A One-Way Message Logging Algorithm

Greg Bronevetsky

Introduction

One-way messages and active messages are a family of message-passing protocols based on the idea that inter-processor communication should go on without both processors having to agree to communicate. In a one-way messaging system one processor can write data onto another processor, can read data off of another processor and can even run a piece of code on another processor, all without requiring the program running on the other processor to ever get involved in the communication. Relatives of one-way messages include agent-based message passing[Agha] and Linda[Carriero], two approaches where messages are written to and read from data structures in distributed memory, thus completely decoupling communication in time. On the opposite end of the spectrum is the MPI style of message passing where in order to transmit a message between two processors, both the sending and the receiving processors must explicitly agree to the data transfer.

From the point of view of fault tolerance, the interesting thing about this field is the fact that apparently no work has been done in logging one-way messages. This is lamentable in that one-way and active messages are an important flavor of message passing systems and such systems require specialized message-logging protocols in order to achieve fault tolerance at a minimum cost.

Presented here is a message-logging protocol that can very efficiently tolerate a single simultaneous failure in a one-way messaging system. It does this by taking advantage of unique characteristics of one-way messaging systems to minimize the amount of additional data that needs to be sent over the network. This algorithm can be extended to tolerate k failures via a technique very similar to k-failure tolerant causal logging[Elnozahy].

Related Work

Although no work has been done on logging one-way messages, there exists some work in related areas that have bearing upon this problem. Because one-way messages primarily focus on reading and writing data on specific processors, it is very natural to think of them as a simplification of distributed/shared memory systems(DSM) [Amza] in that DSM are also focused on data rather than on messages. As such, a message logging protocol for DSM 's may be applicable in the one-way messaging domain.

One such protocol is found in [Neves], which presents a checkpoint protocol for an entry consistent shared memory system. While successfully providing fault tolerance for a DSM , this algorithm is more complex than what is required for the simplified domain of one-way messages. The key difference between DSM and one-way messages is the fact that in a DSM the programmer addresses data in a virtual address space. In reality the actual data may be stored at any processor. This is not true for one-way messages, where the programmer reads and writes to data stored at a specific processor. This additional information provided by the programmer to the runtime system about the whereabouts of the data being operated upon greatly simplifies the job of logging.

Seeing as the DSM checkpointing algorithm deals with a more complex problem than one we wish to focus on, there is nothing to be gained by adapting this algorithm to work for one-way messages. Instead, better results may be obtained from an algorithm built from the ground up to work with one-way messages.

The Logging Algorithm

The key insight into the problem of efficiently logging one-way messages is to realize that

1. we always know which processor the data in question resides at and

2. in order to log an update to a piece of data so as to be able to repeat the update during recovery, all we need to do is to store the update data at whichever processor generated this data.

In other words, if processor B writes to processor A or processor A reads from processor B, in both cases the data about to be overwritten lies on processor A and the new update data resides on processor B. Thus, in both cases, in order to redo the update we would be well advised store the update data on processor B since during recovery the update data would be fetched by processor A from processor B anyhow. Furthermore, this minimizes the amount of network bandwidth used by the logging protocol.

Keeping this in mind, we will define the logging algorithm as follows:

· When processor B writes data on processor A, processor B should log this event, saving:

· The type of transaction = W (write, where B was the source of data)

· The data that was written

· The processor and memory address where it was written to (a unique identifier)

· When the write happened (relative to B's local clock)

Processor A should also log this event, saving:

· The type of transaction = T (write, where A was the recipient of data)

· A reference to the processor where the update data came from (ie. to B)

· When the write happened (also relative to B's local clock)

W and T are pair events in that such a matching pair denotes an individual write. During such a write, the processor that generated the update data places a W event into its log and the processor that received the data places a T event into its log.

· When processor A reads data off of processor B, the log entries are symmetric to the above case.

B saves:

· The type of transaction = R (read, where B was the source of data)

· The data that was read off of B

· The processor and memory address where the data was read from (a unique identifier)

· When the read happened (relative to B's local clock)

Similarly, A saves:

· The type of transaction = D (read, where A was the recipient of data)

· A reference to the processor where the read data came from (ie. from B)

· When the read happened (relative to B's logical clock)

R and D are also pair events in that such a matching pair denotes an individual read. The processor that owns the data, logs the R event and the processor that received the data, logs the D event.

In general, the T and D events serve as synchronization points. A T or D event indicates a causal dependency on the part of the the process that has this event in its log with respect to the process that the event refers to. For example, when B writes data to A, all of the events on A following the write are causally dependent on all of the events on B before the write. A T event on A is placed right before the set of events on A that depend on the write and it points to the W event on B. This W event is placed right after the set of events on B which precede the write.

