Deferred Updates and Data Placement in Distributed Databases !

Parvathi Chundi

Daniel J. Rosenkrantz

S. S. Ravi

Department of Computer Science
University at Albany - State University of New York
Albany, NY 12222

Abstract

Commercial distributed database systems generally
support an optional protocol that provides loose con-
sistency of replicas, allowing replicas to be inconsis-
tent for some time. In such a protocol, each replicated
data item is assigned a primary copy site. Typically,
a transaction updates only the primary copies of data
items, with updates to other copies deferred until after
the transaction commats. After a transaction commits,
its updates to primary copies are sent transactionally
to the other sites containing secondary copies. We in-
vestigate the transaction model underlying the above
protocol. We show that global serializability in such a
system 1s a property of the placement of primary and
secondary copies of replicated data items. We present
a polynomzal time algorithm to assign primary sites to
data ttems so that the resulting topology ensures seri-
alizability.

1 Introduction

A widely used method for improving the reliabil-
ity and availability of data in distributed databases
is replication of data items. By storing critical data
at multiple sites, the system can continue to oper-
ate even when some of the sites fail. Also, per-
formance can be improved by accessing the near-
est copy. An important goal of concurrency control
for a replicated database system is achieving replica
transparency. That is, a replicated database system
should behave like a single copy database as far as
the users are concerned. Therefore, the interleaved
execution of transactions on a replicated database
should be equivalent to a serial execution of these
transactions on a single copy database. Transaction
processing in replicated database systems has been
studied by a number of researchers (see for exam-
ple [AE90, AE92, BHG87, BG84, BL93, PL91] and

the references contained therein). Several protocols

TResearch Supported by NSF Grant CCR-90-06396. Email
addresses: {paru, djr, ravi}@cs.albany.edu

achieving replica consistency, such as two phase com-
mit and quorum consensus, have been proposed in the
literature [BL93, BHGS87, Gi79, Th79]. These proto-
cols, which we refer to as multi-site commit pro-
tocols, allow a transaction to access a replicated data
item at a site only if a certain subset or a specified
number of replicas of that data item agree. Almost
all commercial distributed database system products
available today provide two phase commit as an op-
tion [Sc94]; the advantage of utilizing this option is
that it guarantees the consistency of replicated data
and the serializability of transactions. In a two phase
commit approach to updates, a transaction that up-
dates a replicated data item is committed only after
all the sites containing a copy of that data item agree
to commit the transaction. This approach is often re-
ferred to as tight consistency or synchronous dis-
tributed replication. Tight consistency has some
drawbacks in practice [Mo94, MP+93, Sc94]. Many
database vendors indicate that in numerous applica-
tions, two phase commit is impractical. For instance,
quoting from [MP+93],

“Synchronous distributed replication is at-
tractive in theory, but fails in the real world.
Its reliance on 100 percent system availabil-
ity makes maintaining a productive level of
transaction throughput for distributed repli-
cation impossible.”

An overview of commercially available distributed
database systems with replication capability appears
in [Go94]. Several of these systems, including
SYBASE System 10 [Mo94, Co093, MP+93], Oracle
7 [Or93], IBM Datapropagator Relational [Ib94], and
CA-Openlngres [Sc94], support a multi-site protocol
for tight consistency and also include an optional pro-
tocol that defers the update of replicas. The latter
deferred update protocols support loose consistency
[Mo094, MP+93] by allowing some of the copies to be
inconsistent for some time. However, loose consistency
provides better responsiveness since the waiting opera-

tions associated with multi-site commit protocols are
avoided. A similar approach, called asynchronous
coherency control, has been been studied in [PL91].

When a deferred update is used, a transaction
can commit after updating only one copy of a repli-
cated data item. After the transaction commits, the
update is propagated asynchronously to the other
copies. There are several approaches that achieve de-
ferred update. We focus on the primary copy ap-
proach. In this approach, each replicated data item
is assigned a site where the primary copy of the data
item is stored. Copies of this data item appearing at
other sites are referred to as secondary copies. Dif-
ferent data items may have primary copies at different
sites and a given data item need not have a copy at
every site. (The notions of primary and secondary
copies have also been used in Distributed INGRES
[St79, SN77].) A replication server? is included at
each site; the replication servers co-operate to ensure
the propagation of an update to all copies.

