read operations in site 1 
that start more than A units of real-time after site 0 writes the value 
7 to object x and these read operations do not return this value. 

3.1 Reading on Time 
In timed models, the set of values that a read may return is 
restricted by the amount of time that has elapsed since the 
preceding writes. A read occurs on time if it does not return stale 
values when there are more recent values that have been available 
for more than A units of time. This definition depends on the 
properties of the underlying clock used to assign timestamps to the 
operations in the execution. First, we assume perfectly 
synchronized physical clocks, where T(a) is the real-time instant 
corresponding to the effective time of operation a. 

Definition 1. Let D c H be a set of operations and S a serialization 
of D. Let w, r E D be such that w writes a value into object X that is 
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later read by r, i.e., w is the closest write operation into object x 

that appears to the left of r in serialization S. We define the set W,, 

associated with r, as: 

W, = {w’ E D : (w’ writes a value into object X) A 

(T(w) < T(w’) < (T(r) - A))) 

We say that operation r occurs or reads on time in serialization S, if 
W, = 0. S is timed if every read operation in S occurs on time. Cl 

Figure 2 illustrates Definition 1 presenting a possible arrangement 
of read and write operations over the same object. Operation r 
reads a value previously written by operation w. Since operation w, 
was executed before w, it has no effect on whether r is reading on 
time or not. Similarly, although w4 is more recent than w, the inter- 
val A has not elapsed yet when r is executed, and, thus, it is accept- 
able that r does not observe the value written by w4. On the other 
hand, operations wZ and ws occur after w, and the values written by 
them have been available in the system for more than A units of 
time when r is executed. Thus, w2 and ws are in W, and, therefore, 
operation r does not occur on time. The shaded area between T(w) 
and T(r) - A represents the interval of time associated with the set 
W, which, according to Definition 1, must be empty if r reads on 
time (i.e., no write operation to the same object read by r can occur 
in this interval). 

w, m/$%z 4 ,\/I\ 0 )i 
WI- ,,’ T(w) ,I 

I 
‘\ T(r)-A ‘._ T(r) 

w2 w3 w4 

Figure 2. Operation r does not read on time. 

3.2 Approximately-synchronized real-time clocks 
Physical clocks do not keep perfect time and there will always be 
differences among the clocks at different nodes. In approximately- 
synchronized real-time clocks, periodic resynchronizations 
guarantee that no two clocks differ by more than E units of time. 
Typically, it is also guaranteed that the difference between any 
clock and the “real” time (as maintained by a time server) is never 
more than E/2 [ 12, 13,22,28,29]. Therefore, if the effective time of 
operation a was reported by a particular site as T(a), then, from the 
point of view of the time server, this effective time corresponded to 
some instant in the interval [T(a) - E/2, T(a) + E/2]. 

Similarly to [35], we say that, Qa, b E H, a defiitely occurred 
before b if T(a) + E/2 < T(b) - t?J2, or, equivalently, if T(a) + E < 
T(b). If neither a nor b definitely occurred before the other one, we 
say that their timestamps are non-comparable or concurrent (i.e., 
the imprecision of the clocks does not allow us to decide which 
operation occurred earlier).’ 

Let w, r E D G H be such that w writes a value into object x that is 
later read by r. Let w’ E D also update object X. If T(w’) definitely 
occurred before T(w), or if (T(r) - A) definitely occurred before 
T(w’), then it is clear that w’ does not affect the fact that r occurs on 
time. Now, if either T(w’) and T(w) are concurrent, or if (T(r) - A) 
and T(w’) are concurrent, there is no evidence of w’ being more 
recent than w, or of w’ occurring more than A units of real-time 
before r, respectively. In these cases, we can still claim that r occurs 
on time. Conversely, r is not reading on time if T(w) definitely 
occurred before T(w’) and if T(w’) definitely occurred before the 
instant (T(r) - A). Therefore: 

Definition 2. Let D c H be a set of operations and S a serialization 
of D. Let w, r E D be as presented in Definition 1. We define the set 
W,., associated with r, as: 

W, = (w’ E D : (w’ writes a value into object x) A 

(T(w) + E < T(w’)) A 
(T(w’) + & < T(r) - A) ) 

We say that operation r occurs or reads on time in serialization S, if 
W, = 0. S is timed if every read operation in S occurs on time. B 

Figure 3 shows the same example presented in Figure 2, but assum- 
ing approximately-synchronized clocks. As before, operations wt 
and w4 do not affect whether or not r reads on time. Given the 
imprecision of the clocks used to timestamp the events, operations 
w and w2 are considered concurrent. Besides, it cannot be decided 
if operation ws occurred more than A units of time before r. Hence, 

the set W, is empty, and r occurs on time. Notice how the interval 
associated with the set W, is 2& units of time shorter than the one 

presented in Figure 2. When E = 0, Definition 2 reduces to Defini- 
tion 1. 

