
Update Propagation Protocols For Replicated Databases

Yuri Breitbart’ Raghavan Komondoor2* Rajeev Rastogi’
Avi Silberschatz’

S. Seshadril

1 Bell Laboratories, Murray Hill, NJ 07974
2 University Of Wisconsin, Madison, WI 53706

{yuri,rastogi,seshadri,avi} @research.bell-labs.com
raghavan@cs.wisc.edu

Abstract
Replication is often used in many distributed systems to pro-
vide a higher level of performance, reliability and availabil-
ity. Lazy replica update protocols, which propagate updates
to replicas through independent transactions after the origi-
nal transaction commits, have become popular with database
vendors due to their superior performance characteristics.
However, if lazy protocols are used indiscriminately, they
can result in non-serializable executions. In this paper, we
propose two new lazy update protocols that guarantee seri-
alizability but impose a much weaker requirement on data
placement than earlier protocols. Further, many naturally oc-
curring distributed systems, like distributed data warehouses,
satisfy this requirement. We also extend our lazy update pro-
tocols to eliminate all requirements on data placement. The
extension is a hybrid protocol that propagates as many up-
dates as possible in a lazy fashion. We implemented our pro-
tocols on the Datablitz database system product developed
at Bell Labs. We also conducted an extensive performance
study which shows that our protocols outperform existing
protocols over a wide range of workloads.

1 Introduction

Distributed applications frequently use replication as a
means to achieve a higher level of performance, relia-
bility and availability. Consequently, the management
of replicated data has emerged as a problem of great
practical importance in recent years. Gigabytes of data
are replicated in distributed data warehouses and var-
ious web sites on the internet. In telecom as well as
data networks, network management applications re-
quire real-time dissemination of updates to replicas
with strong consistency guarantees.

This work was done while the author was visiting Bell Labs.

Permission to make digital or hard topics of all or part Of this wQr!i for
personal or classroom use is granted without fee provided that copies
3te not maLle or (iistril)uled for ptolil or commercial advantage and that
copies hear this notice and the l’ull citalion 011 the lirst pa& TO COPY
otl,cr\visc, to republish, to post on scrvcrs or to redistribute to lists.

requires prior specific permission andkx a fee.

SIGMOD ‘99 Philadelphia PA
Copyright ACM 1999 I-581 13-084-8/99/05...$5.00

There are two broad approaches to handle the prob-
lem of replica updates in a distributed database sys-
tem viz., eager and lazy. The eager approaches up-
date all the replicas of an item as part of a single
transaction. Thus, eager approaches ensure that exe-
cutions are serializable. However, a major disadvan-
tage of eager algorithms is that the number of oper-
ations in the transaction increases with the degree of
replication, and since deadlock probability is propor-
tional to the fourth power of the transaction size, eager
protocols are unlikely to scale beyond a small num-
ber of sites [GHK081, GHOS96]. In contrast, lazy
update propagation algorithms post updates to repli-
cas through independent transactions that are spawned
by the original updating transaction after it commits.
Thus, the effective size of a transaction is reduced and
the overall performance of the system improves due to
fewer deadlocks; however, transaction execution has to
be orchestrated carefully to ensure global serializabil-
ity.

Due to its superior performance benefits, a num-
ber of database vendors (e.g, Sybase, Oracle, CA-
OpenIngres) provide support for lazy replication. Specif-
ically, they provide an option in which each transaction
executes locally, and then asynchronously propagates
its updates to replicas after it commits (the replicas
at each site are updated in the context of a separate
transaction). Since each transaction executes locally
and independently, the systems do not require multi-
site commit protocols (e.g., two-phase commit) which
tend to introduce blocking and are thus not easily scal-
able. A problem, however, with the lazy replication
approaches of most commercial systems is that they
can easily lead to non-serializable executions. For in-
stance, it is possible for the same data item to be con-
currently updated at two different sites, thus resulting
in an update conflict. Currently, commercial systems
use reconciliation rules (e.g., install the update with the
later timestamp) to merge conflicting updates. These
rules do not guarantee serializability unless the updates

97

are commutative.
In this paper, we propose two new lazy update

protocols that guarantee serializability but impose a
much weaker reqjuirement on data placement than
earlier protocols for ensuring serializability. We also
extend our lazy update protocols to eliminate all
requirements on data placement. The extension is a
hybrid protocol that propagates as many updates as
possible in a lazy fashion. Before discussing our
specific contributions in more detail, we present the
system model adclpted in this paper and prior work
from [CRR96, GHOS96, BK97, ABKW98].

1.1 System Model

The model we adopt in this paper is very similar to one
from [CRR96, BK97]. For each data item, a particular
site is chosen as its primary site. The copy of a data
item at the primary site is called the primary copy and
the other copies are referred to as secondary copies or
replicas. Each transaction originates at a single site
and is a sequence of read and write operations. A
transaction can read all data items at its originating
site; however, it is permitted to update only data
items whose primary copies are at the transaction’s
originating site. We assume that each site follows
the strict two-phase locking (2PL) locking protocol to
ensure that local ex.ecutions are serializable’. We also
assume that the underlying network delivers messages
reliably and in FIFO order between any two sites.

We define a copy graph to be the directed graph in
which the set of vertices corresponds to the set of sites.
An edge from site si to site sj exists in the copy graph
if and only if there exists an item whose primary copy
is at site si and one of whose secondary copies is at
site sj. A set of edges in the copy graph are referred
to as backedges if their deletion breaks all cycles in the
copy graph.

Also, we will say that a transaction propagates
updates lazily if 1) it does not communicate with
any remote site (e.g., for the purpose of obtaining
locks) during its execution and until it commits, and
2) it’s updates are propagated asynchronously to sites
as independent transactions only after it has committed
and released all its locks2.

1.2 Lazy Update Protocols - Existing
Approaches

The problem of ensuring serializability in the lazy up-
date model was first addressed in [CRR96]. The au-
thors obt.ain a tight characterization of global serial-
izability based on ,the topology of data distribution

‘The variant of 2PL we assume is one in which a transaction does
not release any locks (read or write) until after it has committed.

‘Note that our definition of lazy protocols differs slightly from
the definitions adopted in [GHOS96, BK97, ABKW98].