This paper deals with a form of primary copy ap-
proach which we call the strict primary copy ap-
proach. In a strict primary copy system, the up-
dates to a data item are done at its primary site and
the secondary copies are read-only. For a transaction
T to update a replicated data item, 7" must operate at
the site S containing the primary copy. To commit, T
must commit at S. Once T' commits, the replication
server at S sends all updates by T" on primary copies at
S transactionally to all sites containing corresponding
secondary copies. Since the commit of a transaction
updating a primary copy at a site results in messages
going to other sites, we call such an update message a
ripple. We call the subtransaction executed as a con-
sequence of receiving a ripple a ripple subtransac-
tion. Thus, the values of the primary and secondary
copies of a data item may differ until the updates on
the secondary copies are completed. Spawning various
activities at different sites to maintain the consistency
of interdependant data, depending on a transaction
updating a data item at a single site is also discussed
in [SRK92].

For many applications, use of a deferred update
protocol seems preferable to two phase commit. Use
of the strict primary copy approach prevents update
conflicts. However, a further goal might be to ensure
that histories of transaction executions be serializable.
A discussion of the importance of serializability in de-
ferred update systems and examples of nonserializable
executions in such systems can be found in [Go95].

2The term “replication server” is a trademark of SYBASE,
Inc.

References [M094, MP+93, Or93] provide sample ap-
plications with simple topologies (e.g. a star) of pri-
mary and secondary copies which seem to work fine,
although the issue of serializability is not addressed.
For example, consider a commercial organization with
a headquarters and branch offices. The primary copy
of the database is located at the headquarters site.
Each branch office needs to view that data which per-
tains to its operations. Therefore, data is replicated
at the branch offices, but the updates can be initi-
ated only at the headquarters. These updates are
forwarded to the branch offices transactionally. This
replication topology is a star where the headquarters
site 1s the center and the branch offices are the leaves.
In another example using a star topology [MP+93],
each branch office has the primary copy of its data,
and the headquarters site has a secondary copy. In
these examples, transactions operate at only one site
using a strict primary copy approach, with updates
propagating asynchronously to secondary copies.

In this paper, we investigate serializability® of
transaction processing systems utilizing a primary
copy deferred update approach. Perhaps, the most
restricted system design that can be said to use “dis-
tributed transaction processing” is one which uses a
strict primary copy approach, and where each trans-
action can operate at only one site. (Once a transac-
tion commits at the site where it operates, ripples are
sent asynchronously to sites with secondary copies of
the data items updated by the transaction.) We for-
malize a protocol, referred to as the strict primary
update (spu) protocol, that utilizes this constrained
transaction model.

In this paper, we show that even for the very re-
stricted spu-protocol, the topology of data distribu-
tion among sites must satisfy certain constraints in
order to ensure serializability. In fact, it is easy (see
Section 2) to construct examples of non-serializable
global histories under this model. We develop a tight
characterization based on the topology of data distri-
bution. We define a directed graph (called the data
placement graph) which represents the distribution
of the primary and secondary copies of data items
across the sites. Under standard assumptions concern-
ing the nature of the distributed database system and
the concurrency control mechanisms used at each site,
we show that global serializability is ensured if and
only if the data placement graph satisfies an acyclic-
ity condition. More specifically, for any configuration
violating the acyclicity condition, a non-serializable

3Throughout this paper, we use the term “serializability” to
refer to conflict serializability [BHGS87].

history can be produced involving transactions that
use the strict primary copy approach and where each
transaction operates at only one site. This is a very
strong lower bound because it applies to even the most
restricted kind of transactions.

We also present an efficient algorithm for the fol-
lowing primary site assignment problem: Given a list
of sites for each data item (the list specifies the set
of sites at which the data item is placed), choose a
primary site for each data item so that the resulting
data placement graph satisfies the acyclicity condition
mentioned above. This problem arises when an appli-
cation needs an initial assignment for its data items. A
slightly different form of the problem arises when one
or more sites containing primary copies of some data
items fail, and for each such data item, one of the sec-
ondary copy sites is to be redesignated as the primary
copy site without violating the acyclicity condition.

