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Abstract

In the presence of semantic information, serializability is too strong a correctness criterion and un-

necessarily restricts concurrency. We use the semantic information of a transaction to provide di�erent

atomicity views of the transaction to other transactions. The proposed approach improves concurrency

and allows interleavings among transactions which are non-serializable, but which nonetheless preserve

the consistency of the database and are acceptable to the users. We develop a graph-based tool whose

acyclicity is both a necessary and su�cient condition for the correctness of an execution. Our theory

encompasses earlier proposals that incorporate semantic information of transactions. Furthermore it is

the �rst approach that provides an e�cient graph based tool for recognizing correct schedules without im-

posing any restrictions on the application domain. Our approach is widely applicable to many advanced

database applications such as systems with long-lived transactions and collaborative environments.

1 Introduction

The traditional approach for transaction management in multi-user database systems is to maintain entire

transactions as single atomic units with respect to each other. Such atomicity of transactions is enforced in

most commercial database systems by ensuring that the interleaved execution of concurrent transactions re-

mains serializable [EGLT76, RSL78, Pap79, BSW79]. Databases are increasingly used in applications, where

transactions may be long lived, or where transactions correspond to executions of various users cooperating

with each other, e.g., in design databases, CAD/CAM databases, etc. For such applications serializability is

found to be too restrictive [BK91].

Researchers, in general, have taken two di�erent approaches to address this problem. Instead of modeling

the database as a collection of objects that can only be read or written by transactions, a number of

researchers have considered placing more structure on data objects to exploit type speci�c semantics [Kor83,

SS84, Her86, Wei89, BR92]. This approach increases concurrency in the system while remaining within the

con�nes of serializability. The other approach relaxes the absolute atomicity of transactions and uses the

explicit semantics of transactions to allow executions in which a transaction may provide di�erent atomicity

views to other transactions [Gar83, Lyn83, F�O89]. For example, consider a transaction T consisting of

database operations o1o2o3. The traditional serializability requirement is that T appears as a single atomic

unit o1o2o3 to other transactions such as T 0 and T 00. However, by using the semantics of transactions, the

atomicity speci�cations of T may be made di�erent with respect to other transactions. The user may specify
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that T should appear as o1o2 o3 to T 0 but as o1 o2o3 to T 00. Lynch [Lyn83] introduced this notion and

refers to it as relative atomicity .

In [Lyn83], several examples are presented to motivate the advantages of relative atomicity for banking

applications and computer-aided design environments. In the banking example, customers are grouped into

families each of which shares a common set of accounts. The bank may wish to take a complete bank audit

of all accounts, while creditors may require a credit audit of speci�c families. In this case the bank audit

should be atomic with respect to all other transactions and vice versa. The relative atomicity speci�cations

for credit audits and customer transactions are much less severe. Finally, customer transactions in the same

family can be arbitrarily interleaved. In the computer-aided design example, users are divided into teams

of specialized experts. Relative atomicity speci�cations can now be used to specify di�erent constraints for

members within a team and with respect to other teams.

In databases with typed objects several e�cient protocols exist for enforcing correct executions of transac-

tions. In contrast, results in the area of relative atomicity are still at a preliminary stage. In particular, there

does not exist a well-de�ned theory for analyzing and arguing the correctness of executions of transactions

with relative atomicity speci�cations. The traditional serializability theory, for example, de�nes the notion

of correct executions which are serial executions and provides a graph-based tool to recognize executions

that are \equivalent" to serial executions. If relative atomicity speci�cations are to be used in practice, we

need to develop a theory similar to the traditional serializability theory.

Garcia-Molina [Gar83] pioneered the e�ort to use the notion of relative atomicity to increase concurrency

in database systems. He proposed grouping transactions into compatibility sets, where transactions in

one such set may be arbitrarily interleaved, but transactions in di�erent sets observe each other as single

atomic units. Clearly, Garcia-Molina's proposal is a special case of transactions with relative atomicity

speci�cations. Lynch [Lyn83] extended Garcia-Molina's speci�cations from two-level compatibility sets to

hierarchically structured interleaving sets, allowing transactions to have varying atomic units relative to

each other. Once again, it can be argued that Lynch's hierarchical speci�cations are restrictive and do not

model the general notion of relative atomicity. However, Lynch's proposal is comprehensive in that it not

only speci�es a notion of correctness but also provides a graph-based tool to e�ciently recognize correct

executions. Farrag and �Ozsu [F�O89] used the notion of breakpoints, which provides maximal freedom for

relative atomicity speci�cations. In addition, they propose a graph which aids in the recognition of executions

that are \equivalent" to correct executions. The most serious drawback of Farrag and �Ozsu's proposal is

that the recognition of executions that are equivalent to correct executions has an exponential complexity.