A 7/////,///$/// 
4 I\+ 4 Ii 4 II 

WI 
,” T(w) ,I 

, 
‘> T(r)-A ‘,. T(r) 

w2 w3 w4 

Figure 3. Operation r reads on time. 

3.3 TSC and TCC 
We now combine the requirements of well-known consistency 
models such as SC and CC with the requirements of reading on 
time: 

Definition 3. History H satisfies timed serial consistency (TSC) if 
there is a timed serialization S of H that respects the program order 
for each site in the system. CJ 

I. In this context “definitely occurs before” only refers to the order of the operations 
in real-time and not necessarily implies any causal relationship. 
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Definition 4. History H satisfies timed causul consistency (TCC) if 
for each site i there is a timed serialization 5, of Hi+,,, that respects 
causal order “+“. P 

Let UN, SC, CC, TSC and Z’CC be the sets of all the executions 
that, respectively, satisfy LIN, SC, CC, TSC and TCC. Figure 4.a 
presents the hierarchy of these sets. If an execution satisfies LIN it 
satisfies SC as well, but the contrary is not always true. If a set of 
operations D satisfies LIN, then it is always possible to produce a 
serialization S of D such that all the operations are ordered by their 
respective effective times. In turn, S satisfies Definition 1, even for 
A = 0. Then, LIN is a case of TSC where A = 0, and therefore LIN 

c TSC. It is easy to see that SC c CC. 

a) Hierarchy of Consistency Models 

b) Varying the value of A 

Figure 4. 

Let T be the set of all the timed executions. From Definition 3, we 
have that: 

TSC= Tn SC+ TSCc SCc CC 

From Definition 4, we have that: 

TCC= Tn CC=s TCCc CC 

Then: 

TCCn SC= Tn CCn SC = Tn SC= TSC 

Figure 4.b shows, for the case of TSC, the effects of different val- 
ues of A (i.e., both SC and LIN can be seen as particular cases of 
TSC). 

3.4 Examples 
Figure 5.a presents a sequentially consistent execution. Operation 
Wi(X)V is executed at site i and writes value v into object X; 
operation r,(X)v is executed at site i and reads value v from object 
X. Each operation has an associated real-time instant that 
corresponds to its effective time. Let 0 be the initial value for any 
object. Figure 5.b presents a possible serialization of all the 
operations that respects the program order of each site. This 
serialization proves that the execution satisfies SC, but it does not 
capture the real-time ordering of the effective times of the 
operations since, in fact, several are observed in reversed order 
(e.g., w,,(C)6 and wz(B)S, or r4(C)6 and wz(C)7). 

The definition of TSC depends on the particular value of A. For 
instance, site 0 updates the value of object C to 6 at instant 338 and 
site 2 updates the value of the same object c to 7 at instant 340. At 
instant 436, site 4 reads object C and the value returned is 6. If, for 
instance, A = 50 this execution does not satisfy TSC because by 
instant 436, site 4 must be aware of the write operation wz(c)7. On 
the other hand, for A > 96 this execution satisfies TSC. Similarly, 
site 2 updates the value of object B to 5 at instant 274, but, at instant 
301, site 3 reads value 2 from object B; if A < 27 then this execution 
does not satisfy TSC. 

Figure 6.a presents an execution that satisfies CC but not SC 
(among other things, operation ro(B)4 disallows a serialization of 
all the operations that respects the program order of each site’). Fig- 
ure 6.b shows serializations for each local history, marked by the 
shaded boxes, plus all the external writes, that respect the causality 
of the operations. These serializations do not necessarily follow the 
real-time ordering of the operations and, in several of the serializa- 
tions, concurrent write operations are perceived in different orders. 
The chosen value of A establishes whether or not the execution sat- 
isfies TCC. For instance, if A = 30 then operation r4(c)0 executed 
at instant 155 violates TCC because it ignores operation wz(C)3 
that was executed at instant 122. 