Tl
T2

Figure 1: Example of Non-serializable Execution

when replica updates are propagated lazily and indis-
criminately. Specifically, they show that lazy repli-
cation protocols guarantee serializability if and only
if the undirected graph obtained from the copy graph
(by removing the directions on the edges) is acyclic.
However, since replica updates are propagated arhitrar-
ily, their algorithms cannot ensure serializability if the
copy graph is a directed acyclic graph (DAG), as illus-
trated by the following example.

Example 1.1 Consider the distributed system, shown
in Figure 1, with 3 sites and two items a and b. The
primary site for a is SI with secondary copies at s2 and
SQ, while the primary site for b is s2 and a secondary
copy is at ss, and the copy graph is as shown in
Figure 1. Consider 3 transactions, Tl at site ~1, T2
at site s2 and T3 at site ss. Tl updates item tz, T2
reads a and writes b while T3 reads both items (1 and
b. Assuming lazy propagation of updates to replicas,
it is possible for Tl’s update to reach site s2 before
T2 executes, but to reach site ss after Tz’s update to
b has been applied and transaction T3 has completed
execution. The resulting execution is non-serializable
since TI is serialized before TZ at site ~2, but ‘72 is
serialized before TI at site ss. •I

In addition to the work from [CRR96], the prob-
lem of replica update propagation is also addressed
in [GHOS96] and [BK97, ABKW98]. However, nei-
ther approach is lazy according to our definition.
In [GHOS96], any transaction that wishes to rend or
write a primary copy or replica of an item is required
to get an appropriate lock from the item’s primary site.
In addition, in order to guarantee serializability, locks
on items that are updated need to be held until all the
updates have been propagated to all the replicas.

In [BK97, ABKW98], the authors describe a pl.oto-
col, which maintains a replication graph that contains
information about the execution of every transaction in
the distributed system. They describe how to maintain
this graph at a centralized site but also observe that the

98

central site becomes a bottleneck if the number of sites
becomes large.

1.3 Our Contributions

In this paper, we make two major contributions. The
first contribution of this paper is that we develop two
new lazy update protocols, DAG(WT) and DAG(T),
which guarantee serializability as long as the copy
graph is a DAG. The second contribution of this pa-
per is the BackEdge protocol, which augments the
DAG(WT) and DAG(T) protocols above, by eliminat-
ing the requirement that the copy graph be a DAG. We
briefly describe the contributions below.

The DAG(WT) and DAG(T) protocols: The DAG(WT)
and DAG(T) protocols guarantee serializability as long
as the copy graph is a DAG. Therefore, compared to
[CRR96], we significantly expand the class of copy
graphs for which lazy update protocols can be made
to produce serializable schedules. Both protocols en-
sure serializability by controlling the order in which
updates to secondary copies are applied at sites.

The BackEdge protocol: The BackEdge protocol
is a hybrid protocol that combines the eager and
lazy approaches, performing eager update propagation
along backedges while following one of the DAG lazy
update protocols for update propagation along other
edges (which form a DAG). Thus, locks for items
updated along backedges are acquired at multiple sites
and held until the transaction commits, while updates
along the remaining edges are relayed asynchronously
and lazily after the transaction has committed.

Using our DAG and BackEdge protocols, database
designers can thus guarantee serializable executions in
replicated environments by adding some minimal code
(corresponding to our protocols) on top of off-the-shelf
database systems. We implemented a simpler variant
of the BackEdge protocol (extension of DAG(WT))
and also a lazy version of the primary site locking algo-
rithm (which is a variant of the lazy-master approach
from [GHOS96]) on the DataBlitz database system
product developed at Bell labs [BLRSSS97]. The
results of our extensive performance study indicate
that the BackEdge protocol consistently outperforms
the primary site locking algorithm except for the ex-
treme case involving update-intensive transactions and
a copy graph with a large number of backedges. For
most practical environments, in which transactions are
read-intensive and backedges are few, the BackEdge
protocol achieves speedups as high as five times com-
pared to the primary site locking protocol.

2 DAG(WT) Protocol

In this section, we describe the DAG(WT) (DAG With-
out Timestamps) protocol for acyclic copy graphs. As
shown in Example 1.1, disseminating replica updates
indiscriminately could result in non-serializable exe-
cutions even though the copy graph is a DAG. In or-
der to rectify this problem, the DAG(WT) protocol
propagates replica updates along the edges of a tree T
constructed from the DAG corresponding to the copy
graph. The tree T constructed has the property that if a
site si is a child of site sj in the copy graph, then si is a
descendant of sj in the tree T. In [BKRSS98], we out-
line how to construct a tree T with the above property
and omit those details here for the sake of brevity.

In the DAG(WT) protocol, a transaction executes
at a single site si and the transaction’s updates are
forwarded to the children of si in the tree T. Thus, at
any site there are transactions that originated at the site,
referred to as primary subtransactions, and there are
transactions (consisting of a primary subtransaction’s
updates) that were forwarded to it by it’s parent, called
secondary subtransactions. Updates for items in a
secondary subtransaction received at a site are applied
only for those items with replicas at the site - as a
result, it is possible that a secondary subtransaction
may perform no updates at a site. Furthermore, the
forwarded secondary subtransactions from a parent
are committed at a site in the order in which they
are received at the site, and are in turn forwarded to
the site’s children. Finally, the forwarding of both
primary as well as secondary subtransactions at a site
is done atomically with respect to commit, that is, if
Ti commits before Tj at a site, then Ti is forwarded
before Tj to it’s children.

Actually, when a subtransaction commits at site si,
secondary subtransactions need to be forwarded only
to the relevant children of Si rather than all children. A
child is relevant for a subtransaction if either the child
or one of it’s descendants contains a replica of an item
that the subtransaction has updated.

Thus, it follows that the DAG(WT) protocol is a
lazy update protocol since each transaction executes
completely locally until it commits and releases all
its locks at commit time. The DAG(WT) protocol
is similar to the tree protocol [SK801 - however,
unlike the tree protocol, it operates at the granularity
of sites and not items. By propagating secondary
subtransactions sequentially along the edges of the tree
T, it ensures that when a secondary subtransaction
for a transaction is executed at a site, all transactions
preceding it in the serialization order have committed
at the site. A proof of the following theorem can be
found in [BKRSS98].

99

Theorem 2.1 Any schedule produced by the DAG(WT)
protocol is serializable.