Once the notion of relative atomicity has been de�ned, the main challenge is to de�ne classes of executions

that are larger than the class of correct executions, but that are \equivalent" to the set of correct execu-

tions. Extending the de�nitions from traditional databases to relative atomicity, Farrag and �Ozsu de�ne an

execution to be correct if it satis�es the user de�ned relative atomicity speci�cations and the class relatively

consistent, which includes all executions that are con
ict equivalent to correct executions. Unfortunately,

the complexity of recognizing relatively consistent executions is NP-Complete [KB92].

In this paper, we retain the notion of con
ict equivalence and reduce the complexity of this problem by

modifying the notion of correct executions. This is in contrast to the traditional approach of strengthening
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the notion of equivalence for reducing the complexity of the problem1. Rather than de�ning a correct

execution to be the one that only allows the interleavings speci�ed by the user, our de�nition takes into

account the actual interleavings occurring in the speci�c execution. Our de�nition may therefore allow

an operation to be interleaved within the relatively atomic unit of another transaction, as long as in the

given execution no \dependencies" occur between this operation and the operations of the atomic unit.

In the traditional model, this would be analogous to generalizing the class of serial executions by allowing

transactions that do not have any \dependencies" to be arbitrarily interleaved. This new de�nition of correct

executions which subsumes all earlier de�nitions of correct executions, reduces the complexity of recognizing

the set of executions that are equivalent to correct executions. In particular, we develop a graph, whose

acyclicity is both a necessary and su�cient condition for an execution to be equivalent to a correct execution.

Furthermore, when the relative atomicity speci�cations are restricted to the case where each transaction is

an atomic unit, our theory corresponds to the traditional serializability theory.

2 Model

A database is modeled as a set of objects. The objects in the database can be accessed through atomic

read and write operations. Users interact with the database by invoking transactions. A transaction is a

sequence of read and write operations that are executed on the objects. A read (write) operation executed

by a transaction Ti on object x is denoted as ri[x] (wi[x]). A schedule S over T = fT1; : : : ; Tng is an

interleaved sequence2 of all the operations of the transactions in T such that the operations of transaction

Ti appear in the same order in S as they do in Ti, for i = 1; : : : ; n. In order to relate schedules over the

same set of transactions, the notion of con
ict between operations is used in concurrency control theory

[Pap79, BSW79]. Two operations of di�erent transactions con
ict if they access the same data object and

at least one of them is a write operation. Two schedules are con
ict equivalent if they both order con
icting

operations in the same manner.

Our motivation in this paper is to generalize the transaction model. In particular, if semantics of the

applications being modeled by the database is available to the users writing the transactions, they may

be able to weaken the requirement of the atomicity of transactions. In the relative atomicity model, a

transaction has multiply de�ned atomicity speci�cations with respect to every other transaction. Formally,

an atomic unit of Ti relative to Tj is a sequence of operations of Ti such that no operations of Tj are

allowed to be executed within this sequence. Atomicity(Ti ; Tj) denotes the ordered sequence of atomic units

of Ti relative to Tj and AtomicUnit(k; Ti; Tj) denotes the kth atomic unit in Atomicity(Ti ; Tj). Figure 1

illustrates an example of three transactions with their relative atomicity speci�cations. In particular, the

rectangular boxes represent the atomic units of each transaction with respect to other transactions. In

Figure 1, Atomicity(T1 ; T2) is h r1[x]w1[x] , w1[z]; r1[y] i, which indicates that if operations of T2 have

to be executed within T1 then they may only be executed after w1[x] and before w1[z]. We say that an

operation o of a transaction Tj is interleaved with an AtomicUnit(k; Ti; Tj) in a schedule S, if there exist

1Such an approach is explored in [Kri93].
2In general, transactions and schedules are permitted to be partially ordered sequences. In this paper, however, we assume

that transactions and schedules are totally ordered sequences for simplicity.
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operations o0 and o00 of AtomicUnit(k; Ti; Tj) such that o0 precedes o and o precedes o00 in S.