When transactions can modify only the primary
copies of data items, the primary site assignment may
determine whether certain transactions can be exe-
cuted using the spu-protocol. In this case, we need to
determine if there is a primary site assignment that
both satisfies the acyclicity condition, and for which
each transaction type can be assigned to a site where
it can operate. For this problem, we are again given a
list of data items (each accompanied by a list of sites
where it is located) and a list of transaction types
(each accompanied by a read and write set of data
items). We present an efficient algorithm that finds
a feasible primary site assignment for each replicated
data item and an operating site for each transaction,
whenever a solution exists.

The SDD-1 system [BSR80, BS80, RB+80] used the
idea of preanalyzing transaction classes to identify ac-
cess conflicts between transaction classes and to estab-
lish which synchronization mechanism to use for each
such conflict. In this paper we assume that each site’s
concurrency control uses a standard mechanism, such
as two-phase locking, to handle all conflicts, so such a
preanalysis is not needed. The transaction class anal-
ysis that we consider assigns transactions to sites, and
so addresses a different problem than considered in the
SDD-1 system.

The concept of preanalyzing transaction classes is
also used in [SW84] to increase availability and main-
tain database consistency when a distributed database
system with replication becomes partitioned. The is-
sues considered in this paper are different from those
considered in [SW84] because we do not address fail-
ures.

The remainder of this paper is organized as fol-
lows. Section 2 presents a non-serializable scenario
that occurs even with simple transactions. Section 3
presents the distributed data model and introduces re-
lated definitions. Section 4 formalizes the spu-protocol
and presents the characterization of serializability in a
system executing the spu-protocol. Section 5 presents
algorithms for the primary site selection and trans-
action assignment problems. Section 6 concludes the

paper.

2 Nonserializable Example

A distributed and replicated database system must
ensure replica consistency as well as database
consistency. When one copy of a replicated data
item is updated, to achieve replica consistency, all
other copies must be modified to reflect this change.
Database consistency is ensured by permitting only se-
rializable histories in the system. If two transactions
are allowed to update two copies of a replicated data
item located at two different sites without consult-
ing each other, the resulting execution contains up-
date conflicts and is non-serializable . The strict pri-
mary approach supported in various commercial sys-
tems such as Sybase System 10, Oracle 7, and IBM
Datapropagator Relational, etc. ensures replica con-
sistency and avoids update conflicts. However, it is
not clear whether serializability is guaranteed in gen-
eral in a system using the spu-protocol. The vendors
do not provide any guidelines as to how to configure
the system so that database consistency is guaranteed
when the spu-protocol is used. We now present ap-
plications that use a deferred update approach where
serializability is an important goal. Nevertheless, the
spu-protocol may produce non-serializable histories.
In the following examples, r;(z) and w;(z) denote the
read and write operations of a transaction 7; on a data
item z and send; and recvd; denote the send and re-
ceive operations of a ripple generated as a result of
write operation of T; on some primary data items. Fi-
nally, ¢; denotes the commit operation of T;.
Example 2.1: Consider a manufacturing company
with three sites where S represents the sales office site,
P represents the production site and A represents the
central administration site (refer to Figure 2.1). The
sales office accepts purchase orders and informs the
production site so that it can service the purchase or-
der. The sales office also sends this purchase order in-
formation to the central administration site for record
keeping. Hence, the data item purchase_order is repli-
cated at all three sites, with the primary copy at S.

4Such an execution may need human intervention or special
rules to resolve the conflict.

