
Things every update replication customer should know

Rob Goldring

IBM Santa Teresa Laboratory

San Jose. CA

Note: this paper is an abstract of mt article which appeared

recently m I@DB.

In the rnid-1980s. Chrts Dare’s “12 rules” for distributed

database systems included replication. Repi ication makes

transparent the problems of remote access de]dys and the

management of data redundancy. The commercial market for

distributed database features has been slowly building over the

years. beginning with simple remote access gateways. Today.

replication appears to dehver on the 1980s ideal, with a robust

a-wrrchrcmuus infrasrntctnre. Current commercial tmhnology

though. continues to fall shotl of that ideal.

“Asynchronous rephcat~on” is a pleasant term to describe the

operation of a dmtributed database running without concurrency

control. In practice, DBMSS which use lockrng mechanisms in

local operation are connected into replication networks without

benefit of a global serialization mechanism, such as a

synchronous ‘2-phase commit protocol. The notion of a

tramaction is thus compromised.

Four properties, a[omiciq, con.riwcncy. isoianon and durability -

- “ACID” for shott -- have come to define a tran>actlon system.

With asynchronous replication, there is no isokion of

transactions. Transactions run in parallel without any guarantee

that a transaction sees the most current state of the database

before making an update. U-palates then, are not seriahzed.

One of the many benefits derived from the ACfD properties is a

seria/ histom of tr~nsaction execution, an absolute necessity to

satisfy audit requirements In regulated industries, Without a

serial history, it IS Impossible to reliably state who updated a

database from state N to state N+l. IQot all replication systems

guarantee a serial history.

Update Conflicts

Update conflicts occur when applications commit competing.

potentially incompatible updates to two or more replicas and the

existence of these competing u palates cannot be detected until

propagation occurs. There are. in fact. two general classes of

update conflicts:

● Itttra-table update conflicts are those which

are detectable within the scope of a single

table.

Permission to copy without fee all or parf of this material is
granted provided that the copies are not made or distributed for
direet commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copyin is by permission of the Association of Computing

$Machinery. o copy otherwise, or to republish, requires
a fee and/or specific permission.
SIGMOD ‘ 95. San Jose, CA USA

. Inter-table update eonfhcfs are those which

are Hot detectable withl n the scope of a

single table, but which are nonetheless

c Onflicting

Three common. and false. assumptions are routinely made by

designers of asynchronouss replication system>:

1. All conflicting executions can be detected within tbe

scopt of a stngle global table -- all physical repltcas

of a single. logical table,

‘-l-. Tlmestamps from uncoordinated local clocks can be

relied ttpxr to order events in a distributed system.

3. Constraints can be def]ned in each heal database to

protect the global database ftmm permanent

inconsmtencies restsltutg from uncoordinated updates.

Peer-to-peer example

For this example, a. -ume that in case of an update conflict, tbe

“most recent update” should persist. as determined by a

timestamp accompanying each propagated update. Additionally.

there are three sites, sir~l. site2 and sire.?, each with two

replicas:

SUPPLTER 6SUPPLIER.TD. NAME. ADDRESS.

TOT.RECEIVABLE) PRMARY REY (SUPPLIERJD)

PARTS (PART.ID. SUPPLIERJD. DESCRIPTION)

PRIMARY KEY (PART_lD)

FOREIGN KEY &WPPLIEt_ID) REFERENCES SUPPLIER

ON DELETE RESTRICT

N-ote that the referential constraints say that a dependent row in

PARTS cannot exist if there is no corresponding parent row in

SUPPLIER and that a parent row in SUPPLIER cannot be

deleted if there exist any dependent rows in PARTS. Figure 1

shows the timetable of events Ieadi ng to the eventual

inconrasrency.

These are the events as shown in Figure 1: Beginning at 9:50,

all sites are consistent. At 1000, someone at site2 inserts a row

into the PARTS table. Shortly after’. a delete arrives at size2 from

stfef -- a delete of the parent row in SUPPLtER for the PARTS

row just inserted. The delete carries with it a timestamp of 9:5$2.

By 10:02 the state of the database at site3 is indeterminate;

matchmg either the state of site/ or stre2. The state at any

additional sites 4.5.6. etc. is simdarly mdetermirtate.

0 1995 ACM 0-89791-731 -6/95/0005 ..$3.50
439

Figure 1 Peer-to-peer example.

\ Inseit q IVW mm

\~ gTPFLI&lyD.I 2
10:W /, Ok

Refemntlal P Rm%rwmal [f the deltie IS
Cm5umm Vtolsrlor!, mmsvaint Watlon, rwe.tvec ma
as daDendant mw as par-am mw mu- first, then

1001 csnnor De Insened
wlJ*o;::.nclent $$%{.:2
canner be deleted

$Wme~=Darsnt

I IW‘tilanon as m I
SIt8 S2

This example illustrates a number of points:

1. The conflict in this example occurs between updates

to two related tables but not between two updates to

the same global tab] e.

‘?-. Local constraints. or coqf/icr resolurron routines, could
not return the global datdbase to a consistent state.
Any attempt to combine the deletlon of a parent row

and the insertion of a dependent row is wrong. A

more rigorous mult~-site repair strategy 15necessary to
restore consistency.

3.

4.

Timestamps are not useful in resolving this situation.

Interesting y, If the delete rule for the SUPPLIER table
had instead specified ON DELETE CASCADE and the

delete was processed at site2, the 10:00 insert at $ite2

will be removed from the database as a cascade delete

resultin~ from the 9:58 delete at .rzrel. even though the

10 XX) insert is surely ‘“more recent” than the 9:58

delete. This is an important point -- the time order of

the cascading operation may overr le the time order

you specify in your local conflict constraint.

Referential constraints must be deftned m the database

and not enforced by appl icat ion programs alone.

Application log~c cannot detect all potential referential

integrity violations when complete detection can occur
on] y Q&r propagation occurs. If the database In this

example were not enforcing the DELERZ RESTRtCT

constraint, the parent row would have been deleted at
SIrc2, kavi ng the row inserted into the PARTS table at

site2 as an orphaned dependent.

The =xample above illustrates that problems can occur when

Slobal serializability IS not enforced. In this example. two

globally confl~ctlng operations are allowed to be commlttcd

locally, with the resulting global lncons~stency.

In order to repam the inconsistency, one of the local transactions

must be backed out, or compensated. Either the delete of the

parent row may be durable or the insert of the dependent row

may be durable. but not both. Automatic transaction

compensation then. is a desmabie feature for an asynchronous

replication system.

Conclusions

Asynchronous update replication should only be used after

carefully assessing the risks. Replication products which do not

enforce serializability may not be appropriate for applications

requmrng transaction integrity.

Bibliography

C.J. Date. What 1s a Distributed Database System’? InfoDB2

Vol. 2. No. 2, Summer 1987 and Vol. 2, No. 3, Fall 1987.

Rob Goldring. Things every update replication customer should

know (working title). to appeac InfoDB. April 1995.

Jim Gray and Andreas Reuter. Transaction Processing: concepts
and techniques. Morgan Kaufmatm. 1993.

Leslie Lamport. Time, Clocks. and the Ordering of Events in a

Distributed System. Communications of the ACM Vol. 21. No.

7. July 1978.

440

