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Abstract 
Replication is often used in many distributed systems to pro- 
vide a higher level of performance, reliability and availabil- 
ity. Lazy replica update protocols, which propagate updates 
to replicas through independent transactions after the origi- 
nal transaction commits, have become popular with database 
vendors due to their superior performance characteristics. 
However, if lazy protocols are used indiscriminately, they 
can result in non-serializable executions. In this paper, we 
propose two new lazy update protocols that guarantee seri- 
alizability but impose a much weaker requirement on data 
placement than earlier protocols. Further, many naturally oc- 
curring distributed systems, like distributed data warehouses, 
satisfy this requirement. We also extend our lazy update pro- 
tocols to eliminate all requirements on data placement. The 
extension is a hybrid protocol that propagates as many up- 
dates as possible in a lazy fashion. We implemented our pro- 
tocols on the Datablitz database system product developed 
at Bell Labs. We also conducted an extensive performance 
study which shows that our protocols outperform existing 
protocols over a wide range of workloads. 

1 Introduction 

Distributed applications frequently use replication as a 
means to achieve a higher level of performance, relia- 
bility and availability. Consequently, the management 
of replicated data has emerged as a problem of great 
practical importance in recent years. Gigabytes of data 
are replicated in distributed data warehouses and var- 
ious web sites on the internet. In telecom as well as 
data networks, network management applications re- 
quire real-time dissemination of updates to replicas 
with strong consistency guarantees. 
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There are two broad approaches to handle the prob- 
lem of replica updates in a distributed database sys- 
tem viz., eager and lazy. The eager approaches up- 
date all the replicas of an item as part of a single 
transaction. Thus, eager approaches ensure that exe- 
cutions are serializable. However, a major disadvan- 
tage of eager algorithms is that the number of oper- 
ations in the transaction increases with the degree of 
replication, and since deadlock probability is propor- 
tional to the fourth power of the transaction size, eager 
protocols are unlikely to scale beyond a small num- 
ber of sites [GHK081, GHOS96]. In contrast, lazy 
update propagation algorithms post updates to repli- 
cas through independent transactions that are spawned 
by the original updating transaction after it commits. 
Thus, the effective size of a transaction is reduced and 
the overall performance of the system improves due to 
fewer deadlocks; however, transaction execution has to 
be orchestrated carefully to ensure global serializabil- 
ity. 

Due to its superior performance benefits, a num- 
ber of database vendors (e.g, Sybase, Oracle, CA- 
OpenIngres) provide support for lazy replication. Specif- 
ically, they provide an option in which each transaction 
executes locally, and then asynchronously propagates 
its updates to replicas after it commits (the replicas 
at each site are updated in the context of a separate 
transaction). Since each transaction executes locally 
and independently, the systems do not require multi- 
site commit protocols (e.g., two-phase commit) which 
tend to introduce blocking and are thus not easily scal- 
able. A problem, however, with the lazy replication 
approaches of most commercial systems is that they 
can easily lead to non-serializable executions. For in- 
stance, it is possible for the same data item to be con- 
currently updated at two different sites, thus resulting 
in an update conflict. Currently, commercial systems 
use reconciliation rules (e.g., install the update with the 
later timestamp) to merge conflicting updates. These 
rules do not guarantee serializability unless the updates 
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are commutative. 
In this paper, we propose two new lazy update 

protocols that guarantee serializability but impose a 
much weaker reqjuirement on data placement than 
earlier protocols for ensuring serializability. We also 
extend our lazy update protocols to eliminate all 
requirements on data placement. The extension is a 
hybrid protocol that propagates as many updates as 
possible in a lazy fashion. Before discussing our 
specific contributions in more detail, we present the 
system model adclpted in this paper and prior work 
from [CRR96, GHOS96, BK97, ABKW98]. 

1.1 System Model 

The model we adopt in this paper is very similar to one 
from [CRR96, BK97]. For each data item, a particular 
site is chosen as its primary site. The copy of a data 
item at the primary site is called the primary copy and 
the other copies are referred to as secondary copies or 
replicas. Each transaction originates at a single site 
and is a sequence of read and write operations. A 
transaction can read all data items at its originating 
site; however, it is permitted to update only data 
items whose primary copies are at the transaction’s 
originating site. We assume that each site follows 
the strict two-phase locking (2PL) locking protocol to 
ensure that local ex.ecutions are serializable’. We also 
assume that the underlying network delivers messages 
reliably and in FIFO order between any two sites. 

We define a copy graph to be the directed graph in 
which the set of vertices corresponds to the set of sites. 
An edge from site si to site sj exists in the copy graph 
if and only if there exists an item whose primary copy 
is at site si and one of whose secondary copies is at 
site sj. A set of edges in the copy graph are referred 
to as backedges if their deletion breaks all cycles in the 
copy graph. 

Also, we will say that a transaction propagates 
updates lazily if 1) it does not communicate with 
any remote site (e.g., for the purpose of obtaining 
locks) during its execution and until it commits, and 
2) it’s updates are propagated asynchronously to sites 
as independent transactions only after it has committed 
and released all its locks2. 

1.2 Lazy Update Protocols - Existing 
Approaches 

The problem of ensuring serializability in the lazy up- 
date model was first addressed in [CRR96]. The au- 
thors obt.ain a tight characterization of global serial- 
izability based on ,the topology of data distribution 

‘The variant of 2PL we assume is one in which a transaction does 
not release any locks (read or write) until after it has committed. 

‘Note that our definition of lazy protocols differs slightly from 
the definitions adopted in [GHOS96, BK97, ABKW98]. 

Tl 
T2 

Figure 1: Example of Non-serializable Execution 

when replica updates are propagated lazily and indis- 
criminately. Specifically, they show that lazy repli- 
cation protocols guarantee serializability if and only 
if the undirected graph obtained from the copy graph 
(by removing the directions on the edges) is acyclic. 
However, since replica updates are propagated arhitrar- 
ily, their algorithms cannot ensure serializability if the 
copy graph is a directed acyclic graph (DAG), as illus- 
trated by the following example. 

