CS717: Programming for Fault-tolerance

Fall 2001

Project Report

Potential of Local File System as Message-Logging Storage

LEE, Kyusoon

kl224@cornell.edu
Introduction

The message-logging protocol is a popular technique for implementing processes that can recover from crash failures. However, preliminary reports suggest that the volume of the messages that individual processors send might be huge. Therefore it is almost impractical to keep those messages in memory. The method we approach to this problem in this project is to save these messages into the local file system instead of the local memory. By buffering those messages and triggering asynchronous writes from this buffer to the local file system, we save the messages to the local file system while minimizing the writing overhead by overlapping with the computation or possibly communication.

Local File System Bandwidth Requirements

To see how much bandwidth to the local file system is required, the volume of messages that each process sends and the execution time were measured while running some of the class B NAS parallel benchmarks. According to the preliminary results, these messages are evenly distributed along the execution time. Therefore the maximum and minimum bandwidth required by these applications could be calculated by dividing the message volume by the execution time. 8 cmi nodes (16 processes) were used on.

	Applications
	bt
	cg
	ep
	lu
	mg
	sp

	Max volume (MB)
	508.52
	848.07
	0.00
	303.13
	45.30
	922.42

	Min volume (MB)
	505.38
	848.07
	0.00
	143.83
	45.28
	902.20

	Execution Time (s)
	747.83
	558.10
	51.73
	452.39
	44.27
	763.29

	Max Bandwidth (MB/s)
	0.68
	1.52
	0.00
	0.67
	1.02
	1.21

	Min Bandwidth (MB/s)
	0.68
	1.52
	0.00
	0.32
	1.02
	1.18

Considering that the bandwidth to the local hard disk (bytes/sec) is usually 8~9 MB/s (for both sync/async write), it seems that with proper buffering scheme, we should be able to overlap large portion of disk accessing overhead. And actually it was really weird that sometimes I could get about 40MB/s bandwidth of writing on cmi nodes. Since there is nothing known about the hardware specification or the settings, it is hard to say why. But it might be a writing buffer, or physical location of the disk we are accessing.
Buffering Library
The memory area containing the data to be written to the file must remain valid for the duration of the write operation. To make sure that the caller does not use the area until the write operation is completed, and to enable the write operation to be overlapped with computations (and possibly communications), a simple buffer with multiple buffer pages were implemented. A buffer consists of multiple buffer pages, and each message is copied to the current buffer page before sending on sender side. Once a page is full, the asynchronous write of the page is requested, and we set the page as outstanding (or protected). If there is any other pages available (not outstanding), let one of the pages to be the current page and continue the execution; if not, the application should wait for any outstanding pages to complete their write operations. In other words, it can be said that the number of buffer pages is equal to the allowed number of simultaneous outstanding write requests of this buffer.

Experiments
Eight cmi nodes and sixteen processors on them were used to run six B class NAS parallel benchmarks. Since preliminary results showed that the number of bytes to be written by one writing request does not make any big difference in the bandwidth, the size of buffer page was arbitrarily picked as 4MB. With different number of buffer pages, the execution time and the buffer full rate (the number that the process had to stop due to the lack of the available buffer page) were measured. For example, with only one buffer page, when this buffer page is full, the process has to wait for the writing request to be completed – which is exactly equivalent to the synchronous writing case. The number of buffer pages, 1 (synchronous), 2, and 3 were tested.
As a control, the performance for the base case (without message-logging) and buffering-only case (without actual writing) were also measured.
Results
Table 1 shows the execution times, the overheads of each case compared with the base (without message-logging) case. (Shaded cells are best schemes for each application) Table 2 shows the buffer full rate for each scheme. And the execution time was also depicted as a graph in Figure 1.

	
	bt
	cg
	ep
	lu
	mg
	sp

	base
	747.83
(1.00)
	558.10
(1.00)
	51.73
(1.00)
	452.39
(1.00)
	44.27
(1.00)
	763.29
(1.00)

	buffering-only
	759.26
(1.02)
	478.75

(0.86)
	51.75

(1.00)
	455.12

(1.01)
	45.44

(1.03)
	780.89

(1.02)