The production site records the purchase order infor-
mation. This information is used to increase produc-
tion of this item when the production site next revises
its schedule. The production site then informs the cen-
tral administration of the new schedule of production.
Hence, the data item production_quantity is replicated
at P and A with the primary copy at P. The central
administration site A stores the information from the
sales office as well as from the production site. Site
A also decides the asking price of an item produced
based on how much of it is scheduled to be produced,
and how much of this production is accounted for by
purchase orders. If there is a large surplus of items
scheduled to be produced, a lower price is set. If the
scheduled over-production of the item is small (i.e.,
the item is in demand compared to supply), a high
price is set.

purchase_order
> P

purchase_order production_quantity

O

Figure 2.1

Now, consider the following scenario. A transac-
tion Ty operating at site S records a purchase order,
thereby updating the primary copy of the data item
purchase_order. Hence, after Ty commits, a ripple is
sent both to P and A to update the secondary copies.
The site P receives this message and updates the sec-
ondary copy of purchase_order. A transaction T, at P
reads this value and writes a new value for the primary
data item production_quantity. At site P, T, reads a
value written by Ts. Therefore, the local serialization
graph at P contains the edge T; — T,. Since the
primary copy of production_quantity is updated, a rip-
ple is sent to the site A to update the corresponding
secondary copy.

Hence, both sites S and P send update messages to
A. Suppose site A receives the ripple corresponding to
T, from P first5. It updates the secondary copy pro-
duction_quantity at A. Immediately after this, suppose
a local transaction T, analyzes the database in order
to post an asking price for the item. After Tj reads
the database and commits, the ripple corresponding
to Ty is received from S and the new value for pur-
chase_order 1s written at A. Hence, at A, T, read

5This can happen if the message from S is delayed due to
network traffic, or if S is farther away from A than P.

an after-value of 7, and a before-value of T;. Hence,
there is a path 7, — T; — T} in the local serialization
graph of A.

Hence, the cycle Ty, — T, — T, — T, is created
when the serialization graphs from all three sites are
merged. To see how this cycle may lead to inconsis-
tencies, note that the analysis by T, shows a high pro-
duction quantity for the item requested by T;(updated
by T,) and a low number accounted for by purchase
orders (the ripple corresponding to 7 had not arrived
at A yet.). This may lead to A setting a lower price for
the item. This price may not be consistent with the
price that A would have selected had the ripple from
S arrived before T, read the database, i.e., the final
values of price, production quantity and purchase or-
der total are inconsistent. Hence, the non-serializable
execution may lead to a significant loss. O

3 Data Placement
3.1 Distributed Data Model

A replicated database system consists of a set of
sites Sy, S, ..., Sp. Every pair of sites communi-
cates using a fifo discipline. Each site contains a pro-
tocol manager that communicates with other sites to
maintain the consistency of the replicated data. Each
replicated data item has a designated site where the
primary copy of the data item resides; the copies of
this data item at other sites are secondary copies.
Data items occurring at more than one site are re-
ferred to as global data items. Each site may also
have some local data items. We denote a secondary
copy of a data item d by d’ and the primary copy by
d itself.

3.2 Data Placement Graph

We define a directed graph called the data place-
ment graph (DPG) as follows. Each node in the
DPG represents a site. There is a directed edge from
S; to S; if there is at least one data item for which .S; is
the primary site and S; is a secondary site. Note that
a DPG cannot contain a self loop. Given a DPG, the
corresponding undirected data placement graph
(UDPG) is obtained by simply erasing the directions
on the edges and combining multi-edges (if any) be-
tween a pair of vertices into a single edge.

Finally, we mention some graph theoretic concepts
used in this paper. In a directed graph, a pair of edges
of the form (u,v) and (v,u) which form a directed
cycle of length 2 will be referred to as dual edges. We
say that a directed graph D(V, A) is strongly acyclic
if it does not have dual edges and the undirected graph
obtained from D by deleting the direction on each edge
and combining the multi-edges into a single edge is
acyclic.

A source node of a directed graph is a node with
no incoming edges, and a sink node is a node with no
outgoing edges.

4 Spu Protocol and Database Consis-
tency
4.1 Description of the Protocol

Under the spu-protocol, each transaction operates at
only one site and gets committed at that site. (If a
transaction updates primary copies of the global data
items, the ripples are propagated to secondary sites
after it commits.) A transaction is a partial order of
read and write operations (denoted by r and w re-
spectively) ending with a commit (¢) or an abort (a)
operation [BHG87]. The read (write) operation of a
transaction 7; on a data item d is denoted by r;(d)
(wi(d)). Further, ¢; and a; denote T;’s commit or
abort operation respectively.