Example 1.1 Consider the distributed system, shown 
in Figure 1, with 3 sites and two items a and b. The 
primary site for a is SI with secondary copies at s2 and 
SQ, while the primary site for b is s2 and a secondary 
copy is at ss, and the copy graph is as shown in 
Figure 1. Consider 3 transactions, Tl at site ~1, T2 
at site s2 and T3 at site ss. Tl updates item tz, T2 
reads a and writes b while T3 reads both items (1 and 
b. Assuming lazy propagation of updates to replicas, 
it is possible for Tl’s update to reach site s2 before 
T2 executes, but to reach site ss after Tz’s update to 
b has been applied and transaction T3 has completed 
execution. The resulting execution is non-serializable 
since TI is serialized before TZ at site ~2, but ‘72 is 
serialized before TI at site ss. •I 

In addition to the work from [CRR96], the prob- 
lem of replica update propagation is also addressed 
in [GHOS96] and [BK97, ABKW98]. However, nei- 
ther approach is lazy according to our definition. 
In [GHOS96], any transaction that wishes to rend or 
write a primary copy or replica of an item is required 
to get an appropriate lock from the item’s primary site. 
In addition, in order to guarantee serializability, locks 
on items that are updated need to be held until all the 
updates have been propagated to all the replicas. 

In [BK97, ABKW98], the authors describe a pl.oto- 
col, which maintains a replication graph that contains 
information about the execution of every transaction in 
the distributed system. They describe how to maintain 
this graph at a centralized site but also observe that the 
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central site becomes a bottleneck if the number of sites 
becomes large. 

1.3 Our Contributions 

In this paper, we make two major contributions. The 
first contribution of this paper is that we develop two 
new lazy update protocols, DAG(WT) and DAG(T), 
which guarantee serializability as long as the copy 
graph is a DAG. The second contribution of this pa- 
per is the BackEdge protocol, which augments the 
DAG(WT) and DAG(T) protocols above, by eliminat- 
ing the requirement that the copy graph be a DAG. We 
briefly describe the contributions below. 

The DAG(WT) and DAG(T) protocols: The DAG(WT) 
and DAG(T) protocols guarantee serializability as long 
as the copy graph is a DAG. Therefore, compared to 
[CRR96], we significantly expand the class of copy 
graphs for which lazy update protocols can be made 
to produce serializable schedules. Both protocols en- 
sure serializability by controlling the order in which 
updates to secondary copies are applied at sites. 

The BackEdge protocol: The BackEdge protocol 
is a hybrid protocol that combines the eager and 
lazy approaches, performing eager update propagation 
along backedges while following one of the DAG lazy 
update protocols for update propagation along other 
edges (which form a DAG). Thus, locks for items 
updated along backedges are acquired at multiple sites 
and held until the transaction commits, while updates 
along the remaining edges are relayed asynchronously 
and lazily after the transaction has committed. 

Using our DAG and BackEdge protocols, database 
designers can thus guarantee serializable executions in 
replicated environments by adding some minimal code 
(corresponding to our protocols) on top of off-the-shelf 
database systems. We implemented a simpler variant 
of the BackEdge protocol (extension of DAG(WT)) 
and also a lazy version of the primary site locking algo- 
rithm (which is a variant of the lazy-master approach 
from [GHOS96]) on the DataBlitz database system 
product developed at Bell labs [BLRSSS97]. The 
results of our extensive performance study indicate 
that the BackEdge protocol consistently outperforms 
the primary site locking algorithm except for the ex- 
treme case involving update-intensive transactions and 
a copy graph with a large number of backedges. For 
most practical environments, in which transactions are 
read-intensive and backedges are few, the BackEdge 
protocol achieves speedups as high as five times com- 
pared to the primary site locking protocol. 

2 DAG(WT) Protocol 

In this section, we describe the DAG(WT) (DAG With- 
out Timestamps) protocol for acyclic copy graphs. As 
shown in Example 1.1, disseminating replica updates 
indiscriminately could result in non-serializable exe- 
cutions even though the copy graph is a DAG. In or- 
der to rectify this problem, the DAG(WT) protocol 
propagates replica updates along the edges of a tree T 
constructed from the DAG corresponding to the copy 
graph. The tree T constructed has the property that if a 
site si is a child of site sj in the copy graph, then si is a 
descendant of sj in the tree T. In [BKRSS98], we out- 
line how to construct a tree T with the above property 
and omit those details here for the sake of brevity. 

In the DAG(WT) protocol, a transaction executes 
at a single site si and the transaction’s updates are 
forwarded to the children of si in the tree T. Thus, at 
any site there are transactions that originated at the site, 
referred to as primary subtransactions, and there are 
transactions (consisting of a primary subtransaction’s 
updates) that were forwarded to it by it’s parent, called 
secondary subtransactions. Updates for items in a 
secondary subtransaction received at a site are applied 
only for those items with replicas at the site - as a 
result, it is possible that a secondary subtransaction 
may perform no updates at a site. Furthermore, the 
forwarded secondary subtransactions from a parent 
are committed at a site in the order in which they 
are received at the site, and are in turn forwarded to 
the site’s children. Finally, the forwarding of both 
primary as well as secondary subtransactions at a site 
is done atomically with respect to commit, that is, if 
Ti commits before Tj at a site, then Ti is forwarded 
before Tj to it’s children. 

Actually, when a subtransaction commits at site si, 
secondary subtransactions need to be forwarded only 
to the relevant children of Si rather than all children. A 
child is relevant for a subtransaction if either the child 
or one of it’s descendants contains a replica of an item 
that the subtransaction has updated. 

Thus, it follows that the DAG(WT) protocol is a 
lazy update protocol since each transaction executes 
completely locally until it commits and releases all 
its locks at commit time. The DAG(WT) protocol 
is similar to the tree protocol [SK801 - however, 
unlike the tree protocol, it operates at the granularity 
of sites and not items. By propagating secondary 
subtransactions sequentially along the edges of the tree 
T, it ensures that when a secondary subtransaction 
for a transaction is executed at a site, all transactions 
preceding it in the serialization order have committed 
at the site. A proof of the following theorem can be 
found in [BKRSS98]. 
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Theorem 2.1 Any schedule produced by the DAG( WT) 
protocol is serializable. 