	4MBx1
	768.83
(1.03)
	504.90

(0.90)
	51.89

(1.00)
	480.65

(1.06)
	44.05

(1.00)
	851.56

(1.12)

	4MBx2
	769.58
(1.03)
	478.18

(0.86)
	51.86

(1.00)
	461.16

(1.02)
	44.67

(1.01)
	792.60

(1.04)

	4MBx3
	757.34
(1.01)
	485.44

(0.87)
	51.85

(1.00)
	465.97

(1.03)
	45.79

(1.03)
	801.51

(1.05)

Table 1 Execution times
[image: image1.emf]Execution Time with Message-Logging

0

100

200

300

400

500

600

700

800

900

bt

cg ep lu mg sp

Applications

Execution Time (sec)

base

buffering-only

4MBx1

4MBx2

4MBx3

Figure 1 Execution times

	
	bt
	cg
	ep
	lu
	mg
	sp

	4MBx1
	100.0%
	100.0%
	100.0%
	100.0%
	100.0%
	100.0%

	4MBx2
	99.8%
	100.0%
	N/A
	100.0%
	64.8%
	100.0%

	4MBx3
	0.0%
	0.0%
	N/A
	0.0%
	0.0%
	0.0%

Table 2 Buffer full rates

Discussion

As you can see from Table 1 and Figure 1, the overhead of saving the message logs into the local hard disk on cmi nodes was only a few percent of the base execution time. You might think that this result is too promising. So, let me point pitfalls of this experiment and discuss what is known about asynchronous writing on the local file system:

1) If you compare the base case with the 4MBx1, then you can actually find the transfer rate (or bandwidth) from the application to the local hard disk. For example, the overhead of 4MBx1 over base case is about 9.6 sec, and the size of message log is roughly 508MB. Then this means that the messages were written in 53MB/s! Honestly I still do not understand why on the cmi nodes, sometimes I have only 8~9MB/s and therefore much larger overheads on each case, and sometimes this great bandwidth like 40~50MB/s and therefore the tiny overheads. But whatever it is, you have to consider that this data was obtained with almost 50MB/s bandwidth on cmi.
2) As you can easily notice, there is clearly wrong data in the cg application because the base case (without message-logging) was much slower than other cases. When it comes to the hard disk performance, there usually might be significant variation in the execution time, but after repetition of running base cg application, I still could not make it shorter.
3) If you compare the execution time of buffering-only, 4MBx1 (synchronous writing) and 4MBx2 (asynchronous writing) in cg, lu, and sp applications, you can see the large portion of the writing overhead was overlapped with the actual running of the applications.
4) However, having one more outstanding asynchronous write request does not look like a good idea in cg, lu, and sp. If you see the Table 2 together, the buffer full rate was reduce to 0%, but the running times have been increased in somewhat degree. And this probably might be interpreted that if we have more than two outstanding write requests at the same time, at least one of them will be performed synchronously, and therefore delay the execution time, but reduce the buffer full rates.
Even though this research is in many ways insufficient (partly due to the insufficient information on hardware specification?) to guarantee something, the fact that the commodity hard disk has a transfer rate of 8~9 MB/s, and we can achieve this transfer rate with asynchronous write too (most of these results were not covered in this report, though), shows that using the local hard disk as a storage of message logs are not a bad idea considering the volume and frequency of message sending in these applications.
Future Work

There are still many curious things about this topic. Some of them might be:

1) It is obvious that the local hard disk has larger transfer rate than it is required by the applications. But we could not still overlap the writing overhead completely even comparing with the buffering-only case. Why? Would there be any problem in overlapping the writing on the file system with the communication? Maybe we need much detailed profile on the run with this message logging, but this might affect and change the actual profile.
2) Why does not the local file system on cmi nodes show consistent transfer rate? More information on the hardware specification or settings might help.
3) Mostly we were interested in the transfer rate only, but how about the time locating the file pointer with multiple outstanding writes? Any way that can break down the overhead of writing on file system?
References
[1]
The article Q156932 in the MicroSoft Knowledge Base

[2]
MSDN help of WriteFileEx and others
More details on the implementation can be found from the comments in the source codes and README file in the root directory of the attached tarball.
PAGE
7