Consider a set of transactions T = fT1; T2; T3g where

T1 = r1[x]w1[x]w1[z]r1[y]

T2 = r2[y]w2[y]r2[x]

T3 = w3[x]w3[y]w3[z]

Atomicity(T1 ; T2): r1[x]w1[x] w1[z]r1[y]

Atomicity(T1 ; T3): r1[x]w1[x] w1[z] r1[y]

Atomicity(T2 ; T1): r2[y] w2[y]r2[x]

Atomicity(T2 ; T3): r2[y]w2[y] r2[x]

Atomicity(T3 ; T1): w3[x]w3[y] w3[z]

Atomicity(T3 ; T2): w3[x]w3[y] w3[z]

Figure 1: Relative Atomicity Speci�cations

The relative atomicity speci�cations over T is the set fAtomicity(Ti ; Tj)jTi; Tj 2 T g. The above spec-

i�cations could also be speci�ed in terms of transactions types instead of transactions instances as in

[Gar83, F�O89]. However, for simplicity of exposition we will restrict ourselves to relative atomicity in

terms of transaction instances [Lyn83]. The relative atomicity speci�cations can also be speci�ed by using

the notion of atomic steps [Gar83] or breakpoints [F�O89].

A correct execution in the traditional transaction model requires that all operations of a transaction

appear as a single atomic unit. We refer to this as absolute atomicity. For example, T1 appears as

r1[x]w1[x]w1[z]r1[y] to all other transactions under absolute atomicity. From the relative atomicity spec-

i�cations of transactions in Figure 1, in any correct execution it is required that operations of T2 not be

interleaved with AtomicUnit(k; T1; T2) for k = 1; 2. However, operations of T2 may be executed between the

two atomic units of T1 relative to T2. Consider, for example, the following schedule:

Sra = r2[y]r1[x]w1[x]w2[y]r2[x]w1[z]w3[x]w3[y]r1[y]w3[z]

Note that even though Sra is not a serial schedule, it is correct with respect to the relative atomicity

speci�cations of the three transactions in Figure 1. For example, operations of T1 are executed between r2[y]

and w2[y]r2[x]. In spite of such interleavings, the atomicity of T2 relative to T1 is preserved. It can be easily

shown that the same holds for the remaining interleavings. Based on the relative atomicity speci�cations,

the correctness of a schedule S over T can be de�ned as follows:

De�nition 1 S is a relatively atomic schedule over T if for all transactions Ti and Tl no operation of Ti is

interleaved with an AtomicUnit(k; Tl ; Ti) for any k.
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Farrag and �Ozsu [F�O89] refer to relatively atomic schedules as correct schedules. Further, they de�ne

relatively consistent schedules as the schedules that are con
ict equivalent to a relatively atomic schedule.

Unfortunately, recognizing the class of relatively consistent schedules is NP-complete [KB92].

To reduce the complexity of recognizing relatively consistent schedules, we modify the de�nition of

correct schedules. We motivate our approach by studying the reason for the NP-Completeness with the

above de�nition of correctness. The complexity result arises due to the ambiguity in ordering non-con
icting

operations. Consider for example three operations o1, o2, and o3 in a schedule S, where o1 and o2 are

operations of a transaction T in which o1 precedes o2, and o3 is an operation of a transaction T 0 (T 6= T 0),

such that o1o2 is an atomic unit of T relative to T 0. If o3 con
icts with o1 and/or o2, then the order of

o3 relative to o1o2 is determined by the con
ict. On the other hand, if o3 does not con
ict with o1 and

o2, there is a choice of ordering o3 either before o1 or after o2 in an equivalent relatively atomic schedule.

Depending on the rest of the schedule, one (or both) of these choices may not be possible in any equivalent

relatively atomic schedule. In order to verify whether a schedule is relatively consistent, both choices must be

considered to determine if there exists an equivalent relatively atomic schedule. Since several such triples may

exist for any given schedule, there are potentially an exponential number of choices that must be considered.

It might then be necessary to check each of these orderings for membership in the class of relatively atomic

schedules, thus making the test for relatively consistent schedules exponential.