At each site, the secondary subtransactions are 
committed in the order they are received and therefore 
as long as subtransactions received earlier than a 
particular subtransaction Ti commit, eventually, Ti 
will also commit. If the subtransaction that is received 
earlier than Ti gets aborted after it starts execution 
at a site due to a local deadlock at that site, the 
subtransaction will have to be repeatedly resubmitted 
until it succeeds. To guarantee that this subtransaction 
is not chosen as ;a victim of a deadlock all the time, 
some fair victim selection policy, e.g., the transaction 
which arrived at the site the latest, will have to be used. 
Therefore, eventu,ally Ti will complete. 

The non-serializable execution in Example 1.1 will 
not be permitted by the DAG(WT) protocol. This 
is because in the tree T3 that satisifies the desired 
property, site ss is a child of site ss which in turn is 
a child of site sr. As a result, the update of a by 
transaction Tl cannot be directly sent to site ss, but 
would have to be first sent to site ss and then site ss 
would forward it to site ss. Since Tl ‘s update to a 
executes before T2 at site sg, TI ‘s update would be 
forwarded to site ~$3 before Tz’s update to b. Thus, Tl 
would be serialized before T2 at site ss. 

3 The DAG(T) protocol 
The DAG(WT) protocol propagated updates only along 
the edges of the tree T. The problem with this is 
that a secondary subtransaction may need to be routed 
through a number of other intermediate sites at which 
it has no updates to perform, before it can be executed 
at its destination site. As a result, the DAG(WT) pro- 
tocol could result in significant messaging overhead 
in the network and processing costs at sites. Further- 
more, transaction updates could experience unneces- 
sary propagation d’elays. 

In this section, we describe the DAG(T) (DAG with 
Timestamps) protocol that propagates updates along 
the edges of the copy graph itself. As a result, updates 
can now be directly sent to the relevant sites rather 
than routing them through intermediate nodes as was 
done in Section 2. However, the perils of propagating 
updates along edges of the copy graph, without any 
additional controls,, are evident from Example 1.1. 

Instead of superimposing a structure on the copy 
graph to control update propagation, as was done by 
the DAG(WT) promcol, the DAG(T) protocol employs 
timestamps to impose an order on secondary subtrans- 
action execution. In the DAG(T) protocol, primary 

31n general, for a&Gary DAGs, there may be several trees 
satisfying the desired property 

subtransactions are assigned a system wide unique: 
timestamp when they commit, and the secondary sub- 
transactions carry this timestamp with them to the sec- 
ondary sites. At each site, transactions are er.ecuted 
in timestamp order to ensure serializability. The crux 
of the protocol is in suitably defining this timc:stamp 
so that timestamps themselves are totally ordered, and 
then ensuring that the protocol executes transactions in 
timestamp order. Moreover, the timestamp also needs 
to be augmented to ensure that if a primary su btrans- 
action has completed, then all it’s secondary subtrans- 
actions will eventually execute at the secondary sites. 
The preceding progress criteria does not follow auto- 
matically from the fact that transactions are executed in 
timestamp order. In fact, a protocol that trivially guar- 
antees serializability but does not guarantee progress is 
one in which no secondary subtransaction is allowed to 
execute anywhere in the system! We address this issue 
in Section 3.3. 

3.1 Timestamps 

Since the copy graph is acyclic, there exists a total 
order < on the sites. Without loss of generality, let 
the total order on the sites be sr < sa < . . . < sm. 
At each site si, a local timestamp counter denoted by 
LTSi (initially 0), is maintained which keeps track 
of the number of primary subtransactions that have 
committed at si. We will first define the notion of a 
tuple which forms the building block for constructing 
the timestamp of a transaction. 

Definition 3.1 A tuple corresponding to site s1 is an 
ordered pair (si) LTSi). •I 

One option is to simply use the tuple for site s; 
as the timestamp for a transaction when it commits 
at site si. However, only the tuple for a site does 
not capture information about the serialization order 
of transactions and is thus inadequate as a timestamp. 
To illustrate, consider Example 1.1. Suppose WE: were 
to assign timestamps using the tuple for a site, then 
TI would be assigned the timestamp (sr, 1) (the tuple 
for site si when it commits), and T2, the timestamp 
(~2, l), irrespective of the order in which Tl and T2 
commit at site sa. Thus, simply from the timestamps, 
it is impossible to determine the order in which 1’1 and 
T2 must be executed at site ss, which leads us to the 
following more elaborate definition for timestamps. 

Definition 3.2 The timestamp of a site si, denoted by 
TS(si), is a vector of tuples - the vector contains a 
tuple for the site si itself, and every other tuple in the 
vector belongs to an ancestor of si in the copy graph. 
The tuples within the vector are ordered based on the 
sites. In other words, the tuple for sj appears before s[ 
in the vector if and only if .sj < sl. 0 
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Note that the timestamp for a site contains tuples 
for some subset of its ancestors, and not necessarily 
for every ancestor. The timestamp of a transaction 
Ti, denoted by TS(Ti), is the timestamp at the site 
where the primary subtransaction executed when it 
committed. Since, a tuple is a vector consisting of 
a site and an integer counter, and sites are ordered, 
tuples can be compared lexicographically. Based 
on this lexicographic ordering of tuples, we can 
lexicographically order timestamps (which are nothing 
but a vector of tuples). Formally, we define a 
lexicographic ordering < on timestamps as follows: 

Definition 3.3 Let TS1 and T& be two distinct times- 
tamps. We define T& < TS2 if and only if 

l TS1 is a prefix of TS2, or 

l Let TSI = X(si, LTSi)Yl and TS2 = X(S~, LTSj)Yz, 
that is, TS1 and TS2 share a common prefix X of 
tuples and the first pair of tuples that they differ on 
is (si, LTSi) and (sj, LTS,). Then, TS1 < T& 
if one of the following is true: 

1. Si > Sj,Or 

2. si = sj and LTSi < LTSj. 

Cl 

Note that in the lexicographic ordering of tuples 
used in the above definition, we use the reverse 
ordering for the sites. Thus, according to Definition 3.3 

2. (at l)(s3,1> < (a, l)(sz, 1) 

3. (a, l)(s2,1> < (a, l)(s2,2). 