4 APPLICATIONS OF TIMED 
CONSISTENCY 

In spite of the usefulness and importance of consistency models 
such as SC and CC, their formal definition and practical 
implementation permit executions that ignore the real-time 
occurrence of certain events. In many cases this could be 
considered an advantage that allows efficient and convenient 
implementations. For instance, CC is well suited to mobility 
applications and has the ability to handle disconnections smoothly 
[3, 41. Mechanisms to gracefully weaken the consistency 
requirements (e.g. from SC to CC) are described in [23], giving 
control to the application to voluntarily disconnect. 

Many applications require more support to detect and exploit the 
correct real-time relationships between events. The trivial execution 
presented in Figure 1 satisfies SC, since it is possible to serialize all 
the operations corresponding to site 2 before the write operation of 

2. In general, determining whether or not an execution satisfies SC is a NP-complete 
problem [ 18, 361. 
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b) Serialization that respects program order 

Figure 5. 
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Figure 6. 
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site I or vice versa. However, the last read operation of site 2 may 
occur several hours after the write operation of site 1 and the value 
7 is yet to be seen. Evidently, this violates TSC and TCC (the 
shaded area represents the span of A). If this execution corre- 
sponded to an application of, for instance, multi-user virtual envi- 
ronments, this behavior may not be acceptable because the most 
recent write could imply a serious alteration of the environment 
that is not perceived on time by site 2. 

Timed consistency models are useful in applications where the 
observance of the passing of real time and their effects is part of the 
definition of correctness. In the same way as it occurs in nature, we 
can allow the passing of a finite period of time before the effects of 
an operation are known to all the sites in the system. This period is 
precisely the parameter A. For instance, it is valid that the first read 
executed by site 2 in Figure 1 retums,the value 1, because the new 
value of X has not yet been made visible to the entire system. 

The simulation of interactive virtual environments is explored by 
Singla et al. in [34], where the concept of “delta consistency” is 
defined as a correctness criterion to control accesses to a shared 
memory. This timed consistency model is particularly appropriate 
for expressing the requirements of interactive application domains. 

The notion of A-causality in unreliable networks is presented by 
Baldoni et al. in [7, 81, this protocol supports multimedia real-time 
collaborative applications. In order to deliver a message to a pro- 
cess, it is verified that the causal order of messages is met (similar 
to [9]) and that the lifetime A of the message has not yet expired. 
Their approach is slightly different than the one expressed in Defi- 
nition 3 because late messages are never delivered, and it is 
assumed that a more updated message will eventually be received. 

The features of Semantic Distributed Shared Objects (S-DSO) are 
presented by West et al. in [41]. In order to improve performance, 
this system exploits application-level temporal and spatial con- 
straints on shared objects, allowing applications to specify when 
and which processors should see the effects of write operations to 
shared objects. A multimedia application based on S-DSO is also 
described in [41]. 

Web cache consistency protocols can be modeled as timed consis- 
tency protocols, and if the causal relationships between documents 
are considered then TSC or TCC are appropriate models. The use 
of an adaptive time-to-live (TTL) protocol based on the Alex file 
system [l l] for World-Wide Web documents is favored by the 
results of Gwertzman and Seltzer [19]. They found that this cache 
consistency protocol reduces network bandwidth consumption and 
server loads in comparison to other protocols. On the other hand, 
the results of Cao and Liu [lo] advocate a consistency protocol 
based on invalidations of outdated cached web documents that are 
initiated by the server sites. Both [ 191 and [lo] distinguish between 
“weak” and “strong” consistency of web documents, which can be 
modeled with different values of A. 

The level of consistency provided by TCC is useful even in appli- 
cations in which clients cache objects for read-only access. Assume 
that an user cached a web page containing the Dow Jones index and 
a CNN web page, with no causal relations between them. This state 
of the cache satisfies CC. At a later point in time, the user down- 

loads a more recent version of the CNN web page describing a sud- 
den fall in the Dow Jones index, with a link to the page containing 
the Dow Jones index. Clearly, accessing the outdated web page 
with the old Dow Jones index after reading the CNN article violates 
CC, therefore the old Dow Jones page must be invalidated. On the 
other hand, if the user does not download new versions of any of the 
original web pages for weeks, the cache still satisfies CC, but, for a 
value of A set to a few hours, does not satisfy TCC. 