At any site, the spu-protocol can execute the fol-
lowing two types of transactions:

1. A local transaction can read and write local data
items at that site and can read global data items
at that site (but cannot write global data items).

2. An pg (primary-global) transaction can read and
write local and primary data items at that site.
Further, the transaction can read, but not write,
secondary data items at that site.

Note that a local transaction is a special case of a pg
transaction.

The send and receive operations of a ripple gener-
ated by the execution of a pg transaction 7T; are de-
noted by send;(A) and recvd;(A) respectively, where
A contains the new values of primary copies modified
by T;. The ripples are sent in the order in which the pg
transactions committed at S. Also, for each sending
site Sj, the protocol manager at a receiving site sub-
mits the ripple subtransactions in the order in which
the corresponding ripples arrived from S;.

We define the local history at a site as a partial
order over the operations of all transactions execut-
ing at that site, including send and receive operations
carried out by the protocol manager at that site. The
partial order at each site must satisfy the usual condi-
tions from [BHG87]. A global history is the union of
local histories at each site, with the partial order aug-
mented by the requirement that the send of a ripple
occurs prior to the corresponding receive operation.
We define an spu-global history to be a global his-
tory that can be produced by the spu-protocol. The
global serialization graph (GSG) is obtained by

taking the union of nodes and edges of the local se-
rialization graph at each site. In the GSG, the node
corresponding to a ripple subtransaction (if any) is
identified with the node which caused this ripple. A
global history is serializable if and only if its GSG is
acyclic.

We assume that each local database concurrency
control produces only serializable histories and that
the local histories have the property that the commit
order of transactions is a serialization order. (This can
be ensured by using an appropriate concurrency con-
trol mechanism, such as two-phase locking, at each
local database.) We also assume that a ripple sub-
transaction is always successfully committed. If it gets
aborted, it is retried.

One of the main contributions of this paper is a
characterization of those DPGs for which the spu-
protocol always produces serializable global histories.
We define a DPG to be spu-global serializable if it
has the property that every history produced by the
spu-protocol operating in a data configuration corre-
sponding to the DPG is globally serializable. Note
that spu-global serializability is a property of a DPG.

4.2 Characterization of Consistency

In this section, we discuss how spu-global serializ-
ability can be achieved in a replicated distributed
database system running the spu-protocol at each site.
It is easy to construct a scenario in the above system
in which each local history is serializable, but the re-
sulting global history is not serializable (refer to Sec-
tion 2). In Example 2.1 (Figure 2.1), the order in
which ripples from sites S and P arrive at A produces
a non-serializable execution. Note that the DPG in
Example 2.1 is not strongly acyclic. This example il-
lustrates that the structure of a DPG may play a role
in determining when global serializability is guaran-
teed under the spu-protocol. We prove the conditions
under which global serializability can be guaranteed
using the following theorem. We omit the proof of
this theorem due to space limitations.

Theorem 4.1 A DPG is spu-global serializable if and
only if it s strongly acyclic. O

Theorem 4.1 proves that the strong acyclicity condi-
tion is required for ensuring serializability even when
the transactions in the system are only local and
primary-global. Since any implementation of the
primary-copy approach will contain these types of
transactions, this condition applies to any such im-
plementation.

5 Selecting Primary Sites and Assign-
ing Transactions
5.1 Overview

In this section, we first present an efficient algorithm
that determines for a given data distribution, whether
there is an assignment of a primary site to each data
item so that the resulting DPG 1is acyclic; if yes,
the algorithm outputs such an assignment. We then
consider this problem in the context of a given set
of transaction classes, each of which is to be imple-
mented as a pg transaction. Since update operations
on global data items can be done only at their primary
sites for such transactions, the placement of primary
copies may affect the executability of some transac-
tions. Therefore, while assigning the primary sites to
data items, we need to also take into consideration
the access sets (i.e., read and write sets) of transac-
tion classes to be executed in the system. We show
how to modify the initial algorithm to take into ac-
count the access sets of transactions in assigning the
primary sites and find a solution (if one exists) such
that each data item is assigned a primary site, the re-
sulting DPG is strongly acyclic, and each transaction
is assigned a site which contains copies of all the data
items in its read set, and primary copies of all the data
items in 1ts write set.