At each site, the secondary subtransactions are
committed in the order they are received and therefore
as long as subtransactions received earlier than a
particular subtransaction Ti commit, eventually, Ti
will also commit. If the subtransaction that is received
earlier than Ti gets aborted after it starts execution
at a site due to a local deadlock at that site, the
subtransaction will have to be repeatedly resubmitted
until it succeeds. To guarantee that this subtransaction
is not chosen as ;a victim of a deadlock all the time,
some fair victim selection policy, e.g., the transaction
which arrived at the site the latest, will have to be used.
Therefore, eventu,ally Ti will complete.

The non-serializable execution in Example 1.1 will
not be permitted by the DAG(WT) protocol. This
is because in the tree T3 that satisifies the desired
property, site ss is a child of site ss which in turn is
a child of site sr. As a result, the update of a by
transaction Tl cannot be directly sent to site ss, but
would have to be first sent to site ss and then site ss
would forward it to site ss. Since Tl ‘s update to a
executes before T2 at site sg, TI ‘s update would be
forwarded to site ~$3 before Tz’s update to b. Thus, Tl
would be serialized before T2 at site ss.

3 The DAG(T) protocol
The DAG(WT) protocol propagated updates only along
the edges of the tree T. The problem with this is
that a secondary subtransaction may need to be routed
through a number of other intermediate sites at which
it has no updates to perform, before it can be executed
at its destination site. As a result, the DAG(WT) pro-
tocol could result in significant messaging overhead
in the network and processing costs at sites. Further-
more, transaction updates could experience unneces-
sary propagation d’elays.

In this section, we describe the DAG(T) (DAG with
Timestamps) protocol that propagates updates along
the edges of the copy graph itself. As a result, updates
can now be directly sent to the relevant sites rather
than routing them through intermediate nodes as was
done in Section 2. However, the perils of propagating
updates along edges of the copy graph, without any
additional controls,, are evident from Example 1.1.

Instead of superimposing a structure on the copy
graph to control update propagation, as was done by
the DAG(WT) promcol, the DAG(T) protocol employs
timestamps to impose an order on secondary subtrans-
action execution. In the DAG(T) protocol, primary

31n general, for a&Gary DAGs, there may be several trees
satisfying the desired property

subtransactions are assigned a system wide unique:
timestamp when they commit, and the secondary sub-
transactions carry this timestamp with them to the sec-
ondary sites. At each site, transactions are er.ecuted
in timestamp order to ensure serializability. The crux
of the protocol is in suitably defining this timc:stamp
so that timestamps themselves are totally ordered, and
then ensuring that the protocol executes transactions in
timestamp order. Moreover, the timestamp also needs
to be augmented to ensure that if a primary su btrans-
action has completed, then all it’s secondary subtrans-
actions will eventually execute at the secondary sites.
The preceding progress criteria does not follow auto-
matically from the fact that transactions are executed in
timestamp order. In fact, a protocol that trivially guar-
antees serializability but does not guarantee progress is
one in which no secondary subtransaction is allowed to
execute anywhere in the system! We address this issue
in Section 3.3.

3.1 Timestamps

Since the copy graph is acyclic, there exists a total
order < on the sites. Without loss of generality, let
the total order on the sites be sr < sa < . . . < sm.
At each site si, a local timestamp counter denoted by
LTSi (initially 0), is maintained which keeps track
of the number of primary subtransactions that have
committed at si. We will first define the notion of a
tuple which forms the building block for constructing
the timestamp of a transaction.

Definition 3.1 A tuple corresponding to site s1 is an
ordered pair (si) LTSi). •I

One option is to simply use the tuple for site s;
as the timestamp for a transaction when it commits
at site si. However, only the tuple for a site does
not capture information about the serialization order
of transactions and is thus inadequate as a timestamp.
To illustrate, consider Example 1.1. Suppose WE: were
to assign timestamps using the tuple for a site, then
TI would be assigned the timestamp (sr, 1) (the tuple
for site si when it commits), and T2, the timestamp
(~2, l), irrespective of the order in which Tl and T2
commit at site sa. Thus, simply from the timestamps,
it is impossible to determine the order in which 1’1 and
T2 must be executed at site ss, which leads us to the
following more elaborate definition for timestamps.

Definition 3.2 The timestamp of a site si, denoted by
TS(si), is a vector of tuples - the vector contains a
tuple for the site si itself, and every other tuple in the
vector belongs to an ancestor of si in the copy graph.
The tuples within the vector are ordered based on the
sites. In other words, the tuple for sj appears before s[
in the vector if and only if .sj < sl. 0

100

Note that the timestamp for a site contains tuples
for some subset of its ancestors, and not necessarily
for every ancestor. The timestamp of a transaction
Ti, denoted by TS(Ti), is the timestamp at the site
where the primary subtransaction executed when it
committed. Since, a tuple is a vector consisting of
a site and an integer counter, and sites are ordered,
tuples can be compared lexicographically. Based
on this lexicographic ordering of tuples, we can
lexicographically order timestamps (which are nothing
but a vector of tuples). Formally, we define a
lexicographic ordering < on timestamps as follows:

Definition 3.3 Let TS1 and T& be two distinct times-
tamps. We define T& < TS2 if and only if

l TS1 is a prefix of TS2, or

l Let TSI = X(si, LTSi)Yl and TS2 = X(S~, LTSj)Yz,
that is, TS1 and TS2 share a common prefix X of
tuples and the first pair of tuples that they differ on
is (si, LTSi) and (sj, LTS,). Then, TS1 < T&
if one of the following is true:

1. Si > Sj,Or

2. si = sj and LTSi < LTSj.

Cl

Note that in the lexicographic ordering of tuples
used in the above definition, we use the reverse
ordering for the sites. Thus, according to Definition 3.3

2. (at l)(s3,1> < (a, l)(sz, 1)

3. (a, l)(s2,1> < (a, l)(s2,2).