In fact, the complexity of the problem occurs only when the given schedule does not impose a particular

order between o3 and o1 or o2, but the user's relative atomicity speci�cations require the exclusion of o3

from the atomic unit o1o2 . If a schedule does not impose any order between two operations then the

execution of one operation cannot depend on or a�ect the execution of the other. Otherwise, a sequence

of con
icting operations must have been executed, thus enforcing an order. Our approach is therefore to

extend the user's relative atomicity speci�cations and allow o3 to be executed between o1 and o2 when o3's

execution cannot a�ect or depend on either o1 or o2. This unseemly exclusion arises due to the fact that

the relative atomicity speci�cations for the application are given a priori and have to take into account all

potential con
icts that might occur in any execution. In a particular execution not all of these potential

con
icts occur, and the relative atomicity speci�cations tend to be conservative. For example, transaction

executions that correspond to conditionals, the con
icts that occur can be determined only at execution

time. We are therefore motivated to expand the class of relatively atomic schedules to include interleavings

of operations which do not have any dependencies between them.

In order to characterize correct schedules in our model, we need to de�ne an additional notion called

depends on which is derived from con
icts and the internal structure of transactions. We say that o2 directly

depends on o1 if o1 precedes o2 in S and either o1 and o2 are operations of the same transaction or o1

con
icts with o2. The depends on relation is the transitive closure of the directly depends on relation. In

the schedule S1 shown in Figure 2, w2[y] does not con
ict with either w1[x] or r1[z], but r1[z] is a�ected by

w2[y]. Since the user's relative atomicity speci�cations does not allow T2 in the atomic unit w1[x]r1[z] , S1

is not a correct schedule. If the depends on relation is based only on direct con
icts then the schedule S1 will

be considered as a correct schedule. Hence the e�ects from w2[y] to r1[z] should be captured in the depends

on relation, so as to rule out S1 as a correct schedule. Another reason for using the notion of depends on
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Consider a set of transactions T = fT1; T2; T3g where

T1 = w1[x]r1[z]

T2 = w2[y]

T3 = r3[y]w3[z]

Atomicity(T1 ; T2): w1[x]r1[z] Atomicity(T3 ; T1): r3[y] w3[z]

Atomicity(T1 ; T3): w1[x] r1[z] Atomicity(T3 ; T2): r3[y] w3[z]

Atomicity(T2 ; T1): w2[y]

Atomicity(T2 ; T3): w2[y]

S1 = w1[x]w2[y]r3[y]w3[z]r1[z]

Figure 2: An example to show that direct con
icts are not su�cient for correctness

relation, which generalizes the notion of con
icts, is to maintain the correspondence between our correctness

criterion with the traditional correctness criterion based on serializability. This is discussed below after the

formal de�nition of correct schedules in our model.

For notational convenience, in the rest of the paper, we index transactions and the operations within

a transaction. For example, operation oij is the jth operation of transaction Ti. We now de�ne correct

schedules in our model that are referred to as relatively serial schedules.

De�nition 2 S is a relatively serial schedule over T if for all transactions Ti and Tl, if an operation oij

of Ti is interleaved with an AtomicUnit(k; Tl; Ti) for some k, then oij does not depend on any operation

olm 2 AtomicUnit(k; Tl ; Ti) and vice-versa.

Consider the following schedule Srs over T given in Figure 1:

Srs = r1[x]r2[y]w1[x]w2[y]w3[x]w1[z]w3[y]r2[x]r1[y]w3[z]

In Srs operation r2[y] is interleaved with AtomicUnit(1; T1; T2) and r2[y] does not depend on r1[x] and w1[x]

does not depend on r2[y]. Similarly for the other interleavings: w1[z] interleaved with AtomicUnit(2; T2; T1)

and AtomicUnit(1; T3; T1) and r2[x] interleaved with AtomicUnit(2; T1; T2). Hence, Srs is relatively serial.

The notion of relatively serial schedules is analogous to the notion of serial schedules in the serializability

theory. In particular, there exist schedules that are not relatively serial but may have the same behavior as

some relatively serial schedules. We de�ne a schedule to be relatively serializable if it is con
ict equivalent

to some relatively serial schedule. For example, the following schedule S1 over T given in Figure 1:

S2 = r1[x]r2[y]w2[y]w1[x]w3[x]r2[x]w1[z]w3[y]r1[y]w3[z]
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is not relatively serial since w1[x] is interleaved with AtomicUnit(2; T2; T1) and r2[x] depends on w1[x].