5.2 Selecting Primary Sites for Data
Items

Theorem 4.1 points out that the structure of the DPG
plays a crucial role in determining the serializability
of the global histories produced by executing the spu-
protocol at each site. Thus, given a distribution of
data items across the sites, it is necessary to select
primary sites for each replicated data item so that the
resulting DPG is strongly acyclic. We call an assign-
ment of primary sites to data items valid if the result-
ing DPG is strongly acyclic. It is easy to construct ex-
amples of data distribution for which there is no valid
assignment. In this section, we address the question of
determining whether there is a valid assignment for a
given data distribution, and if so, producing one such
assignment. We present a polynomial time algorithm
for this problem, which we refer to as the primary
site selection (PSS) problem.

Primary Site Selection: (PSS)

Instance: A set S = {s1,83,...,5,} of sites, a col-
lection D = {di,ds,...,dn} of data items, and
a site set ®; C S for each data item d; (i.e.,
®; is the set of sites containing data item d;),
1< <m.

1. Construct the auxiliary graph I' for the given instance T

of the PSS problem.
2. Find the connected components 'y, I's, ..., 'y of T.

3. for j:= 1 tor do
i) Let d;,,d;.,...,d; be the data item in I';.
1 2 P J
(ii) Compute ¥ = ﬂle@il.
(ii1) if ¥ is empty
then Print “No Solution” and stop
else Choose an arbitrary site from U as the
primary site for all the data items in I';.

4. Construct the data placement graph G for I using the
primary site assignments chosen in Step 3.

5. if GG is strongly acyclic then Print the assignment found
in Step 3 else Print “No Solution”.

Figure 5.1: Description of Algorithm-PSS

Requirement: Determine whether there is an assign-
ment of a primary site to each data item d; such
that the resulting DPG is strongly acyclic. If yes,
find one such assignment.

In the remainder of this section, we outline a polyno-
mial algorithm for the PSS problem. We begin with a
lemma which points out an important constraint that
must be satisfied by all valid assignments. The proof
of the lemma is straightforward.

Lemma 5.1 Let I be an instance of the PSS problem.
Suppose d; and d; are data items which occur together
in two or more sites (i.e., the corresponding site sets
®; and ®; satisfy the condition |®; N ®;| > 2). Then,
in any valid assignment for I, d; and d; must have the
same primary site. O

Given an instance I the of PSS problem with data
set D = {dy,ds,...,dn} and the corresponding site
sets @1, Do, ..., D,,, we define the auxiliary graph
[as follows. T is an undirected graph with a node
for each data item. There is an edge {d;,d;} in T if
data items d; and d; occur together in two or more
sites. The role played by the auxiliary graph is indi-
cated in the following lemma, which is a consequence
of Lemma 5.1 and the definition of auxiliary graph.

Lemma 5.2 Let I be an instance of the PSS problem
and let T' denote the corresponding auziliary graph.
Suppose T is a connected component of I'. In any
valid assignment to I, all the data items in I'' must
have the same primary site. O

The steps of our algorithm (Algorithm-PSS) are
shown in Figure 5.1. Whenever the algorithm out-
puts an assignment, it is clear from Figure 5.1 that

the assignment is valid. From Lemma 5.2, it can be
verified that if the algorithm outputs “No Solution”
in Step 3(iii), then the given instance of PSS does
not have a valid assignment. Using a more involved
argument, it can be shown that when the algorithm
outputs “No Solution” in Step 5, the given instance
does not have a valid assignment. Thus, we can con-
clude that given any instance of the PSS problem,
Algorithm-PSS correctly produces a valid assignment
whenever such an assignment exists.

The following example illustrates the above algo-
rithm.