5 IMPLEMENTATION 

SC and CC can be implemented in a variety of ways, with varying 
degrees of flexibility and performance [ 1,2, 3,4, 6,9,20, 23, 251. 
We explore implementations of TSC and TCC based on the 
lifetime of distributed objects as presented in [39]. 

5.1 Lifetime Based Consistency Protocol 
This technique provides consistency across different but related set 
of objects. We assume an architecture where each object has a set of 
server sites that provide long term storage for the object and where 
client sites cache objects before accessing them. Cache misses are 
handled by a server site, which either has a copy of the requested 
object or can obtain it. 

Let the set Ci denote the cache of site i, in which it stores copies of 
objects that have been accessed recently. If a cache miss occurs 
when accessing object X, some server provides a copy of its current 
version of X. Once this copy is stored in C,, we denote it as Xi. The 

start time of Xi, denoted as Xia, is the time when the value of Xi was 
written. The latest time when the value stored in Xi is known to be 

valid is its ending time and it is denoted as Xi? The interval [xi*, 

Xi”] is the currently known lifetime of the value stored in Xi. 

The values of X; and yi (cached in Ci) are mutually consistent if 

mar(Xiu, Yia) I min(Xjo, Yi”), i.e., their lifetimes overlap and, thus, 

they coexisted at some instant. Ci is consistent if the maximum start 

time of any object value in Ci is less than or equal to the minimum 

ending time of any object value in C,, i.e., every pair of objects in Ci 
is mutually consistent. 

In general, the lifetime of arbitrary object values is not known. 
When site i updates object version Xi at time t, timestamp t is 

assigned to both xia and Xi? We have to discover as we go that no 
object copy Xj (i #]I has been overwritten and use this information 

to advance Xi? Details of protocols that determine if object copy Xi 

is valid at time t’ > xiw can be found in [24,39]. 

A local timestamp variable called Contexti is associated with C,. Its 
initial value is 0, and it is updated with the rules: 

1. When a copy of object X is brought into C, (becoming Xi): 

Contexti := mux(Xiu, Context,) 

2. When object copy xi is updated at time t: 

Context, := X,a := t 
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Contexti keeps the latest start time of any object value that is or has 
been stored in C,. When a copy of object X is brought into C,, its 
ending time must not be less than Context, if necessary, other serv- 
ers or client sites are contacted until a version of X that satisfies the 
condition is found. Furthermore, any object Y~E C, such that Y,"< 

Context, is invalidated. It is proved in [39] that this protocol 
induces SC on the execution. 

5.2 TSC Implementation 
Notice that, under the lifetime protocol described in the previous 
section, site i accesses a state of the objects that was consistent at 
time Context, but the current time can be much later. By 
controlling that the difference between the current time and 
Contexti is less than or equal to A, we are actually inducing TX. 
Object values whose ending times are older than A units of real- 
time in the past are locally invalidated. This is easily accomplished 
by adding an extra rule for the updating of Context, (let ti be the 
current time at site i): 

3. Context, := max(ti - A, Contexti) 

This works nicely with objects whose ending times are well-known 
(e.g., write-once objects, leased objects, periodic objects, etc.), but 
as [39] indicates, it may generate unnecessary invalidations for 
arbitrary objects whose lifetimes are not known accurately. Several 
optimizations are possible, for instance, when Contexti is updated, 
those objects whose ending times are less than Context, are not 
invalidated but just marked as old. Any future access to an old 
object initiates a validation operation through one of the servers, 
which either advances the ending time of the object value or pro- 
vides a newer version of the object. Much of this can be done by 
just comparing timestamps, which avoids the unnecessary sending 
of large objects. This is similar to the ‘ITL approach used by the 
current HTTP protocol [ 161: if a document whose TTL has expired 
is accessed, the client site polls the server with an if-modijkd-since 
request including the URL of the document and its current times- 
tamp. The server checks whether the document has been modified 
since the timestamp; if this is the case a newer version of the docu- 
ment is returned, otherwise the server just informs the client that its 
cached copy is still valid [lo, 191. Alternatively, an asynchronous 
component of the system may update old versions of certain cached 
objects before they are accessed, i.e., a push update-propagation 
policy. 