It is straightforward to observe that Definition 3.3 
defines a total order < on timestamps. Note that tuples 
within a timestamp still appear in the order of their 
sites - only when comparing two timestamps do we 
use the reverse ordering on sites. The motivation for 
reordering sites for the comparison of two timestamps 
will become clearer as we describe the protocol - 
however, the intuition, at a very high level, is the 
following. Again, we go back to Example 1 .l . 
Intuitively, the timestamp of a transaction is used 
to capture information about transactions serialized 
before it. Thus, when T2 commits at s:! after TI’S 
update to a has been applied at ~2, it is assigned a 
timestamp (s1,1)(sq, 1) where the first tuple (s1,l) 
is used to capture the fact that TI with timestamp 
(s1,l) is serialized before it. Consequently, at site 
ss, since Tl’s timestamp is smaller than T2’s it will 
be committed earlier. However, it is possible that 

some other transaction T3 may commit right after TI 
committed and before TZ committed - this transaction 
would be assigned a timestamp (~1 , l)(ss, 1) and 
is serialized before T2 at site ss. Since primary 
subtransactions can commit immediately (due to our 
lazy update propagation assumption) and we would 
like transactions to commit in the order of their 
timestamps at each site, we are forced to define the 
ordering on timestamps as in Definition 3.3 according 
to which (s1,1)(ss, 1) < (sl,l)(s~, 1). 

3.2 The DAG(T) Protocol 

Having defined the structure of timestamps, we will 
now describe the DAG(T) protocol in three parts, 
the data structures that need to be maintained, the 
actions of a primary subtransaction and the actions of 
a secondary subtransaction. 

3.2.1 Data Structures 

The first data structure maintained at a site is the 
timestamp vector of the site - this is simply the 
concatenation of the timestamp of the last secondary 
subtransaction that committed at the site and the tuple 
for the site. Initially, TS(si) is set to (si,O) for 
every site si. The second data structure is a set of 
incoming queues. One incoming queue is maintained 
per parent of the site in the copy graph. The queue 
contains secondary subtransactions that are waiting to 
be executed at the site. 

3.2.2 Primary Subtransactions 

Primary subtransactions can start executing as soon as 
they are submitted. When a primary subtransaction Ti 
commits at site si the following steps are taken: 

Increment the local timestamp LTSi of si in the 
tuple corresponding to si in TS(si), the timestamp 
vector of the site si. 

Set TS(Ti) = TS(si). This is the timestamp for 
the primary subtransaction and all its secondary 
subtransactions. 

Schedule secondary subtransactions of Ti at all 
the relevant children of si. The scheduling here 
basically means that a message containing the 
list of writes that the primary subtransaction has 
performed along with TS(Ti) is appended to the 
incoming queues of si’s children. A child is 
relevant for a subtransaction if that child contains 
a replica of an item that this subtransaction has 
updated. 

The above three steps are performed in a critical sec- 
tion to ensure that no other subtransaction concurrently 
commits and manipulates the local timestamps and the 
message queues. 
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3.2.3 Secondary Subtransactions 

We assume for simplicity that only one secondary 
subtransaction is executed at a time at any given 
site (this assum,ption can be easily relaxed). Each 
secondary can execute concurrently with any number 
of primary subtransactions at a site. Further, at any 
point, the secondary subtransaction with the minimum 
timestamp from among the subtransactions at the 
head of each incoming queue at a site is chosen for 
execution next. Note that there must be at least 
one subtransaction in each incoming queue before the 
minimum timestamp is computed. When a secondary 
subtransaction Ti commits at a site si, TS(s;) is set to 
TS(Ti)(si, LTS;), h’ h w lc is simply the concatenation 
of the timestamp of the subtransaction and the tuple 
for the site (si, LTSi). The above commit and setting 
of the timestamp is done atomically with respect to 
commits of other subtransactions. 

Thus, the DAG(T) protocol propagates updates 
lazily - each transaction executes locally and indepen- 
dently, and releases all its locks when it commits. The 
DAG(T) protocol would not allow the non-serializable 
execution from Example 1.1. In this case, Tl is as- 
signed a timestamp of (s1,l) and Tz gets assigned a 
timestamp of (~1 , l)( s2,l) (when TI commits at ~2, 
the site’s timestamp is set to (~1, l)(sg, 0)). As a re- 
sult, at site ss, since TI ‘s timestamp is a prefix of TZ ‘s, 
TI will be executed before T2 at site ss preventing the 
non-serializable execution from Example 1.1. 

Intuitively, the timestamp for a transaction captures 
information about other transactions serialized before 
it. We show that, (at each site, transactions commit in 
the order of their timestamps in [BKRSS98]. Since 
the transaction timestamps are totally ordered and 
subtransactions are serialized in commit order due 
to the strict 2PL assumption, the following theorem 
follows. 

Theorem 3.1 Any schedule produced by the DAG(T) 
protocol is serializable. 

3.3 Extensions To Guarantee Progress 

The protocol we just described does not guarantee 
progress - this is easily verified by running the proto- 
col at a site ss that has two parents s1 and s2 which are 
incomparable in the DAG. A transaction Tl with times- 
tamp (~1, 1) will never be executed at site sg since 
(~2, j) < (~1, l), for all j. To ensure progress, we add 
an epoch number to each site’s timestamp. The epoch 
number thus becomes a part of every transaction’s 
timestamp. We use IDefinition 3.3 only for timestamps 
with the same epoch number. If timestamps T& and 
TS;! have different epoch numbers, then TSI -c TS2 
if and only if the epoch number of TS1 is smaller than 

the epoch number of TS2. Clearly, this augmerlted def- 
inition of < for timestamps with epoch numbers is also 
a linear order. 