Figure 5.2

Example 5.1 The set of sites ®; at which each data
item d; occurs are as follows. ®1: {S;, S, Ss, Sa},
@21 {Sl, 52, 54}, (I>31 {Sl, 53, 54}, (1)42 {54, 55} and
(I>5Z {54, 55, 56}

The auxiliary graph for this instance of PSS (Figure
5.2) has two connected components; one component
I'; containing dy, ds, and d3 and the other component
5 containing d4 and d5. The intersection set ¥ for I'y
is {S1, Sa}. We choose Sy arbitrarily as the primary
site for data items dq, ds and d3 in I'y. The connected
component I's has the intersection set ¥ = {S4, S5}.
The site S5 is arbitrarily chosen to be the primary
site for data items in I'y, i.e., d4 and d5. The resulting
DPG is strongly acyclic. Hence, the algorithm found
a valid assignment. O
5.3 Assigning Transactions to Sites

We briefly discuss an algorithm that produces an
assignment of transactions to sites, along with an as-
signment of primary sites to data items, if such as-
signments are possible. We base this algorithm on the
algorithm given in Figure 5.1. In addition to the data
item set D and the corresponding site sets, the algo-
rithm takes as input a set of pairs P = {(RSg, W.Sk)
| Tk is a transaction in the system} where RSy and
W Sk respectively denote the read set and write set of
transaction T}.

We first construct the auxiliary graph T' for the

given data distribution. We then introduce additional
edges into I' as follows. We add an edge {d;, d;} if
there is a transaction 7} such that {d; , d;} C W.S;.
Let T’ be the resulting graph. Let T'y, T's, ..., T, be
the connected components of I'. For each I';, we con-
struct the set ¥ of sites containing all the data items
in I';. If ¥ is empty, we conclude that there is no so-
lution. Otherwise, let GT; be the set of transactions
Ty such that WSy C I';. For each site S; in ¥, we
check for each transaction T} in GT}, whether all data
items from RSy and W.S; are present at S;. If there
is no site for which this condition 1s true, we conclude
that there is no solution. Otherwise, an arbitrary site
S; satisfying the condition is chosen to be the primary
site for all the data items in I';, and all transactions
in GT; are assigned to S;.

We then check whether the above assignment pro-
duces a strongly acyclic DPG. If not, the above in-
stance does not have a solution. Otherwise, we have
a solution that assigns primary sites for data items
and also assigns the given set of transactions to sites
such that their access sets are satisfied. Clearly, the
algorithm runs in polynomial time.

6 Conclusions

A deferred update approach i1s supported by several
commercial database systems, such as Sybase System
10, Oracle 7, CA-Openlngres, and IBM Datapropa-
gator Relational etc., to maintain replica consistency
efficiently. In this paper, we focussed on the strict pri-
mary copy approach. Even though the strict primary
copy approach avoids update conflicts, the issue of
when this approach guarantees serializability has not
been addressed in the literature. We formalized the
strict primary update protocol and developed a tight
characterization of serializability based on placement
of primary and secondary copies. We also presented
efficient algorithms for selecting primary sites and for
assigning transactions to sites.

The spu-protocol is basic to any implementation of
the primary copy approach in the sense that it will
be embedded as a special case within any more gen-
eral protocol. Therefore, strong acyclicity of the data
placement graph is a necessary condition for maintain-
ing database consistency in any such system. Several
applications where deferred update is applicable are
discussed in [M094, Co93, MP+93, Or93]. Interest-
ingly, the data placement graphs used in all of those
examples are strongly acyclic. This suggests that us-
ing a strongly acyclic data placement graph will be
feasible in many practical situations.

References
[AE90] D. Agrawal and A. El Abbadi, “Exploiting

Logical Structures of Replicated Databases,” Inf.
Proc. Lett., Vol. 33, No. 5, Jan. 1990, pp 255-260.

[AE92] D. Agrawal and A. El Abbadi, “The General-
ized Tree Quorum Protocol: An Efficient Approach
to Managing Replicated Data,” ACM TODS, Vol.
17, No. 4, Dec. 1992, pp 689-717.

[BG84] P. A. Bernstein and N. Goodman, “An Al-
gorithm for Concurrency Control and Recovery in
Replicated Distributed Databases,” ACM TODS,
Vol. 9, No. 4, Dec. 1984, pp 596-615.

[BHG87] P. A. Bernstein, V. Hadzilacos and N.
Goodman, Concurrency Control and Recovery in
Database Systems, Addison-Wesley, Reading, MA,
1987.