It is straightforward to observe that Definition 3.3
defines a total order < on timestamps. Note that tuples
within a timestamp still appear in the order of their
sites - only when comparing two timestamps do we
use the reverse ordering on sites. The motivation for
reordering sites for the comparison of two timestamps
will become clearer as we describe the protocol -
however, the intuition, at a very high level, is the
following. Again, we go back to Example 1 .l .
Intuitively, the timestamp of a transaction is used
to capture information about transactions serialized
before it. Thus, when T2 commits at s:! after TI’S
update to a has been applied at ~2, it is assigned a
timestamp (s1,1)(sq, 1) where the first tuple (s1,l)
is used to capture the fact that TI with timestamp
(s1,l) is serialized before it. Consequently, at site
ss, since Tl’s timestamp is smaller than T2’s it will
be committed earlier. However, it is possible that

some other transaction T3 may commit right after TI
committed and before TZ committed - this transaction
would be assigned a timestamp (~1 , l)(ss, 1) and
is serialized before T2 at site ss. Since primary
subtransactions can commit immediately (due to our
lazy update propagation assumption) and we would
like transactions to commit in the order of their
timestamps at each site, we are forced to define the
ordering on timestamps as in Definition 3.3 according
to which (s1,1)(ss, 1) < (sl,l)(s~, 1).

3.2 The DAG(T) Protocol

Having defined the structure of timestamps, we will
now describe the DAG(T) protocol in three parts,
the data structures that need to be maintained, the
actions of a primary subtransaction and the actions of
a secondary subtransaction.

3.2.1 Data Structures

The first data structure maintained at a site is the
timestamp vector of the site - this is simply the
concatenation of the timestamp of the last secondary
subtransaction that committed at the site and the tuple
for the site. Initially, TS(si) is set to (si,O) for
every site si. The second data structure is a set of
incoming queues. One incoming queue is maintained
per parent of the site in the copy graph. The queue
contains secondary subtransactions that are waiting to
be executed at the site.

3.2.2 Primary Subtransactions

Primary subtransactions can start executing as soon as
they are submitted. When a primary subtransaction Ti
commits at site si the following steps are taken:

Increment the local timestamp LTSi of si in the
tuple corresponding to si in TS(si), the timestamp
vector of the site si.

Set TS(Ti) = TS(si). This is the timestamp for
the primary subtransaction and all its secondary
subtransactions.

Schedule secondary subtransactions of Ti at all
the relevant children of si. The scheduling here
basically means that a message containing the
list of writes that the primary subtransaction has
performed along with TS(Ti) is appended to the
incoming queues of si’s children. A child is
relevant for a subtransaction if that child contains
a replica of an item that this subtransaction has
updated.

The above three steps are performed in a critical sec-
tion to ensure that no other subtransaction concurrently
commits and manipulates the local timestamps and the
message queues.

101

3.2.3 Secondary Subtransactions

We assume for simplicity that only one secondary
subtransaction is executed at a time at any given
site (this assum,ption can be easily relaxed). Each
secondary can execute concurrently with any number
of primary subtransactions at a site. Further, at any
point, the secondary subtransaction with the minimum
timestamp from among the subtransactions at the
head of each incoming queue at a site is chosen for
execution next. Note that there must be at least
one subtransaction in each incoming queue before the
minimum timestamp is computed. When a secondary
subtransaction Ti commits at a site si, TS(s;) is set to
TS(Ti)(si, LTS;), h’ h w lc is simply the concatenation
of the timestamp of the subtransaction and the tuple
for the site (si, LTSi). The above commit and setting
of the timestamp is done atomically with respect to
commits of other subtransactions.

Thus, the DAG(T) protocol propagates updates
lazily - each transaction executes locally and indepen-
dently, and releases all its locks when it commits. The
DAG(T) protocol would not allow the non-serializable
execution from Example 1.1. In this case, Tl is as-
signed a timestamp of (s1,l) and Tz gets assigned a
timestamp of (~1 , l)(s2,l) (when TI commits at ~2,
the site’s timestamp is set to (~1, l)(sg, 0)). As a re-
sult, at site ss, since TI ‘s timestamp is a prefix of TZ ‘s,
TI will be executed before T2 at site ss preventing the
non-serializable execution from Example 1.1.

Intuitively, the timestamp for a transaction captures
information about other transactions serialized before
it. We show that, (at each site, transactions commit in
the order of their timestamps in [BKRSS98]. Since
the transaction timestamps are totally ordered and
subtransactions are serialized in commit order due
to the strict 2PL assumption, the following theorem
follows.

Theorem 3.1 Any schedule produced by the DAG(T)
protocol is serializable.

3.3 Extensions To Guarantee Progress

The protocol we just described does not guarantee
progress - this is easily verified by running the proto-
col at a site ss that has two parents s1 and s2 which are
incomparable in the DAG. A transaction Tl with times-
tamp (~1, 1) will never be executed at site sg since
(~2, j) < (~1, l), for all j. To ensure progress, we add
an epoch number to each site’s timestamp. The epoch
number thus becomes a part of every transaction’s
timestamp. We use IDefinition 3.3 only for timestamps
with the same epoch number. If timestamps T& and
TS;! have different epoch numbers, then TSI -c TS2
if and only if the epoch number of TS1 is smaller than

the epoch number of TS2. Clearly, this augmerlted def-
inition of < for timestamps with epoch numbers is also
a linear order.

The protocol then executes secondary sub transac-
tions in the order of their timestamps, with the new
definition used to compare timestamps. FurthErmore,
the epoch number in a site’s timestamp is alwa!rs set to
be equal to the epoch number of the most recent sec-
ondary subtransaction committed at the site. A transac-
tion’s timestamp has the same epoch number as. that of
the site when it committed. In order to ensure pi’ogress,
the sources (sites with no parents) in the cop!’ graph
increment their epoch numbers periodically (with the
same period). It follows from the above that the epoch.
number at a site is the minimum of the epoch numbers,
of the parents and that the epoch number at a site in-
creases monotonically. This is sufficient to gu.nantee
progress if there is a constant traffic on all edge:; of the
copy graph. However, if there is no communication be-
tween a site and its child, then the child cannot advance
its epoch number, since it waits until each incoming
queue is not empty (see Section 3.2.3). Therefbre, to
guarantee progress, in the event that there has been no
communication for a while, a site sends a “dummy”
secondary subtransaction to its child - the dummy sub-
transaction has no updates but just pushes forward the
site timestamp of the child. Thus, it follows that the
epoch number increments eventually percolate to all
sites.

Referring back to the example at the beginning of
this section, it is now easy to see that Tl will execute
at site ss after some secondary subtransaction from s2
with a bigger epoch number than Tjs epoch number is
at the head of the corresponding incoming queue:.