The protocol then executes secondary sub transac- 
tions in the order of their timestamps, with the new 
definition used to compare timestamps. FurthErmore, 
the epoch number in a site’s timestamp is alwa!rs set to 
be equal to the epoch number of the most recent sec- 
ondary subtransaction committed at the site. A transac- 
tion’s timestamp has the same epoch number as. that of 
the site when it committed. In order to ensure pi’ogress, 
the sources (sites with no parents) in the cop!’ graph 
increment their epoch numbers periodically (with the 
same period). It follows from the above that the epoch. 
number at a site is the minimum of the epoch numbers, 
of the parents and that the epoch number at a site in- 
creases monotonically. This is sufficient to gu.nantee 
progress if there is a constant traffic on all edge:; of the 
copy graph. However, if there is no communication be- 
tween a site and its child, then the child cannot advance 
its epoch number, since it waits until each incoming 
queue is not empty (see Section 3.2.3). Therefbre, to 
guarantee progress, in the event that there has been no 
communication for a while, a site sends a “dummy” 
secondary subtransaction to its child - the dummy sub- 
transaction has no updates but just pushes forward the 
site timestamp of the child. Thus, it follows that the 
epoch number increments eventually percolate to all 
sites. 

Referring back to the example at the beginning of 
this section, it is now easy to see that Tl will execute 
at site ss after some secondary subtransaction from s2 
with a bigger epoch number than Tjs epoch number is 
at the head of the corresponding incoming queue:. 

4 The BackEdge Protocol 

Both the DAG(WT) and the DAG(T) protocol.j, de- 
scribed in previous sections, require the copy graph to 
be acyclic to ensure serializability. The reason for this 
is that if the copy graph is permitted to contain c:{cles, 
then it may be impossible to ensure serializability in 
the lazy update propagation model (irrespective of the 
order in which updates are propagated), as illuslrated 
by the following example. 

Example 4.1 Consider a distributed system with two 
sites s1 and ~2. Let site s1 contain the primary copy 
of item a and a replica of b and let s2 contain the 
primary copy of item b and a replica of a. Consider 
the following two transactions: Tl at site s1 that reds b 
and updates a and T2 at site s2 that reads a and updates 
b. Suppose both transactions execute at the two sites 
concurrently and commit. No matter which order we 
propagate updates of TI and T2 to the other site, the 
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resulting schedule will always be non-serializable. The 
reason for this is that, due to read-write conflicts on a 
and b, at site sl, 7’~ will be serialized before Tz, while 
at site ~2, T2 will be serialized before Tl. 0 

In this section, we propose the BackEdge protocol 
that ensures serializable schedules even though the 
copy graph contains cycles. It achieves this by 
adopting a hybrid approach, using eager propagation 
for some updates and lazy for the rest. The BackEdge 
protocol can be described as an extension of either 
the DAG(WT) or the DAG(T) protocol. Due to the 
lack of space, we will only discuss extensions to 
the DAG(WT) protocol here. ([BKRSS98] discusses 
extensions to the DAG(T) protocol.) Before, we delve 
into the extension, we need some terminology. 

Let G be an arbitrary copy graph (which may 
contain cycles). Let B be a set of backedges in G. 
Recall that a set of edges in the copy graph are referred 
to as backedges, if their deletion breaks all cycles in 
the copy graph, that is, yields a DAG. Further, we will 
assume that B is a minimal set of backedges, that is, 
inserting any edge in B back into the resulting DAG 
causes a cycle in it. A set B for a graph can be 
computed easily using simple depth first search. We 
will discuss in Section 4.2 how the set B of backedges 
can be computed more cleverly. Let Gdag be the 
directed acyclic graph derived from G after deleting 
the edges in B from G. 

4.1 Extending the DAG(WT) Protocol 

Let T be the tree obtained by from Gdag that satisfies 
the required property (described in Section 2). If 
there exists a backedge from site si to sj, then by the 
minimality of the set of backedges, it follows that there 
is a path from sj to si in Gdag, Therefore, sj is an 
ancestor of si in T, by the property of T. Thus, due 
to backedges, it is possible that a transaction needs to 
propagate updates to sites that are it’s ancestors in T. 
Let Ti denote a primary subtransaction at site si. Let 
Sl,... , Sj denote the secondary subtransactions that 
execute at sites, sil,. . . , sij, respectively, which are 
ancestors of si in T. We will refer to these secondary 
subtransactions as backedge subtransactions. Let sil 
be the site that is farthest from si in T, siz be the site 
that is the next farthest from si in T and so on. Then, 
the BackEdge protocol that extends the DAG(WT) 
protocol is as follows: 

1. After Ti completes execution, the secondary sub- 
transaction S1 is directly sent to the site sil to be 
executed (Ti continues to hold onto locks and has 
not yet committed). 

2. After S1 completes execution (it does not commit 
and holds on to its locks), it propagates the 

updates along the edges of the tree. Specifically, 
it forwards a “special” secondary subtransaction 
message containing its updates to its relevant 
children (note that the only child that is relevant 
is the one that is on the path from si, to si in 
the tree). This special subtransaction is processed 
similar to other secondary subtransactions (e.g., 
FIFO order), except for the following difference. 
Until the secondary subtransaction reaches site si, 
none of the backedge subtransactions S2, . . . , Sj 
that are executed along the path from sil to si 
commit or release their locks. A site, when it 
receives the special secondary subtransaction from 
its parent, executes it and once it completes, the site 
forwards it to its relevant child without committing 
the substransaction. 

3. After the special secondary subtransaction mes- 
sage from 5’1 indicating that every backedge sub- 
transaction has completed, is received at site si 
(and all secondary subtransactions received prior 
to it have been committed at si), Ti and subtrans- 
actions S1, . . . , Sj are committed atomically (us- 
ing a distributed commit protocol, e.g., two-phase 
commit) and locks held by them are released. 

4. Once Ti commits at site si, the remaining sec- 
ondary subtransactions for sites that are descen- 
dants of Si in T are executed lazily following 
the DAG(WT) protocol (that is, by forwarding 
“normal” secondary subtransaction messages in 
which secondary subtransactions commit and re- 
lease their locks before being forwarded to the rel- 
evant children). 