[BSR80] P. A. Bernstein, D. W. Shipman, and J. B.
Rothnie, Jr., “Concurrency Control in a System for
Distributed Databases (SDD-1),” ACM TODS, Vol.
5, No. 1, March 1980, pp. 19-51.

[BS80] P. A. Bernstein, D. W. Shipman, “The cor-
rectness of Concurrency Control Mechanisms in a
System for Distributed Databases (SDD-1),” ACM
TODS, Vol. 5, No. 1, March 1980, pp. 52-68.

[BL93] A.J. Bernstein and P. M. Lewis, Concurrency
i Programming and Database Systems, Jones and
Bartlett Publishers, Boston, MA, 1993.

[Co93] M. Colton, “Replicated Data in a Distributed
Environment,” Proc. 1993 ACM SIGMOD Conf.,
Washington, DC, May 1993, pp 464-466.

[Gi79] D. K. Gifford, “Weighted Voting for Replicated
Data,” Proc. 7th SOSP, Dec. 1979, pp 150-159.

[Go94] R. Goldring, “A discussion of Relational
Database Replication Technology,” InfoDB, Vol.8,
No.1, Spring 1994.

[Go95] R. Goldring, “Update Replication: What Ev-
ery Designer Should Know,” InfoDB, Vol.9, No.2,
Apr. 1995, pp. 17-24.

[GRI3] J. Gray and A. Reuter, Transaction Process-
mng: Concepts and Technigues, Morgan-Kaufmann

Publishers, San Mateo, CA, 1993.

[Tb94] IBM, An introduction to Datapropagator Rela-
tional, Release 2, Technical Document, IBM, Dec
1994.

[Mo94] A. Moissis, “SYBASE Replication Server: A
Practical Architecture for Distributing and Shar-
ing Corporate Information,” Technical document,

SYBASE Inc., March 1994.

[MP+93] N. Monserrat, T. Palanca, M. Deppe and
B. Hartman, “Replication Server: A Compo-
nent of SYBASE System 10,” Technical document,
SYBASE Inc., April 1993.

[Or93] Oracle Corporation, “Oracle 77 Symmet-
ric Replication: Asynchronous Distributed Technol-
ogy,” White paper, Sept. 1993.

[PLY1] C. Pu and A. Leff, “Replica Control in Dis-
tributed Systems: An Asynchronous Approach,”
Proc. 1991 ACM SIGMOD Conf., Denver, CO, May
1991, pp 377-386.

[RB+80] J. B. Rothnie, Jr., P. A. Bernstein, S. Fox,
N. Goodman, M. Hammer, T. A. Landers, C. Reeve,
D. W. Shipman, and E. Wong, “Introduction to a
System for Distributed Databases (SDD-1),” ACM
TODS, Vol. 5, No. 1, March 1980, pp 1-17.

[SRK92] A. Sheth, M. Rusinkiewicz, and G. Kara-
batis, “Using Polytransactions to Manage In-
terdepedent Data,” Transaction Models for Ad-
vanced Database Applications, Ed. A. Elmagarmid,
Morgan-Kaufmann, 1992.

[SW84] D. Skeen and David D. Wright, “Increas-
ing availability in Partitioned Database Systems,”
Proceedings of the Third ACM SIGACT-SIGMOD

Symposium on Principles of Database Systems, Wa-
terloo, Canada, Apr. 1984, pp 290-299.

[Sc94] G. Schussel, “Database Replication: Playing
Both Ends Against the Middleware,” Client/Server
Today, Nov.1994, pp 57-67.

[St79] M. Stonebraker, “Concurrency Control and
Consistency of Multiple Copies of Data in Dis-
tributed INGRES,” IFEE Trans. Soft. Engg., Vol.
SE-5, No. 3, May. 1979, pp 188-194.

[SN77] M. Stonebraker and E. Neuhold, “A Dis-
tributed Database Version of INGRES,” Proc. 2nd
Berkeley Workshop on Distributed Databases and
Computer Networks, Berkeley, CA, May 1977, pp
19-36.

[Th79] R. H. Thomas, “A Majority Consensus Ap-
proach to Concurrency Control for Multiple Copy
Databases”, ACM TODS, Vol. 4, No. 2, June 1979,
pp 180-209.