However, S2 is relatively serializable since it is con
ict equivalent to the relatively serial schedule Srs given

above.

The relative atomicity model is a generalization of the traditional absolute atomicity model. That is, if

the speci�cations are such that each transaction is a single atomic unit with respect to all other transactions,

then relative atomicity reduces to absolute atomicity. When restricted to absolute atomicity of transactions,

relatively serial schedules are di�erent from serial schedules. Every serial schedule is a relatively serial

schedule since each operation of a serial schedule is not interleaved within the atomic unit of any transaction.

Relatively serial schedules allow arbitrary interleavings (within atomic units) of operations that do not have

any dependencies between them. It is important that the introduction of a new correctness de�nition should

not contradict the correctness criterion in the traditional model. In the following lemma, we show that the

de�nition of relatively serial schedules is such that, under absolute atomicity, the same correctness as that

in the traditional model is still maintained.

Lemma 1 When relative atomicity is restricted to the traditional absolute atomicity model, any relatively

serial schedule is con
ict equivalent to some serial schedule.

Proof: Consider a relatively serial schedule Srs on T . If Srs is serial then the lemma is trivially satis�ed. If Srs

is not serial, assume for contradiction that there does not exist any serial schedule that is con
ict equivalent

to Srs. Consider the serialization graph SG(Srs) for Srs [Pap79, BSW79]. SG(Srs) has transactions in T

as its nodes and Ti �! Tk is an edge in SG(Srs) if an operation of Ti con
icts and precedes an operation

of Tk in Srs. Since Srs is not con
ict serializable, SG(Srs) has a cycle. We show that for each edge from

Ti �! Tk in SG(Srs), oi1 precedes ok1 in Srs. Consider an edge Ti �! Tk in SG(Srs). This implies that

there exist operations, say, oij and okl, such that oij con
icts and precedes okl in Srs. Since Srs is relatively

serial, oij precedes the atomic unit of Tk. Thus oij precedes ok1 in Srs and consequently oi1 precedes ok1 in

Srs. This implies that for any cycle in SG(Srs), the �rst operation of every transaction in the cycle precedes

itself in Srs, a contradiction. Hence the lemma. 2

In the absolute atomicity model, every serial schedule is a relatively serial schedule. From the de�nition

of relatively serializable schedules and Lemma 1, it is clear that under absolute atomicity, any relatively

serializable schedule is equivalent to a serial schedule. Thus, the set of relatively serializable schedules is

exactly the same as the set of con
ict serializable schedules [Pap79, BSW79] under absolute atomicity. Hence,

our model retains the standard notion of correctness when the relative atomicity speci�cations are restricted

to specify the traditional transaction model.

3 E�cient Testing of Relatively Serializable Schedules

In this section we develop a graph that can be used to determine whether a given schedule is relatively

serializable. Our approach is analogous to the traditional serializability theory in which a serialization graph

is used to determine whether a given schedule is con
ict serializable. We de�ne two complementary notions

of pushing forward or pulling backward an operation. Let oij belong to AtomicUnit(m;Ti; Tk). We de�ne
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PushForward(oij; Tk) to be operation oip where oip is the last operation of AtomicUnit(m;Ti; Tk). Analo-

gously, we de�ne PullBackward(oij; Tk) to be operation oiq where oiq is the �rst operation ofAtomicUnit(m;Ti; Tk).

For example in Figure 1, PushForward(r1[x]; T2) is w1[x] and PullBackward(r1[y]; T2) is w1[z]. The moti-

vation for the above two notions is as follows. Let an operation okl of transaction Tk be interleaved between

operations oij and oij+1 of another transaction Ti in some schedule S. Furthermore, assume Tk is not

allowed to interleave between oij and oij+1 as per the relative atomicity speci�cations. In that case, S

can be \corrected" if okl can be pulled backward before PullBackward(oij+1; Tk) or pushed forward after

PushForward(oij; Tk). However, since our de�nition of relatively serial schedules allows certain operations

to be interleaved in an atomic unit (i.e., operations that do not have the depends on relation with opera-

tions in an atomic unit), the pushing and pulling needs to be performed conditionally. We formalize these

arguments in the following de�nition of the relative serialization graph.