Let us revisit Example 4.1 and trace the execution of 
the BackEdge protocol on that example. Transaction 
Tl is allowed to commit at ~1, since it does not 
have a backedge subtransaction. Further, it is allowed 
to propagate it’s update following the DAG(WT) 
protocol. However, transaction T2, since it has a 
backedge subtransaction at site sl, will hold onto its 
locks until the special subtransaction message from its 
subtransaction at site SI reaches site ~2. Meanwhile, 
TI ‘s subtransaction at sg will wait for T2 to commit at 
~2, since it needs the lock on item a that is held by T2. 
Moreover, the special subtransaction message from s1 
for T2 can be processed only after Tl’s subtransaction 
commits (we process secondary subtransactions in 
FIFO order). Thus, since T2 cannot commit until it 
receives the special subtransaction, there is a global 
deadlock involving T2 and Tl’s subtransaction. TZ will 
be aborted (Tl’s secondary subtransaction has to be 
completed before T2 can commit and therefore it does 
not help if we abort Tl’s secondary subtransaction). 
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Thus, the non-serializable execution of Example 4.1 
is avoided. 

Therefore, by holding onto locks for transaction Ti 
until the special subtransaction message is received 
at si, as in eagelr update propagation protocols, the 
backedge protocol ensures that Ti is committed only 
after transactions serialized before it at sites preceding 
si have committed. Thus, schedules stay serializable. 
Notice that locks for the backedge subtransactions 
Sl,... , Sj are continued to be held even after each of 
them completes execution - this enables us to abort 
these subtransactions in case there is a global deadlock 
and Ti needs to be aborted (as described above for 
Example 4.1). Holding these locks is not required for 
serializability, but only for atomicity. 

Note that if the copy graph is a DAG, then there are 
no backedges and the BackEdge protocol reduces to 
the DAG(WT) protocol. Also, transactions for which 
there are no backedge subtransactions execute exactly 
as they would with the DAG(WT) protocol. 

4.2 Minimizin:g the Effects of Backedges 

Clearly, backedges are undesirable since they cause 
locks to be held by a transaction at multiple sites 
and for a longer duration when compared to the DAG 
protocols. Therefore, we need to minimize the number 
of times a transaction has to execute a secondary 
backedge subtransaction. In general, let there be 
weights associated with each edge in the copy graph 
which denotes the Srequency with which an update has 
to be propagated along the edge. Then, to minimize the 
effects of backedges, we need to find a set of backedges 
B whose removal from G will give us a DAG and the 
sum of whose wei,ghts is minimum. If we assign a 
weight of one to each edge, then this is the feedback 
arc set problem which is NP-hard [GJ79]. 

Several approximation algorithms have been pro- 
posed for the weighted version of this problem [ENRS97, 
LMT90, ST97]. Any of these can be used to compute 
Gdag if the number of nodes in G is large. 

5 Experimental Results 
In order to evaluate the performance of our algorithms 
and to explore the dependency of our algorithms on 
values in the parameter space, we implemented a 
simpler variant of the BackEdge protocol (extension 
of DAG(WT)) and also a lazy version of the primary 
site locking algorithm (which is a variant of the 
lazy-master approach from [GHOS96]). Both were 
implemented using the DataBlitz product from Bell 
Labs as the underlying database [BLRSSS97]. The 
key point that differentiates DataBlitz from other 
commercial systems is that DataBlitz maps the entire 
database into the address space of the application 

process. A lock timeout mechanism i,; used 
to handle local as well as global deadlocks in our 
implementation. For our experiments, we set the 
timeout interval to be 50 millisec. 

Our experiments were performed in a real-world 
setting involving 3 296 MHz Sun UltraSparc2 ma- 
chines running Solaris 2.6 and equipped with 2!i6 MB 
of RAM. Since our performance study is based on a 
real implementation and nor on a simulation study, we 
needed identical lightly loaded machines to run our ex- 
periments. That is the reason we had to restrict the 
number of machines in the study to 3. However, ‘we ran 
multiple independent instances of DataBlitz on each 
machine in order to simulate multiple sites (one in- 
stance for each site). Thus, for experiments involv- 
ing 9 sites, we would have 3 DataBlitz instances run- 
ning on a single machine. The machines are on a 10 
Mbit/set ethernet network and all communication be- 
tween programs running on a machine was performed 
using sockets and TCP as the transmission protocol. 

5.1 Algorithms Implemented 

We now describe details of our implementation of the 
primary site locking protocol and the simpler variant 
of the BackEdge protocol (extension of DAG(‘NT)). 
In this paper, we are primarily interested in distributed 
protocols. As a result, we do not consider here proto- 
cols that rely on a central site to ensure serializability 
(e.g., [ABKW98]). 

Primary site locking protocol (PSL): In the PSL 
protocol, reads and updates by a transaction of items 
whose primary copies reside locally are handled at the 
site itself and the items are locked locally. However, 
reads of a replica are required to obtain a shared lock 
on the item at the primary site for the item. Also, the 
latest value of the item is shipped to the transaction 
along with the lock grant message. Update operations 
simply perform updates locally on the primary copy 
and do not propagate the updates to replicas. lhus, 
in our version of the PSL protocol, updates are prop- 
agated in the system lazily when the item is actrally 
accessed by a remote site and there is no need to ex- 
plicitly propagate updates to other sites. Therefore, all 
locks held by a transaction are released once it com- 
mits (even though the updates have not been propa- 
gated). 

BackEdge protocol: In the variant of the BackEdge 
protocol (extension of DAG(WT)) that we in.ple- 
mented, instead of considering arbitrary trees, we con- 
sider the tree T (along whose edges updates are prop- 
agated) that is a chain (connect sites that are adjacent 
to each other in some total order of the sites consis- 
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tent with the DAG). Thus, our implementation is not 
as general and we expect the general implementation 
of the BackEdge protocol to outperform our imple- 
mentation. Except for this difference, the remainder 
of the BackEdge protocol is identical to the descrip- 
tion in Section 4.1. 

5.2 Parameters Considered 

We studied the performance of the two protocols for 
a wide range of parameter settings. Thus, we were 
able to characterize the parameter space under which 
each protocol can be expected to outperform the other. 
The parameters for each experiment and their default 
values are as shown in Table 1. Also, for parameters 
whose values were varied during experiments, we pro- 
vide the range of values that were considered. The pa- 
rameters that affect the performance of the schemes are 
the ones that control data distribution, transaction char- 
acteristics and system load. The default value of ap- 
proximately 0.15 millisec for the network latency was 
not fixed by us, but this was the average communica- 
tion latency we measured for our ethernet network. We 
now describe the data distribution and transaction gen- 
eration schemes. 

