Things every update replication customer should know

Rob Goldring
IBM Santa Teresa Laboratory
San Jose. CA

Note: this paper is an abstract of an article which appeared
recently 1n InfoDB.

In the mid-1980s. Chns Date’s "12 rules” for distributed
database systems included replication. Replication makes
transparent the problems of remote access delays and the
management of data redundancy. The commercial market for
distributed database features has been slowly building over the
years, beginning with simple remote access gateways. Today.
replication appears to dehiver on the 1980s ideal. with a robust
asvnchronous infrastracture. Current commercial technology
though. continues to fall short of that ideal.

"Asynchronous replication” is a pleasant term to describe the
operation of a distributed database running without concurrency
control. In practice, DBMSs which use locking mechanisms in
local operation are connected into replication networks without
benefit of a global serialization mechanism, such as a
synchronous 2-phase commit protocol. The notion of a
transaction is thus compromised.

Four properties, atomicity. consistency. isolanon and durabiliry -
- "ACID" for short -- have come to define a transaction system.
With asynchronous replication, there is no isolation of
transactions. Transactions tun in parallel without any guarantec
that & transaction sees the most current state of the database
before making an update. Updates then, are not serialized.

One of the many benefits derived from the ACID properties is a
seriul history of transaction execution, an absolute necessity to
satisfy audit requirements 1n regulated industries. Without a
serial history, it 15 impossible to reliably state who updated a
database from state N to state N+/. Not all replication systems
guarantee a serial history.

Update Conflicts

Update conflicts occur when applications commit competing.
potentially incompatible updates to two or more replicas and the
existence of these competing updates cannot be detected until
propagation occurs, There are, in fact, two general classes of
update conflicts:

. Intra-table update conflicts are those which
are detectable within the scope of a single
table.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery.To copy otherwise, or to republish, requires
a fee and/or specific permission.

SIGMOD * 95,San Jose , CA USA

© 1995 ACM 0-89791-731-6/95/0005..$3.50 439

. Inter-table update conflicts are those which
are not detectable within the scope of a
single table, but which are nonetheless
conflicting.

Three common. and false. assumptions are routinefy made by
designers of asynchronous replication systema:

1. All conflicting executions can be detected within the
scope of a single global table -- all physical replicas
of a single. logical table,

2. Timestamps from uncoordinated local clocks can be
relied upon to order events in a distributed system.

3. Constraints can be defined in each local database to
protect the global database from permanent
inconsistencies resulting from uncoordinated updates.

Peer-to-peer example

For this example, a~-ame that in case of an update conflict, the
"most recent update” should persist. as determined by a
timestamp accompanying each propagated update. Additionally.
there are three sites, sitel. site2 and site3, each with two
replicas:

SUPPLIER (SUPPLIER_ID. NAME. ADDRESS.
TOT_RECEIVABLE) PRIMARY KEY (SUPPLIER_ID)

PARTS (PART_ID. SUPPLIER_ID. DESCRIPTION)
PRIMARY KEY (PART_ID)

FOREIGN KEY (SUPPLIER_ID) REFERENCES SUPPLIER
ON DELETE RESTRICT

Note that the referential constraints say that a dependent row in
PARTS cannot exist if there is no corresponding parent row in
SUPPLIER and that a parent row in SUPPLIER cannot be
deleted if there exist any dependent rows in PARTS. Figure 1
shows the timetable of events leading to the eventual
inconsistency.

These are the events as shown in Figure 1: Beginning at 9:50,
all sites are consistent. At 10:00, someone at site2 inserts a row
into the PARTS table. Shottly after. a delete arrives at site2 from
sited -- a delete of the parent row in SUPPLIER for the PARTS
row just inserted. The delete carries with it a timestamp of 9:58.

By 10:02 the state of the database at site3 is indeterminate;
matching erther the state of site/ or site2. The state at any
additional sites 4.5.6. etc. is similarly indeterminate.

Figure 1

Peer-to-peer example.

ume St S2 53
SUPPLIER has & SUPPLIER nas a SUPPLIER has &
row with row with row with

§50 |SUPPLIER_ID=12, SUPPLIER_[D=12, SUPPLIER ID=12,

{all stes |PARTS contans no |PARTS contams no | PARTS contans no
consistant) [[ows with rows with rows with
SUPPLIER_ID=12 SUPPLIER_JD=12 SUPPLIER JD=12
alote from
SUPPLIER whera
a8 SUKFPL\EFUD—IZ
£,
N,
e
N\ Insert a row Into
PARTS with
\ 7} sUPPLIER_JD=12
10:00 / \Ok.
> V'Y
Referentlat Referential If the delets Is
constramt violatlon, | constraint vielstion, | recelved ana
as depsndent row | as parent row processed first, then
10:01 |eannot pe Inserted | cannot be deleted |the same RI

'when 0o parent

while a dependent

viokmon as at ste

row axists row exists. $1, alse the same
Rl violaton as at
site S2
No row In Not only a row mn By chance, efther
PPLIER having SUPPLIER with the same situation
SUPPUEH ID=12, SUPPLIER_[D=12 as &t site S1 or the
10:0Z |no row in PARTS |but also a row in | same sruation as at
with PARTS with sfte S2
SUFPLEER_IC=12, SUPPLIER iDm12,

This example illustrates a number of points:

)

The conflict in this example occurs between updates
to two related tables but not between two updates to
the same global table.

Local constraints. or conflict resolunion routines, could
not return the global database to a consistent state.
Any attempt to combine the deletion of a parent row
and the insertion of a dependent row is wrong. A
more ngorous multi-site repair strategy 15 necessary to
restore consistency.

Timestamps are not useful in resolving this situation.
Interestingly, If the delete rule for the SUPPLIER table
had instead specified ON DELETE CASCADE. and the
delete was processed at site2, the 10:00 msert at site2
will be removed from the database as a cascade delete
resuiting from the 9:58 delete at sire/. even though the
10:00 insert is surely “more recent” than the 9:58
delete. This is an important point -- the time order of
the cascading operation may overr: !e the time order
you specify in your local conflict constraint.

Referential constraints must be defined 1 the database
and not enforced by application programs alone.
Application logic cannot detect all potential referential
integrity violations when complete detection can occur
only after propagation occurs. If the database 1n this
example were not enforcing the DELETE RESTRICT
constraint, the parent row would have been deleted at
site2, feaving the row inserted into the PARTS table at
site2 as an orphaned dependent.

440

The cxample above illustrates that problems can occur when
global serializability 1s not enforced. In this example. two
globally conflicting operations are allowed to be committed
locally, with the resulting global inconsistency.

In order to repair the inconsistency, one of the local transactions
must be backed out, or compensared. Either the delete of the
parent row may be durable or the insert of the dependent row
may be durable. but not both. Automatic transaction
compensation then, is a desirable feature for an asynchronous
replication system.

Conclusions

Asynchronous update replication should only be used after
carefully assessing the risks. Replication products which do not
enforce serializability may not be appropriate for applications
requining transaction integrity.

Bibliography

C.J. Date. What 1s a Distnbuted Database System? InfoDB2
Vol, 2. No, 2, Summer 1987 and Vol. 2. No. 3, Fall 1987.

Rob Goldring. Things every update replication customer should
know (working title). to appear: InfoDB. April 1995.

Jim Gray and Andreas Reuter. Transaction Processing: concepts
and techniques. Morgan Kaufmann. 1993.

Leslie Lamport. Time, Clocks. and the Ordering of Events in a
Distributed System. Communications of the ACM Vol. 21, No.
7. July 1978.