In general, the faster a client site communicates a recent update of 
an object value to a server site, the more efficient the system 
becomes; however, this does not affect the correctness of the proto- 
col. 

5.3 TCC Implementation 
The lifetime protocol described in section 5.1 is modified in [39] to 
induce CC on the executions. All the timestamps used in the system 
(i.e., local clock, Context, and the start and ending times of object 
values) are now taken from vector clocks [ 15,271 or from plausible 
clocks [37]. The rules of the protocols are slightly modified to 
consider concurrent timestamps. This variant of the lifetime 
protocol does not require physical clocks and generates 
considerably less communications overhead than its SC 
counterpart. 

Context, is updated with versions of rules 1 and 2 of Section 5.1 
adapted to logical clocks. Among other things, this requires com- 
puting the muximum and minimum of two logical timestamps that 
are taken from either vector clocks or plausible clocks [38]. When 
an object copy is brought from a server into C,, we verify that its 
ending time is not causally before Context, (however, it may be 
concurrent with Context,). If necessary, other servers or client sites 
are contacted until a version of the object that satisfies this condi- 
tion is found. Any object yis Ci whose ending time is causally 

before Context, (i.e. Y;” + Context,) is invalidated. Local copies 
of objects could be invalidated when a new object is brought into 
the cache, but they are never invalidated as a consequence of the 
update of a local object value because the logical ending times of 
local object copies are advanced together with the local logical time 
of the site [39]. 

Since TCC requires the use of physical clocks in order to guarantee 
that the effects of a write operation are observed before A units of 
real-time, we add a new timestamp taken from a physical clock: the 
checking time of X, denoted as Xip. This timestamp is the latest real- 
time instant when the value stored in Xi is known to be valid. 

Let ri be the current real-time of site i. When a copy of object X is 
brought from server s into C;, we now also require that x,B 1 ti - A. 
Similarly, any local object Yie Ci such that Y/k ti - A is invalidated 
or marked as old. These rules guarantee that the site always reads 
on time, because object values suspected to be old are either vali- 
dated or replaced by newer versions. 

Under the same circumstances, this implementation of TCC tends 
to invalidate more objects than the implementation of CC presented 
in [39], but less than the implementation of TSC described in Sec- 
tion 5.2. The optimizations mentioned for TSC are also applicable 
to TCC. 

5.4 TCC using logical clocks 
Implementations that induce CC with just the use of logical clocks 
are described in [3, 23, 24, 33, 391. TCC can be approximated in a 
distributed system whose sites only share a logical clock. We define 
a map 5 from the set of logical timestamps to the set of real 
numbers. The parameter A will no longer be expressed in real time 
units, but as a real number that defines the maximum difference 
between the values that 5 produces for certain logical timestamps 
(e.g., the timestamp associated with the event that updates the value 
v of a particular object and the timestamp associated with any 
operation that reading this same object retrieves value v’f v). 

Definition 5. Function 5 maps timestamps taken from a logical 
clock to the set of real numbers. Let t and u be two logical times- 
tamps, 5 has the following properties: 

Informally, G(t) represents the “amount” of global activity of the 
system that is known when the event associated with timestamp t is 
generated. Even if timestamps t and u are concurrent, we want that 
if at time u the system is aware of more global activity than at time 
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t, then c(t) > c(u). For instance, the concurrency measures proposed 
in [31] can be adapted for the definition of convenient and coherent 
maps 5 from logical timestamps to real numbers. In any case, the 
definition of 5 depends on the particular representation of logical 
time used and there is not a unique or best way to compute it. 

Definition 4 is valid with logical clocks if we just redefine the con- 
cept of reading on time given in Definition 1. If a E H, we say that 
L(a) is the logical time at which a is executed. 