In oder to implement the local clock which we use for labeling the events above we have several options. However the most natural thing to do is to keep a counter that counts the number of remote reads and writes that have occurred so far and labels the next such read or write using this counter. Such a counter system could later become useful during recovery to keep track of whether a particular read or write that we're trying to execute again matches certain a event on a remote processor.

Notice that in every case the processor that performs the update is the one to log the data that it used to perform the update. This ensures that we send very little data over the network in the failure-free case. Indeed, the only additional data that needs to be piggybacked onto messages is the current clock value of the processor that performs the data update.

The Recovery Algorithm

When processor A fails and is brought back up, its first task is to recreate its state right before the crash. To do so it sends messages to all the other processors in which it asks them to send it their logs so that it may assemble out of them its own picture of its state. Note that since we're dealing with one-way messages here, we cannot directly ask other processors to do anything. Instead, we must run a handler function on each of the other processors that halts whatever the processor is doing and begins the recovery protocol.

When asked by processor A for its log, processor B sends A the following subset of its log:

· All the W and R events that updated A's state will be sent. These events are primarily valuable in carrying the data was was used in updates. As such, we will not need the W and R events that were destined for other processors because we are not interested in updating them.

· All T and D events will be sent, regardless of which processors they correspond to. These events act as synchronization points between processors in that they ensure that if two processors are dependent on each other, there is a record of that fact in the logs sent to A and this allows us to take special care to respect the dependency.

When A has received a record of all the logs from all the other processors, it begins computing as normally except that instead of reading and writting to other processors, it works with the log. When the program wants to write data to or read data from a remote processor, we:
· loop thru all the processors until we've found an event to match the command being issued or we've finished looking thru all the logs.

· traverse the log of the current processor from oldest entry to newest

· if the current entry is a W event then it indicates that another processor wrote data to this processor. Therefore, take the data in the W event and redo the write.

· else, if the current entry is a T event (T matches writes issued by other processors) then check
· if the T event causally depends on a W event in another processor's log, check whether the other processor has reached the point in time (on its internal clock) that the event depends on. If it has reached or passed this point, we may proceed past this T event. If not, we must stop examining this log until the other processor does reach that point. Accordingly, we move on to the log of the next processor in the list.

· If the T event claims to causally depend on a W event in the recovering processor's log(which has been wiped out), check whether the recovering processor has reached the local time that this T event depends on. If not, move on to another log. If so, then check whether the command we're trying to execute matches the T event (ie. the command is a write to the processor whose log we're examining). If so, then we've found the T event that matches the write we're trying to perform. Clearly, we don't want to reissue the write because we've already issued it before. Thus, do nothing and return.

· else, if the current entry is a R event (an R event on another processor matches a read issued by this processor) then check if the command is a matching read for data on that processor. If so, then we've found the R event on the other processor that matches the current read command. (which would have been a D event in the recovering processor's log before the crash) Thus, take the data stored in the R event and read from that instead of asking the real processor directly.

· else, if the current entry is a D event (they represent reads performed by the process whose log we're currently looking at). Use this event as a synchronization point, much like with the T event, ensuring that the causal dependency established by the read that it represents is maintained.

(Figure 1)

Though this algorithm looks complicated, it is essentially a topological sort of the causal dependency tree induced by the messages flying around the network. Clearly, since a log of a real network cannot have cycles, such a topological sort must be possible and since this algorithm explicitly stores and respects causal dependencies, it does perform a topological sort.

Note, however, what it does not do. For example, lets have two processors A and B. Let A perform several writes on some piece of data stored on B while B writes to that same piece of data as well. Unless we log every single memory access (something that would incur a tremendous overhead), we cannot keep track of the updates caused by two processors that are not fully synchronized. As such, if at some point B fails, we cannot guarantee that during recovery the write updates will occur in the same order as before. However, if we allow for the notion of relaxed consistency, we can get almost everything we want, quite efficiently. My notion of relaxed consistency is similar to the relaxed consistency concept used in DSM's [Koch]. My logging algorithm guarantees that if during the original run, processor A writes data to processor B, during the recovery procedure all the events on processor A which occurred before the write will precede all events in processor B which occur after the write. This guarantee, plus the assumption that all messages are delivered in FIFO order allows the construction of locks, critical sections, etc. as shown in Figure 2.[image: image1.wmf]Processor A

Processor B

L

o

c

k

U

n

l

o

c

k

[image: image3.wmf]4K

8K

16K

32K

64K

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

Message Logging Overhead

Fault Tolerant

Baseline

(Figure 2)

In Figure 2, B sends a message to A (by writing to a known variable or by running a handler function on A) announcing that it gives A a lock over a particular piece of data. In sending this message to A, B promises not to touch the data in question until A releases it by sending B an unlock message. My relaxed consistency guarantees that the writes that A performs in region 2 (the critical section) must follow all events in region 1 (ie. B's events before the Lock message was sent) and precede all the events in region 3 (B's events after Unlock is received) both in the original program (hence the FIFO assumption) and during the recovery. Thus we have ensured consistency by allowing the user to manually insert dependence relations where appropriate. However, without such user-level locking mechanisms, strict consistency cannot be efficiently maintained.