4 The BackEdge Protocol

Both the DAG(WT) and the DAG(T) protocol.j, de-
scribed in previous sections, require the copy graph to
be acyclic to ensure serializability. The reason for this
is that if the copy graph is permitted to contain c:{cles,
then it may be impossible to ensure serializability in
the lazy update propagation model (irrespective of the
order in which updates are propagated), as illuslrated
by the following example.

Example 4.1 Consider a distributed system with two
sites s1 and ~2. Let site s1 contain the primary copy
of item a and a replica of b and let s2 contain the
primary copy of item b and a replica of a. Consider
the following two transactions: Tl at site s1 that reds b
and updates a and T2 at site s2 that reads a and updates
b. Suppose both transactions execute at the two sites
concurrently and commit. No matter which order we
propagate updates of TI and T2 to the other site, the

102

resulting schedule will always be non-serializable. The
reason for this is that, due to read-write conflicts on a
and b, at site sl, 7’~ will be serialized before Tz, while
at site ~2, T2 will be serialized before Tl. 0

In this section, we propose the BackEdge protocol
that ensures serializable schedules even though the
copy graph contains cycles. It achieves this by
adopting a hybrid approach, using eager propagation
for some updates and lazy for the rest. The BackEdge
protocol can be described as an extension of either
the DAG(WT) or the DAG(T) protocol. Due to the
lack of space, we will only discuss extensions to
the DAG(WT) protocol here. ([BKRSS98] discusses
extensions to the DAG(T) protocol.) Before, we delve
into the extension, we need some terminology.

Let G be an arbitrary copy graph (which may
contain cycles). Let B be a set of backedges in G.
Recall that a set of edges in the copy graph are referred
to as backedges, if their deletion breaks all cycles in
the copy graph, that is, yields a DAG. Further, we will
assume that B is a minimal set of backedges, that is,
inserting any edge in B back into the resulting DAG
causes a cycle in it. A set B for a graph can be
computed easily using simple depth first search. We
will discuss in Section 4.2 how the set B of backedges
can be computed more cleverly. Let Gdag be the
directed acyclic graph derived from G after deleting
the edges in B from G.

4.1 Extending the DAG(WT) Protocol

Let T be the tree obtained by from Gdag that satisfies
the required property (described in Section 2). If
there exists a backedge from site si to sj, then by the
minimality of the set of backedges, it follows that there
is a path from sj to si in Gdag, Therefore, sj is an
ancestor of si in T, by the property of T. Thus, due
to backedges, it is possible that a transaction needs to
propagate updates to sites that are it’s ancestors in T.
Let Ti denote a primary subtransaction at site si. Let
Sl,... , Sj denote the secondary subtransactions that
execute at sites, sil,. . . , sij, respectively, which are
ancestors of si in T. We will refer to these secondary
subtransactions as backedge subtransactions. Let sil
be the site that is farthest from si in T, siz be the site
that is the next farthest from si in T and so on. Then,
the BackEdge protocol that extends the DAG(WT)
protocol is as follows:

1. After Ti completes execution, the secondary sub-
transaction S1 is directly sent to the site sil to be
executed (Ti continues to hold onto locks and has
not yet committed).

2. After S1 completes execution (it does not commit
and holds on to its locks), it propagates the

updates along the edges of the tree. Specifically,
it forwards a “special” secondary subtransaction
message containing its updates to its relevant
children (note that the only child that is relevant
is the one that is on the path from si, to si in
the tree). This special subtransaction is processed
similar to other secondary subtransactions (e.g.,
FIFO order), except for the following difference.
Until the secondary subtransaction reaches site si,
none of the backedge subtransactions S2, . . . , Sj
that are executed along the path from sil to si
commit or release their locks. A site, when it
receives the special secondary subtransaction from
its parent, executes it and once it completes, the site
forwards it to its relevant child without committing
the substransaction.

3. After the special secondary subtransaction mes-
sage from 5’1 indicating that every backedge sub-
transaction has completed, is received at site si
(and all secondary subtransactions received prior
to it have been committed at si), Ti and subtrans-
actions S1, . . . , Sj are committed atomically (us-
ing a distributed commit protocol, e.g., two-phase
commit) and locks held by them are released.

4. Once Ti commits at site si, the remaining sec-
ondary subtransactions for sites that are descen-
dants of Si in T are executed lazily following
the DAG(WT) protocol (that is, by forwarding
“normal” secondary subtransaction messages in
which secondary subtransactions commit and re-
lease their locks before being forwarded to the rel-
evant children).

Let us revisit Example 4.1 and trace the execution of
the BackEdge protocol on that example. Transaction
Tl is allowed to commit at ~1, since it does not
have a backedge subtransaction. Further, it is allowed
to propagate it’s update following the DAG(WT)
protocol. However, transaction T2, since it has a
backedge subtransaction at site sl, will hold onto its
locks until the special subtransaction message from its
subtransaction at site SI reaches site ~2. Meanwhile,
TI ‘s subtransaction at sg will wait for T2 to commit at
~2, since it needs the lock on item a that is held by T2.
Moreover, the special subtransaction message from s1
for T2 can be processed only after Tl’s subtransaction
commits (we process secondary subtransactions in
FIFO order). Thus, since T2 cannot commit until it
receives the special subtransaction, there is a global
deadlock involving T2 and Tl’s subtransaction. TZ will
be aborted (Tl’s secondary subtransaction has to be
completed before T2 can commit and therefore it does
not help if we abort Tl’s secondary subtransaction).

103

Thus, the non-serializable execution of Example 4.1
is avoided.

Therefore, by holding onto locks for transaction Ti
until the special subtransaction message is received
at si, as in eagelr update propagation protocols, the
backedge protocol ensures that Ti is committed only
after transactions serialized before it at sites preceding
si have committed. Thus, schedules stay serializable.
Notice that locks for the backedge subtransactions
Sl,... , Sj are continued to be held even after each of
them completes execution - this enables us to abort
these subtransactions in case there is a global deadlock
and Ti needs to be aborted (as described above for
Example 4.1). Holding these locks is not required for
serializability, but only for atomicity.

Note that if the copy graph is a DAG, then there are
no backedges and the BackEdge protocol reduces to
the DAG(WT) protocol. Also, transactions for which
there are no backedge subtransactions execute exactly
as they would with the DAG(WT) protocol.