Definition 6. Let D G H be a set of operations and S a serialization 
of D. Let w, r E D be as presented in Definition 1. We define the set 
W, associated with r, as: 

W, = (w’ E D: (w’ writes a value into object X) A 
(WwN < 5(&9 c W(r)) - 4) 1 

We say that operation r occurs or reads on time in serialization S, if 
W, = 0. S is timed if every read operation in S occurs on time. Ct 

Therefore, timed consistency requires that if a write operation is 
executed at logical time t, it must be visible at site i before {(ti) - 
k(t) > A, where fi is the logical time of site i. 

Consider an example of a mapping E, for vector clocks: if t is a vec- 
tor timestamp used in a distributed system with N sites, we can 
define: 

i=O 

Thus, k(t) is the number of global events that are known to a site 
when its current logical time is t. This map satisfies Definition 5 
and gives us a way to summarize the information conveyed in a 
vector clock. For instance, if the current logical time of a site is 
c35,4,0, 72>, then this site is aware of 111 global events. Now, if 
its current copy of object x was written at logical time ~2, 1 , 0,18>, 
then this version of X was created by a site which was aware of 21 
global events. For any value of A c 90, this object version is either 
invalidated or marked as old. 

Another interesting version of 5 that allows a geometric interpreta- 
tion of vector clocks is: 

IN- 1 

This formula is the length of a vector in a YINvector space. Figure 7 
shows some examples for the simplest case with just 2 sites. Figure 
7.a presents the length for the timestamp c3, 4>. Since timestamp 
c3,2> + c3,4>, then @c3, 2>) c &c3,4>), i.e. 3.61 c 5, as illus- 
trated by Figure 7.b. Furthermore, the area enclosed by the first 
timestamp is totally covered by the area enclosed by the second 
timestamp. This is a direct consequence of the definition of “c” for 
vector clocks [15, 271 and it is valid for larger values of N (but its 
geometric interpretation is not as evident for N > 3). Conversely, 
two concurrent timestamps such as c2,4> and c3, 2> define areas 

which are not totally contained one into another. However, it is pos- 
sible to argue that timestamp c2, 4> denotes a global state of the 
system that is aware of a larger global activity than timestamp c3, 
2> and therefore 5(c3,2>) c &c2,4>), i.e. 3.6 c 4.47, as presented 
in Figure 7.~. 

V 
3 

Sire 0 

a) Length of a Vector Clock 

3 

Sire 0 

b) Causally related events 

I ut, = 4.47 

2 3 

Sire 0 

c) Concurrent events 

Figure 7. Geometric interpretation of Vector Clocks. 

Other examples of the map 5 for vector and plausible clocks are 
presented in [40]. 

6 CONCLUSIONS 
Timed consistency models examine interesting temporal 
relationships between objects and sites that form a distributed 
system, and are able to capture requirements that are not easily 
expressed by standard consistency models such as SC and CC. A 
timed consistency model defines a maximum acceptable threshold 
of time (i.e., parameter A) after which the effects of a write 
operation must be available to all the sites of the system. 

The value of A is the result of a trade-off between the need of per- 
ceiving changes to shared objects in a timely fashion and the avail- 
ability of resources in the system. Small values of A require more 
communications overhead and may decrease the scalability of the 
system (e.g., in extreme cases, local caches become useless), while 
large values of A require less expensive methods but reduce the 
timeliness of the information and the actual sharing of information 
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by the sites. Since such considerations are typical in interactive and 
collaborative applications, and more recently for dynamic content 
on the World Wide Web, timed consistency criteria are appropriate 
to state the requisites of operations ordering and timeliness of these 
applications. 

By combining the requirements of timed consistency and those of 
consistency criteria such as SC and CC, we propose TSC and 
TCC, which are well suited to meet the needs of many applications. 
Furthermore, this concept also unifies existing consistency models 
such as sequential consistency and linearizability. We explore a 
possible implementation of TSC and TCC based on the concept of 
lifetimes of object values. Finally, a possible definition of TCC 
using just logical clocks was presented. 

Several issues of this research are to be addressed as part of future 
work. In order to better understand the relationship between the 
value of A and the cost of accomplishing that particular level of 
timeliness, we are currently completing detailed simulations (and 
eventual implementations) of systems based on the consistency cri- 
teria described in this paper. Other possible implementations of 
TSC and TCC have to be considered. For the case of TCC using 
just logical clocks, it is necessary to explore different mappings 
from logical timestamps to real numbers, and to provide them with 
an appropriate semantics for the selection of the parameter A. 
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