De�nition 3 The relative serialization graph of a schedule S over T , denoted RSG(S) = (V;E), is a

directed graph whose vertices V are the set of operations of the transactions in T and whose arcs E are as

follows:

1. Internal Arcs (I-arcs). E contains all the internal arcs of the form oij �! oij+1 where oij and oij+1

are consecutive operations in Ti for all Ti 2 T .

2. Dependency Arcs (D-arcs). E contains all the dependency arcs of the form oij �! okl such that i 6= k

and okl depends on oij in S. Note that these arcs also capture con
icts.

3. Push Forward Arcs (F -arc). For each D-arc oij �! okl we add PushForward(oij; Tk) �! okl in E.

4. Pull Backward Arcs (B-arc). For each D-arc okl �! oij we add okl �! PullBackward(oij; Tk) in E.

Lynch [Lyn83] as well as Farrag and �Ozsu [F�O89] use the notion of pushing forward an operation out

of an atomic unit. However, neither of them employed the notion of pulling backward an operation out of

an atomic unit. In Figure 3, we provide an example of the relative serialization graph resulting from the

following schedule S2 over T:

S2 = w1[x]r2[x]r3[z]w2[y]r3[y]r1[z]

For example, since w1[x]r1[z] is atomic with respect to T2 and since r2[x] depends on w1[x], RSG(S2)

contains the F -arc from r1[z] to r2[x]. Since r3[z]r3[y] is atomic relative to T2 and r3[y] depends on w2[y],

RSG(S2) contains the B-arc from w2[y] to r3[z].

We now prove that acyclicity of RSG(S) is both a necessary and su�cient condition for schedule S to

be relatively serializable. In the following, we say that an arc o �! o0 in RSG(S) is consistent with S if o

precedes o0 in S. We start by establishing that the relative serialization graph of a relatively serial schedule

is acyclic.

Lemma 2 If S is a relatively serial schedule over T then RSG(S) is acyclic.

Proof: We will show that every arc of RSG(S) is consistent with S. It is easy to see that the I-arcs and

D-arcs in RSG(S) are consistent with S. Consider an F -arc, oip �! okl in RSG(S). This implies that there
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is a D-arc from oij �! okl, j � p where oij and oip are in the same atomic unit, say AtomicUnit(m;Ti; Tk),

and oip is the last operation in AtomicUnit(m;Ti; Tk). Since okl depends on oij, and S is relatively serial,

okl must appear after AtomicUnit(m;Ti; Tk) in S. Thus the F -arc oip �! okl in RSG(S) is consistent with

S. Similarly, it can be shown that any B-arc in RSG(S) is consistent with S. Since all arcs in RSG(S) are

consistent with S and S is a total order, RSG(S) is acyclic. 2
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Consider a set of transactions T = fT1; T2; T3g where

T1 = w1[x]r1[z]

T2 = r2[x]w2[y]

T3 = r3[z]r3[y]

Atomicity(T1 ; T3): w1[x] r1[z]

Atomicity(T1 ; T2): w1[x]r1[z]

Atomicity(T2 ; T3): r2[x] w2[y]

Atomicity(T2 ; T1): r2[x] w2[y]

Atomicity(T3 ; T1): r3[z] r3[y]

Atomicity(T3 ; T2): r3[z]r3[y]

Figure 3: An example of a relative serialization graph

Theorem 1 A schedule S over T is relatively serializable if and only if RSG(S) is acyclic.

Proof: Assume S is relatively serializable. Then there exists a relatively serial schedule Srs over T which

is con
ict equivalent to S. The I-arcs are obviously the same in RSG(S) and RSG(Srs). The D-arcs of

RSG(S) and RSG(Srs) are identical because of the con
ict equivalence of S and Srs. Since the F -arcs and

B-arcs depend only on the I-arcs, D-arcs, and the relative atomicity speci�cations for T , RSG(S) and

RSG(Srs) are identical. It follows from Lemma 2 that RSG(S) is acyclic.

Assume that RSG(S) is acyclic. Let Srs be a schedule obtained by topologically sorting RSG(S).