4.2 Minimizin:g the Effects of Backedges

Clearly, backedges are undesirable since they cause
locks to be held by a transaction at multiple sites
and for a longer duration when compared to the DAG
protocols. Therefore, we need to minimize the number
of times a transaction has to execute a secondary
backedge subtransaction. In general, let there be
weights associated with each edge in the copy graph
which denotes the Srequency with which an update has
to be propagated along the edge. Then, to minimize the
effects of backedges, we need to find a set of backedges
B whose removal from G will give us a DAG and the
sum of whose wei,ghts is minimum. If we assign a
weight of one to each edge, then this is the feedback
arc set problem which is NP-hard [GJ79].

Several approximation algorithms have been pro-
posed for the weighted version of this problem [ENRS97,
LMT90, ST97]. Any of these can be used to compute
Gdag if the number of nodes in G is large.

5 Experimental Results
In order to evaluate the performance of our algorithms
and to explore the dependency of our algorithms on
values in the parameter space, we implemented a
simpler variant of the BackEdge protocol (extension
of DAG(WT)) and also a lazy version of the primary
site locking algorithm (which is a variant of the
lazy-master approach from [GHOS96]). Both were
implemented using the DataBlitz product from Bell
Labs as the underlying database [BLRSSS97]. The
key point that differentiates DataBlitz from other
commercial systems is that DataBlitz maps the entire
database into the address space of the application

process. A lock timeout mechanism i,; used
to handle local as well as global deadlocks in our
implementation. For our experiments, we set the
timeout interval to be 50 millisec.

Our experiments were performed in a real-world
setting involving 3 296 MHz Sun UltraSparc2 ma-
chines running Solaris 2.6 and equipped with 2!i6 MB
of RAM. Since our performance study is based on a
real implementation and nor on a simulation study, we
needed identical lightly loaded machines to run our ex-
periments. That is the reason we had to restrict the
number of machines in the study to 3. However, ‘we ran
multiple independent instances of DataBlitz on each
machine in order to simulate multiple sites (one in-
stance for each site). Thus, for experiments involv-
ing 9 sites, we would have 3 DataBlitz instances run-
ning on a single machine. The machines are on a 10
Mbit/set ethernet network and all communication be-
tween programs running on a machine was performed
using sockets and TCP as the transmission protocol.

5.1 Algorithms Implemented

We now describe details of our implementation of the
primary site locking protocol and the simpler variant
of the BackEdge protocol (extension of DAG(‘NT)).
In this paper, we are primarily interested in distributed
protocols. As a result, we do not consider here proto-
cols that rely on a central site to ensure serializability
(e.g., [ABKW98]).

Primary site locking protocol (PSL): In the PSL
protocol, reads and updates by a transaction of items
whose primary copies reside locally are handled at the
site itself and the items are locked locally. However,
reads of a replica are required to obtain a shared lock
on the item at the primary site for the item. Also, the
latest value of the item is shipped to the transaction
along with the lock grant message. Update operations
simply perform updates locally on the primary copy
and do not propagate the updates to replicas. lhus,
in our version of the PSL protocol, updates are prop-
agated in the system lazily when the item is actrally
accessed by a remote site and there is no need to ex-
plicitly propagate updates to other sites. Therefore, all
locks held by a transaction are released once it com-
mits (even though the updates have not been propa-
gated).

BackEdge protocol: In the variant of the BackEdge
protocol (extension of DAG(WT)) that we in.ple-
mented, instead of considering arbitrary trees, we con-
sider the tree T (along whose edges updates are prop-
agated) that is a chain (connect sites that are adjacent
to each other in some total order of the sites consis-

104

tent with the DAG). Thus, our implementation is not
as general and we expect the general implementation
of the BackEdge protocol to outperform our imple-
mentation. Except for this difference, the remainder
of the BackEdge protocol is identical to the descrip-
tion in Section 4.1.

5.2 Parameters Considered

We studied the performance of the two protocols for
a wide range of parameter settings. Thus, we were
able to characterize the parameter space under which
each protocol can be expected to outperform the other.
The parameters for each experiment and their default
values are as shown in Table 1. Also, for parameters
whose values were varied during experiments, we pro-
vide the range of values that were considered. The pa-
rameters that affect the performance of the schemes are
the ones that control data distribution, transaction char-
acteristics and system load. The default value of ap-
proximately 0.15 millisec for the network latency was
not fixed by us, but this was the average communica-
tion latency we measured for our ethernet network. We
now describe the data distribution and transaction gen-
eration schemes.

Data Distribution: Our data distribution algorithm
assigns the primary copies of items uniformly across
the m sites. The total number of distinct items (not
counting replicas) is n. Thus, each site is the primary
site for approximately n/m items. Of the primary
copies assigned to a site, a fraction T- of them are
replicated. The remaining fraction (1 - r) of them are
not replicated and are thus local items at the site.

In our data distribution scheme, we utilize a total
ordering on sites, 81, . . . , sm (that is consistent with
the chain used by the BackEdge protocol to propa-
gate updates), to distinguish between the DAG edges
and the backedges. Thus, if a replica of an item at
a site si is stored at a site sj, and j < i, then this
edge from si to sj in the copy graph is treated as a
backedge. For an item with primary copy at site si,
replicas are assigned to the remaining sites according
to parameters backedge probability b and site proba-
bility s. With probability b, all sites are considered
as candidates for storing replicas of the item; and, with
probability (1 - b), replicas of the item are distributed
only among sites that follow site si. Note that as b is
increased, the number of backedges in the copy graph
increases. Once the candidate sites for item replicas
are determined, an item replica is assigned to a candi-
date site with probability s.

Transaction Generation: Each transaction is a se-

quence of 10 read or write operations and is run in
the context of a thread. Each thread runs a sequence
of 1000 transactions continuously one after another at
a single site. The threads/site parameter specifies the
number of threads that concurrently execute at a site
and thus can be used to control the load in the system as
well as the multiprogramming level. Obviously, more
number of threads result in more contention within the
system - we choose as the default value a multipro-
gramming level of 3 since we found that this gener-
ated a reasonable degree of contention for data items
among the transactions. The read transaction proba-
bility is the probability that a transaction is labeled a
read-only transaction (all the operations in such trans-
actions are reads). If a transaction is not labeled a read-
only transaction, the read operation probability is the
fraction of operations within the transaction that are
read operations. Fast access to an item is facilitated
by a hash index on the item identifier, and appropriate
shared/exclusive locks on the item are obtained when
the item is accessed/updated.