Implementation

My message logging protocol is implemented on top of the DMCS one-way message passing package [Dobbelaere]. It is written as a set of functions that a user would call instead of the standard DMCS functions in order to do remote reads and writes.

Experiment

I ran my experiment on a cluster of 5 Linux machines, running LAM/MPI.

To test the amount of overhead the logging code added to the running time of a parallel program, I ran the same program with and without logging and compared the overall runtimes. In the test program, each of the 5 processors executed 2048 remote writes on another of the 5 processors (in a circle). Because the processors were connected together using Ethernet, the individual streams of activity between pairs of processors collided over the network bus, successfully simulating a general network load. I performed several different trials, with message sizes ranging from 4K to 64K, transmitting a total of 40MB to 78GB of data. Note because this program does a lot of communication and no computation, it constitutes a worst case scenario for my message logging algorithm.

[image: image2.wmf]4K

8K

16K

32K

64K

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

Message Logging Overhead

Fault Tolerant

Baseline

(Figure 3)

Figure 3 shows the runtimes of the test program with and without message logging, for each message size. The runtimes are in seconds. It is clear that the overhead associated with message logging is small. In fact, as the message sizes increase, the overhead shrinks to 2% (it is 20% for message size=4K and 4.3% for 8K).

For message size=4K, it takes 1203 seconds to recreate the processor state, if it is made to fail at the very end of the program. Though I tried to determine the amount of time required for greater message sizes, technical difficulties (I think I'm using too much RAM) prevented this. That recovery takes a very long time can be mostly attributed to the fact that the failed processor needs to receive and reenact the entire network's synchronization activities that occurred during a relatively long period of time. However, since my test program represents the worst case scenario I expect that real-world performance will be better. Furthermore, since processor failures are relatively infrequent, a slow recovery time will ultimately translate into a very low overhead. Finally, combining my message logging work with checkpointing techniques should reduce the amount of work that needs to be recreated and with it, recovery time.

Conclusion

I have presented message logging algorithm which provides fault tolerance for one-way-messaging systems. Taking advantage of the simple nature of one-way messages, the logging algorithm is simple and efficient, sending a very small amount of data across the network and thus achieving a very small overhead over the bare message-passing layer. However this low failure-free mode overhead is contrasted with very slow recovery in the case of a fault. Furthermore, the algorithm is limited to providing protection for upto 1 simultaneous fault, although an extension to k-failures would be simple. (analogous to causal message logging)

Bibliography

[Agha] Gul Agha and Christian J. Callsen. ActorSpaces: An Open Distributed Programming Paradigm. In Proceedings of the 4th ACM Symposium on Principles & Practice of Parallel Programming, pages 23--32, May 1993.

[Amza] C. Amza, A. L. Cox, and et al. Treadmarks: Shared memory computing on networks of workstations. IEEE Computer, 29(2):18--28, February 1996.

[Carriero] Nicholas Carriero and David Gelernter, Linda in context, Communications of the ACM, Vol. 32, No. 4, April 1989.

[Dobbelaere] Jeff Dobbelaere, Kevin Barker, Nikos Chrisochoides, Demian Nave, and Keshav Pingali.Data Movement and Control Substrate for Parallel Adaptive Applications. Submitted to Concurrency Practice and Experience, March 2001.

[Elnozahy] E.N. Elnozahy and W. Zwaenepoel. "Manetho, transparent rollback-recovery with low overhead, limited rollback and fast output commit." In IEEE Transactions on Computers, Special Issue on Fault-Tolerant Computing, 41(5):526—531, May 1992.

[Koch] Povl T. Koch, Robert J. Fowler, Eric Jul. Message-Driven Relaxed Consistency in a Software Distributed Shared Memory. OSDI, pp.75-85, Monterey, California, Nov 14-17, 1994.

[Neves] N. Neves, M. Castro and P. Guedes. "A checkpoint protocol for an entry consistent shared memory system." In Proceedings of the 13 th ACM Symposium on Principles of Distributed Computing, Aug. 1994

1

3

2

� EMBED Chart ���

_112334856.unknown