Clearly, S and Srs are con
ict equivalent and therefore RSG(Srs) is the same as RSG(S). It remains to

show that Srs is relatively serial. Assume for contradiction that there exists an operation oij interleaved with

AtomicUnit(m;Tk ; Ti) which contains okl such that oij depends on okl or okl depends on oij in Srs. Let okp

be the last operation of AtomicUnit(m;Tk ; Ti) and let okq be the �rst operation of AtomicUnit(m;Tk ; Ti).

If oij depends on okl in Srs then there is an F -arc okp �! oij in RSG(S), hence in any topological sort of
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RSG(S), okp precedes oij. However, oij precedes okp in Srs since oij is interleaved in AtomicUnit(m;Tk ; Ti),

a contradiction. If okl depends on oij in Srs then there is a B-arc oij �! okq in RSG(S), hence in any

topological sort of RSG(S), oij precedes okq. Again we obtain a contradiction since okq precedes oij in Srs

by our assumption. Therefore Srs is relatively serial. 2

The relative serialization graph provides an e�cient (polynomial) method for recognizing relatively se-

rializable schedules. This graph can be used as the basis for a concurrency control protocol similar to

serialization graph testing [Bad79, Cas81]. We are currently investigating locking protocols for ensuring

relative serializability of transactions with relative atomicity.

4 Related Work

The relative atomicity model is a generalization of the traditional absolute atomicity model. In particular,

our model retains the standard notion of correctness based on on con
ict serializability [Pap79, BSW79] when

the relative atomicity speci�cations are restricted to specify the traditional transaction model. Although the

proposed model is useful in environments where transaction semantics is available, it may as well be used in

the standard database systems without jeopardizing correctness.

One of the earliest proposals to depart from absolute atomicity of transactions was proposed by Garcia-

Molina [Gar83]. However, his approach for relaxing atomicity of transactions is a special case of relative

atomicity. Although Lynch [Lyn83] proposed relative atomicity, her model is restricted to hierarchical

relative atomicity speci�cations called multilevel atomicity. Lynch has proposed a graph-based tool for

e�ciently recognizing schedules that are equivalent to multilevel atomic schedules. From the users point of

view, however, multilevel atomicity imposes several constraints in specifying interleavings thus reducing its

applicability. Relative atomicity, on the other hand, imposes no constraints on the user speci�cations. It

is easy to construct examples that can be speci�ed using relative atomicity but cannot be speci�ed using

multilevel atomicity.

We now compare the set of relatively consistent schedules [F�O89] and the set of relatively serializable

schedules under relative atomicity. Since relatively consistent schedules are con
ict equivalent to relatively

atomic [F�O89] schedules and the set of relatively atomic schedules is a subset of the set of relatively serial

schedules, it follows that relatively consistent schedules are also relatively serializable. The proper contain-

ment of the set of relatively consistent schedules in the set of relatively serializable schedules is demonstrated

by the example in Figure 4. The schedule S given in Figure 4 is a relatively serial schedule. However, S

is not con
ict equivalent to any relatively atomic schedule, since the operations of T1 cannot be moved out

of the atomic unit of T3 as seen by T1. In fact operations w1[x] and w1[y] cannot be rearranged to obtain

equivalent relatively atomic schedule since T4 and T2 do not permit T1 in their respective atomic units. The

relationships among the classes described above is given in Figure 5. The inclusions of the sets follow from

the de�nitions. The example given in Figure 4 shows that the set of relatively serializable schedules properly

contains the set of relatively consistent schedules de�ned by Farrag and �Ozsu [F�O89].

There have been other proposals to weaken the atomicity of transactions for improving concurrency.

However, these approaches remain within the con�nes of traditional serializability. Their primary goal is to

relax the two phase restriction of strict two phase locking. Wolfson [Wol86, Wol87] uses preanalysis of read
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Consider a set of transactions T = fT1; T2; T3; T4g where

T1 = w1[x]w1[y]

T2 = w2[z]w2[y]

T3 = w3[t]w3[z]

T4 = w4[x]w4[t]

Atomicity(T1 ; T2): w1[x]w1[y] Atomicity(T2 ; T1): w2[z]w2[y]

Atomicity(T1 ; T3): w1[x]w1[y] Atomicity(T2 ; T3): w2[z]w2[y]

Atomicity(T1 ; T4): w1[x]w1[y] Atomicity(T2 ; T4): w2[z] w2[y]