5.3 Performance Results

We evaluated the two protocols based on mainly the
following two performance metrics:

1. Average Throughput: This is the average of the
transaction throughputs at each site. We only con-
sider primary subtransactions for the throughput
computation.

2. Abort Rate: This is the percentage of primary
subtransactions that abort in the entire system. Due
to lack of space, we do not show graphs of abort
rate but report trends whereever appropriate.

In the following subsections, we report the results of
experiments in which we varied one parameter, while
other parameters were set to their default values. In the
default setting, shown in Table 1, we have 9 sites (3
per machine), 3 threads per site, 200 items overall, of
which 20% are replicated at 50% of the sites, backedge
probability b of 0.2, 50% read-only transactions and
70% of a transaction are read operations. Due to
space constraints, we only present a subset of our
experimental results - the full set of experiments can
be found in [BKRSS98].

5.3.1 Backedge Probability

Figure 2(a) contains the graph for throughput, as b is
varied from 0 to 1. When b is 0, there are no backedges
and this is when the BackEdge protocol performs the
best delivering almost thrice the throughput compared
to the PSL protocol. The reason for this is that when
b = 0, there are no backedge subtransactions and

105

1 Parameter 1 Symbol 1 Default Value Range I
1 Number of Sites I m I 9 I 3- 15

Number of Items
Replication Probability
Site Probability

xtee Probability
QYansaction

n 200
T 0.2 o-1

0.5
0.2 o-1
10

-_._ _
Backs-,- _
Operations, _ _ . .._ -_ __ _..
Threads/Site
Transactions/Thread
Read Ooeration Probabilitv

3 l-5
1000
0.7 o-1

1 Read Transaction Probabilitv 1 I 0.5 I o-1 I
1 Network Latency I I I ADDrOX 0.15 millisec , I. 1 0.15 - 100 millisec

Deadlock Timeout Interval 1 50 millisec

Table 1: Parameter Settings

4- ' I
0 0.2 0.4 0.6 0.8 1

Back Edge Probability

(a) Backedge Probability

Figure 2: Througput Results

-.--a ._.___._ * ______.
+-------*------.~

0 0.2 0.4 0.6 0.8 1
Data Item Replica Probability

(b) Replication Probability

each transaction executes locally, holding onto locks
for a short duration. As a result, there are very few
deadlocks and we observed that the abort rate was
almost 0. As b is increased, an increasing number of
transactions have backedge subtransactions and thus
hold onto locks far longer intervals. The result is that
the number of deadlocks in the system increases and
so does the abort rate, thus decreasing the throughput.

Note that the PSL protocol is less affected as b is
varied. There is a slight decrease in throughput and
increase in abort rate as b is increased from 0 to 1.
This is because, as b increases, so does the number
of replicas in the system, and for the PSL protocol,
as the number of replicas increases, the number of
remote read operations increases as well, and so the
performance becomes worse.

An interesting point to note is that even when b = 1,
the BackEdge protocol performs better than the PSL
protocol. Since in our default parameter setting, 50%
of transactions are read-only transactions, and 70% of
each transaction’s Ioperations are reads, even with b =
1, there are more remote read operations performed
by the PSL protocol than secondary subtransactions

generated by the BackEdge protocol, thus resulting in
more message overhead.

For b = 1, it can be shown that for the BackEdge
protocol, only 1 in 4 transactions require update prop-
agation, while for the PSL protocol, each transaction
performs about 4 remote reads on an average. Due to
the higher communication overhead for the PSL proto-
col, it performs worse than the BackEdge protol;ol for
b= 1.

53.2 Replication Probability

In Figure 2(b), we plot the throughput as the fraction
of replicated items is increased from 0 to 1. The
performance of both the BackEdge protocol as well
as the PSL protocol deteriorates as the number of
replicated items and thus the number of replicas in the
system increases. This is expected since with more
replicated items, a larger fraction of writes at a site
are to replicated items and more read operations are
directed to replicas. Also, as the number of replicated
items increases, so does the number of backedges in
the copy graph. Note the sudden drop in throughput
from T = 0 to r = 0.1. This is due to the fact that
when T = 0, none of the items are replicated and so

106

every transaction is a local transaction. Also, note that
as expected both protocols have identical throughput at
r = 0.

The performance of the BackEdge protocol is al-
most twice that of the PSL protocol for every T value
except 0. This is because the number of replicas in-
creases much more rapidly than the number of repli-
cated items as r is increased (for instance, at T = 1,
there are almost 500 replicas in the system). Thus, the
probability of reading a replica (thus causing a remote
read for PSL) is much higher than the probability of
updating a primary copy of a replicated item. This cou-
pled with the fact that 85% of all operations are read
operations causes the PSL protocol’s performance to
be worse than that of the BackEdge protocol.

5.3.3 Extreme Parameter Settings

In this subsection, we consider two extreme parameter
settings for backedge probability b - 0 and 1, in or-
der to study the behaviour of the two protocols under
extreme conditions. The values for most other param-
eters is set to their default values except for replica-
tion probability which is set to 0.5 and read transaction
probability, which is set to 0. For both experiments, we
vary read operation probability from 0 to 1.

Backedge Probability-O: The graphs for b = 0 as
read operation probability is varied from 0 to 1 are
shown in Figure 3(a). When read operation probability
is 0, each transaction does only updates, and the PSL
protocol performs better than the BackEdge protocol.
This is because the PSL protocol does no remote
communication and transactions execute completely
locally. Even with the BackEdge protocol, transactions
execute locally; however, they need to propagate
updates to replicas and as a result, the BackEdge
protocol needs to do more work than the PSL protocol
and has inferior performance.