Data Distribution: Our data distribution algorithm 
assigns the primary copies of items uniformly across 
the m sites. The total number of distinct items (not 
counting replicas) is n. Thus, each site is the primary 
site for approximately n/m items. Of the primary 
copies assigned to a site, a fraction T- of them are 
replicated. The remaining fraction (1 - r) of them are 
not replicated and are thus local items at the site. 

In our data distribution scheme, we utilize a total 
ordering on sites, 81, . . . , sm (that is consistent with 
the chain used by the BackEdge protocol to propa- 
gate updates), to distinguish between the DAG edges 
and the backedges. Thus, if a replica of an item at 
a site si is stored at a site sj, and j < i, then this 
edge from si to sj in the copy graph is treated as a 
backedge. For an item with primary copy at site si, 
replicas are assigned to the remaining sites according 
to parameters backedge probability b and site proba- 
bility s. With probability b, all sites are considered 
as candidates for storing replicas of the item; and, with 
probability (1 - b), replicas of the item are distributed 
only among sites that follow site si. Note that as b is 
increased, the number of backedges in the copy graph 
increases. Once the candidate sites for item replicas 
are determined, an item replica is assigned to a candi- 
date site with probability s. 

Transaction Generation: Each transaction is a se- 

quence of 10 read or write operations and is run in 
the context of a thread. Each thread runs a sequence 
of 1000 transactions continuously one after another at 
a single site. The threads/site parameter specifies the 
number of threads that concurrently execute at a site 
and thus can be used to control the load in the system as 
well as the multiprogramming level. Obviously, more 
number of threads result in more contention within the 
system - we choose as the default value a multipro- 
gramming level of 3 since we found that this gener- 
ated a reasonable degree of contention for data items 
among the transactions. The read transaction proba- 
bility is the probability that a transaction is labeled a 
read-only transaction (all the operations in such trans- 
actions are reads). If a transaction is not labeled a read- 
only transaction, the read operation probability is the 
fraction of operations within the transaction that are 
read operations. Fast access to an item is facilitated 
by a hash index on the item identifier, and appropriate 
shared/exclusive locks on the item are obtained when 
the item is accessed/updated. 

5.3 Performance Results 

We evaluated the two protocols based on mainly the 
following two performance metrics: 

1. Average Throughput: This is the average of the 
transaction throughputs at each site. We only con- 
sider primary subtransactions for the throughput 
computation. 

2. Abort Rate: This is the percentage of primary 
subtransactions that abort in the entire system. Due 
to lack of space, we do not show graphs of abort 
rate but report trends whereever appropriate. 

In the following subsections, we report the results of 
experiments in which we varied one parameter, while 
other parameters were set to their default values. In the 
default setting, shown in Table 1, we have 9 sites (3 
per machine), 3 threads per site, 200 items overall, of 
which 20% are replicated at 50% of the sites, backedge 
probability b of 0.2, 50% read-only transactions and 
70% of a transaction are read operations. Due to 
space constraints, we only present a subset of our 
experimental results - the full set of experiments can 
be found in [BKRSS98]. 

5.3.1 Backedge Probability 

Figure 2(a) contains the graph for throughput, as b is 
varied from 0 to 1. When b is 0, there are no backedges 
and this is when the BackEdge protocol performs the 
best delivering almost thrice the throughput compared 
to the PSL protocol. The reason for this is that when 
b = 0, there are no backedge subtransactions and 

105 



1 Parameter 1 Symbol 1 Default Value Range I 
1 Number of Sites I m I 9 I 3- 15 

Number of Items 
Replication Probability 
Site Probability 

xtee Probability 
QYansaction 

n 200 
T 0.2 o-1 

0.5 
0.2 o-1 
10 

-_._ _ 
Backs-,- _ 
Operations, _ _ . .._ -_ __ _.. 
Threads/Site 
Transactions/Thread 
Read Ooeration Probabilitv 

3 l-5 
1000 
0.7 o-1 

1 Read Transaction Probabilitv 1 I 0.5 I o-1 I 
1 Network Latency I I I ADDrOX 0.15 millisec , I. 1 0.15 - 100 millisec 

Deadlock Timeout Interval 1 50 millisec 

Table 1: Parameter Settings 

4- ' I 
0 0.2 0.4 0.6 0.8 1 

Back Edge Probability 

(a) Backedge Probability 

Figure 2: Througput Results 

-.--a ._.___._ * ______. 
+-------*------.~ . . . . . 

0 0.2 0.4 0.6 0.8 1 
Data Item Replica Probability 

(b) Replication Probability 

each transaction executes locally, holding onto locks 
for a short duration. As a result, there are very few 
deadlocks and we observed that the abort rate was 
almost 0. As b is increased, an increasing number of 
transactions have backedge subtransactions and thus 
hold onto locks far longer intervals. The result is that 
the number of deadlocks in the system increases and 
so does the abort rate, thus decreasing the throughput. 

Note that the PSL protocol is less affected as b is 
varied. There is a slight decrease in throughput and 
increase in abort rate as b is increased from 0 to 1. 
This is because, as b increases, so does the number 
of replicas in the system, and for the PSL protocol, 
as the number of replicas increases, the number of 
remote read operations increases as well, and so the 
performance becomes worse. 

An interesting point to note is that even when b = 1, 
the BackEdge protocol performs better than the PSL 
protocol. Since in our default parameter setting, 50% 
of transactions are read-only transactions, and 70% of 
each transaction’s Ioperations are reads, even with b = 
1, there are more remote read operations performed 
by the PSL protocol than secondary subtransactions 

generated by the BackEdge protocol, thus resulting in 
more message overhead. 

For b = 1, it can be shown that for the BackEdge 
protocol, only 1 in 4 transactions require update prop- 
agation, while for the PSL protocol, each transaction 
performs about 4 remote reads on an average. Due to 
the higher communication overhead for the PSL proto- 
col, it performs worse than the BackEdge protol;ol for 
b= 1. 