Atomicity(T3 ; T1): w3[t]w3[z] Atomicity(T4 ; T1): w4[x]w4[t]

Atomicity(T3 ; T2): w3[t] w3[z] Atomicity(T4 ; T2): w4[x] w4[t]

Atomicity(T3 ; T4): w3[t] w3[z] Atomicity(T4 ; T3): w4[x] w4[t]

S = w4[x]w3[t]w4[t]w1[x]w1[y]w2[z]w2[y]w3[z]

Figure 4: A relatively serial schedule that is not relatively consistent

relatively serializable

relatively serial

relatively consistent

relatively atomic

Figure 5: Relationships among the di�erent correctness classes
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and write sets of transactions to eliminate the two phase locking rule. Shasha et al. [SSV92] have proposed

a chopping graph to re�ne user transactions such that only the smaller units of the transactions instead of

the entire one need to be executed using strict two phase locking.

5 Discussion

In this paper we have developed a theory for relaxing the atomicity of transactions to increase concurrency

in database systems. Our approach is general in that it imposes minimal restrictions on the users to specify

relative atomicity of transactions. We have shown that the set of relatively serializable schedules de�ned in

this paper is larger than all previous proposals. In spite of being more permissive, this class can be e�ciently

recognized by testing for the acyclicity of a directed graph. In fact, acyclicity of the graph is both a necessary

and su�cient condition for correctness.

We draw an analogy from the historical development of serializability theory to provide some insight into

the signi�cance of our approach. In the traditional transaction model, view serializability represented the

intuitive correctness criterion based on the user's view of the database. This resulted in a class of schedules

which were found to be intractable. Therefore a restrictive class containing con
ict serializable schedules

was accepted as the set of correct schedules. In the relative atomicity model the equivalence to relatively

atomic schedules is the intuitive correctness criterion based on the user's relative atomicity speci�cations.

However in spite of using con
ict equivalence this correctness criterion results in a class of schedules which

is NP-complete. As we have addressed earlier the relative atomicity speci�cations tend to be conservative.

Hence we relaxed the class of correct schedules to allow for interleavings which can be determined to be

correct only at execution time. The theory we have developed is based on a generalization of the notion of

con
icts and it provides us with a class which can be e�ciently recognized with a graph based tool. Unlike

in the traditional model, we have been able to make the problem tractable without having to compromise

on the size of the new class. In fact, the class of relatively serializable schedules is larger than the class of

relatively consistent schedules. The next step, in traditional databases was the development of more e�cient

locking based protocols such as the two phase locking protocol [EGLT76] which recognize subsets of the

set of con
ict serializable schedules. We are currently developing such e�cient, lock based protocols for

recognizing relatively serializable executions.

We conclude by emphasizing the wide applicability of relative atomicity to many advance database

applications. In particular, we envision relative atomicity to be especially useful for systems with long

lived transactions as well as several advanced collaborative database environments. In fact, for long live

transactions, Salem, Garcia-Molina and Alonso [SGMA87] proposed the use of altruistic locking where a

transaction is allowed to explicitly release a lock early so as to allow other transactions to observe it results.

In [SGMA87] it is argued and experimentally shown that such locks provide improved performance for long-

lived transactions. Relative atomicity can be viewed as a natural generalization of this approach where

di�erent degrees of atomicity are allowed with respect to di�erent transactions. A long-lived transactions

does not need to be atomic for its entire duration with respect to all other transactions. Rather, di�erent

atomic units may be allowed, thus providing more 
exibility and concurrency in the system. Finally, in the

case of collaborative advanced database applications, such as CAD/CAM design environments, users are
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often partitioned naturally into groups with various information 
ow and dependency constraints. Relative

atomicity speci�cations can be easily used to capture such interdependencies. For example, within each

group any interleavings may be allowed while di�erent atomicity units can be speci�ed among the di�erent

groups depending on the degree of collaboration. Most existing proposals for collaboration are ad-hoc and

lack a clear theoretical foundation. We believe that our model provides such a foundation. Furthermore, the

main hurdle, in our opinion, for using relative atomicity technique in such environments was due to their

computational complexity. We believe that our proposal represents a signi�cant �rst step towards alleviating

these problems, and will make such interactions easy and e�ciently manageable.
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