As the number of read operations is increased, the
performance of the BackEdge protocol steadily in-
creases as it needs to propagate fewer updates and the
contention in the system decreases. The abort rates
for transactions also decrease since there are fewer
secondary subtransactions in the system and less con-
tention as the number of reads increases. Finally,
when transactions become completely read-only, the
BackEdge protocol performs the best since transac-
tions execute completely locally and don’t have to
propagate updates. The performance of the PSL pro-
tocol is somewhat more interesting. As the number
of read operations is increased, the number of remote
read operations increases and thus, the abort rate in-
creases and the performance of the PSL protocol de-
teriorates until the read operation probability reaches

about 0.5. However, beyond 0.5, the performance of
the PSL protocol starts improving due to reduced con-
tention until for a read operation probability of 1, there
is no contention and the only additional overhead is
that of reading remote replicas. Note that the through-
put of the BackEdge protocol is more than 5 times that
of the PSL protocol when read operation probability is
0.5.

Backedge Probability-l: Figure 3(b) shows the
throughput as the read probability is varied. For b = 1,
the PSL protocol behaves similarly to the case when
b = 0. However, the performance of the BackEdge
protocol lags the PSL protocol with respect to abort
rate - this should be expected since there are a large
number of backedge subtransactions and thus a large
number of global deadlocks and aborts (since 50% of
primary copies are replicated, almost every transaction
generates a backedge subtransaction). The throughput
of the BackEdge protocol is worse than PSL as long
as the read probability is smaller than 0.3. Beyond a
read probability of 0.3 (which is fairly small), however,
the BackEdge protocol performs better despite the
BackEdge probability being 1 and read transaction
probability being 0.

5.3.4 Other Performance Metrics

We also measured the average response time for
committed transactions in each of our experiments.
Due to space constraints, we do not report these in
the paper. However, we found the response times to
be related to the throughput and abort rate - in most
cases (not always), we found the response times to
be somewhat inversely related to the throughput, that
is, the higher the throughput, the smaller the response
times. Transaction response times for our experiments
with the default parameter settings were approximately
180 millisec for the BackEdge and 260 millisec for the
PSL protocol.

Another parameter that we do not report on is the
time it takes a transaction’s updates to propagate to all
replicas in the BackEdge protocol. We did note that
for our default parameter settings, update propagation
via secondary subtransactions was extremely fast and
in general took a few hundred millisec. As a result,
we believe that recency of a site with the BackEdge
protocols can be expected to be very good in practice.

6 Conclusions
In this paper, we proposed two new lazy update
protocols, the DAG(WT) and the DAG(T) protocol
that ensure serializability when the copy graph is a
DAG. Thus, compared to prior work, we significantly
expand the class of graphs for which lazy update

107

o-. I
0 0.2 0.4 0.6 0.6 1

Read Operation Probability

(a) BackEdge Probability-O

0 0.2 0.4 0.6 0.6 1
Read Operation Probabhty

(b) BackEdge Probability-l

Figure 3: Throughput Results

protocols guarantee serializability. Further, in many
real life situations, for example, a data warehousing
environment, the copy graph is naturally a DAG.
We also extended these protocols into the BackEdge
protocol which ensures serializability for arbitrary
copy graphs (that may contain cycles).

We implemented the BackEdge algorithm as well
as a variant of the well-known primary site locking
algorithm in the DataBlitz database product developed
at Bell Labs. We c:onducted a detailed study of the
relative performance of the two algorithms. The study
revealed that unless transactions are update-intensive
(more than 70% of all operations in a transaction are
writes) and the cop:y graph contains a large number
of backedges, the 13ackEdge algorithm consistently
outperforms the primary site locking algorithm. For
most practical environments, in which transactions are
read-intensive and backedges are few, the BackEdge
protocol can achieve speedups as high as five times
compared to the primary site locking protocol. Thus,
by implementing our protocols on top of off-the-
shelf database systems, database designers can provide
distributed applications with serializability and high
performance in replicated environments.

[BLRSSS97] Phil Bohannon, Daniel Lieuwen, Rajeev Ras-
togi, S. Seshadri, Avi Silberschatz, and S. Su-
darshan. The architecture of the dali main
memory storage manager. Multimedia :b0k

and Applications, 4(2), March 1997.

[CRR96]

[ENRS97]

[GHK081]

[GHOS96]

References [GJ79]

[ABKW98] Todd Anderson, Yuri Breitbart, Henry F. Korth,
and Avishai Wool. Replication, consistency and
practicality: Are these mutually exclusive? In
Procs. ofACMSIGMOD International Con5 on
Management of Data, Seattle, WA, 1998.

[LMT90]

[BK97] Yuri Breitbart and Henry F. Korth. Replication
and consistency: Being lazy helps sometimes.
In Proceedings of the ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database
Systems, Tucson, Arizona, 1997.

[SK801

[BKRSS98] Yuri Breitbart, Raghavan Komondoor, Ra-
jeev Rastogi, S. Seshadri, and Avi Silber-
schatz. lJpdate propagation algorithms for

[ST971

replicated database systems. Technical Rl:port
BLOl12370-981028-l ITM, Bell Labs, Oa.ober
1998.

P. Chundi, D. J. Rosenkratz, and S. S. Ravi. De-
ferred updates and data placement in distributed
databases. In Proceedings of the Twelveth In-
ternational Conference on Data Engineering,
New Orleans, Louisiana, 1996.

Guy Even, Joseph (Seffi) Naor, Satish Rao,
and Baruch Schieber. Fast approximate graph
partitioning algorithms. In Proceedings of
the 8th ACM-SIAM Symposium on Discrete
Algorithms, New Orleans, Louisiana, 1997.

J. Gray, P. Homan, H. Korth, and R. Obermack.
A strawman analysis of the probability of wait
and deadlock. Technical Report RJ2131, IBM
San Jose Research Laboratory, 198 1.

J. Gray, Pat Helland, Patrick O’Neil, and Den-
nis Shasha. The dangers of replication and a
solution. In Proceedings of the ACM SIGMOD
Conference, Montreal, Quebec, Canada, 1996.

M. R. Garey and D. S. Johnson. Computers and
Intracrability: A Guide to the Theory of iVP-
Completeness. W.H. Freeman, San Francisco,
California, 1979.

T. Leighton, F. Makedon, and S. TragouJas.
Approximation algorithms for vlsi partitioning
problems. In IEEE International Symposium on
Circuits and Systems, 1990.

Avi Silberschtaz and Zvi Kedem. Consistency
in hierarchical database systems. Journal oj’the
ACM, 27(l), January 1980.

H. D. Simon and S-H. Teng. How good is
recursive bisection. SIAM Journal of Scien.‘zj?c
Computing, 1997.

108