53.2 Replication Probability 

In Figure 2(b), we plot the throughput as the fraction 
of replicated items is increased from 0 to 1. The 
performance of both the BackEdge protocol as well 
as the PSL protocol deteriorates as the number of 
replicated items and thus the number of replicas in the 
system increases. This is expected since with more 
replicated items, a larger fraction of writes at a site 
are to replicated items and more read operations are 
directed to replicas. Also, as the number of replicated 
items increases, so does the number of backedges in 
the copy graph. Note the sudden drop in throughput 
from T = 0 to r = 0.1. This is due to the fact that 
when T = 0, none of the items are replicated and so 
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every transaction is a local transaction. Also, note that 
as expected both protocols have identical throughput at 
r = 0. 

The performance of the BackEdge protocol is al- 
most twice that of the PSL protocol for every T value 
except 0. This is because the number of replicas in- 
creases much more rapidly than the number of repli- 
cated items as r is increased (for instance, at T = 1, 
there are almost 500 replicas in the system). Thus, the 
probability of reading a replica (thus causing a remote 
read for PSL) is much higher than the probability of 
updating a primary copy of a replicated item. This cou- 
pled with the fact that 85% of all operations are read 
operations causes the PSL protocol’s performance to 
be worse than that of the BackEdge protocol. 

5.3.3 Extreme Parameter Settings 

In this subsection, we consider two extreme parameter 
settings for backedge probability b - 0 and 1, in or- 
der to study the behaviour of the two protocols under 
extreme conditions. The values for most other param- 
eters is set to their default values except for replica- 
tion probability which is set to 0.5 and read transaction 
probability, which is set to 0. For both experiments, we 
vary read operation probability from 0 to 1. 

Backedge Probability-O: The graphs for b = 0 as 
read operation probability is varied from 0 to 1 are 
shown in Figure 3(a). When read operation probability 
is 0, each transaction does only updates, and the PSL 
protocol performs better than the BackEdge protocol. 
This is because the PSL protocol does no remote 
communication and transactions execute completely 
locally. Even with the BackEdge protocol, transactions 
execute locally; however, they need to propagate 
updates to replicas and as a result, the BackEdge 
protocol needs to do more work than the PSL protocol 
and has inferior performance. 

As the number of read operations is increased, the 
performance of the BackEdge protocol steadily in- 
creases as it needs to propagate fewer updates and the 
contention in the system decreases. The abort rates 
for transactions also decrease since there are fewer 
secondary subtransactions in the system and less con- 
tention as the number of reads increases. Finally, 
when transactions become completely read-only, the 
BackEdge protocol performs the best since transac- 
tions execute completely locally and don’t have to 
propagate updates. The performance of the PSL pro- 
tocol is somewhat more interesting. As the number 
of read operations is increased, the number of remote 
read operations increases and thus, the abort rate in- 
creases and the performance of the PSL protocol de- 
teriorates until the read operation probability reaches 

about 0.5. However, beyond 0.5, the performance of 
the PSL protocol starts improving due to reduced con- 
tention until for a read operation probability of 1, there 
is no contention and the only additional overhead is 
that of reading remote replicas. Note that the through- 
put of the BackEdge protocol is more than 5 times that 
of the PSL protocol when read operation probability is 
0.5. 

Backedge Probability-l: Figure 3(b) shows the 
throughput as the read probability is varied. For b = 1, 
the PSL protocol behaves similarly to the case when 
b = 0. However, the performance of the BackEdge 
protocol lags the PSL protocol with respect to abort 
rate - this should be expected since there are a large 
number of backedge subtransactions and thus a large 
number of global deadlocks and aborts (since 50% of 
primary copies are replicated, almost every transaction 
generates a backedge subtransaction). The throughput 
of the BackEdge protocol is worse than PSL as long 
as the read probability is smaller than 0.3. Beyond a 
read probability of 0.3 (which is fairly small), however, 
the BackEdge protocol performs better despite the 
BackEdge probability being 1 and read transaction 
probability being 0. 

5.3.4 Other Performance Metrics 

We also measured the average response time for 
committed transactions in each of our experiments. 
Due to space constraints, we do not report these in 
the paper. However, we found the response times to 
be related to the throughput and abort rate - in most 
cases (not always), we found the response times to 
be somewhat inversely related to the throughput, that 
is, the higher the throughput, the smaller the response 
times. Transaction response times for our experiments 
with the default parameter settings were approximately 
180 millisec for the BackEdge and 260 millisec for the 
PSL protocol. 

Another parameter that we do not report on is the 
time it takes a transaction’s updates to propagate to all 
replicas in the BackEdge protocol. We did note that 
for our default parameter settings, update propagation 
via secondary subtransactions was extremely fast and 
in general took a few hundred millisec. As a result, 
we believe that recency of a site with the BackEdge 
protocols can be expected to be very good in practice. 

6 Conclusions 
In this paper, we proposed two new lazy update 
protocols, the DAG(WT) and the DAG(T) protocol 
that ensure serializability when the copy graph is a 
DAG. Thus, compared to prior work, we significantly 
expand the class of graphs for which lazy update 
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Figure 3: Throughput Results 

protocols guarantee serializability. Further, in many 
real life situations, for example, a data warehousing 
environment, the copy graph is naturally a DAG. 
We also extended these protocols into the BackEdge 
protocol which ensures serializability for arbitrary 
copy graphs (that may contain cycles). 

We implemented the BackEdge algorithm as well 
as a variant of the well-known primary site locking 
algorithm in the DataBlitz database product developed 
at Bell Labs. We c:onducted a detailed study of the 
relative performance of the two algorithms. The study 
revealed that unless transactions are update-intensive 
(more than 70% of all operations in a transaction are 
writes) and the cop:y graph contains a large number 
of backedges, the 13ackEdge algorithm consistently 
outperforms the primary site locking algorithm. For 
most practical environments, in which transactions are 
read-intensive and backedges are few, the BackEdge 
protocol can achieve speedups as high as five times 
compared to the primary site locking protocol. Thus, 
by implementing our protocols on top of off-the- 
shelf database systems, database designers can provide 
distributed applications with serializability and high 
performance in replicated environments. 
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