CS717 : Reducing Message Log Sizes Through
[teration State Checkpointing

Rohit C. Fernandes
12/12/01

1 Introduction

Rollback recovery through checkpointing and message logging has been the pri-
mary paradigm used for obtaining fault tolerance in long running scientific ap-
plications. While checkpoints are usually taken on disk, the message logging
protocol usually logs the messages on main memory to reduce the overhead as-
sociated with logging. However, there exists a number of scientific programs
which communicate large amounts of data between processors. For these pro-
grams, we face the problem of the main memory getting saturated with the logs
too fast.

Each time a consistent checkpoint is taken, the messages delivered before
the checkpoint can be flushed. However, for the above mentioned programs
the checkpoints would have to be taken very frequently. This would cause a
tremendous overhead for the case of system level checkpoints. In this project,
we try to measure the performance overhead of application level checkpoints
taken on a per iteration basis. Optimizations include mirroring the checkpoints
on the memory of other processors and exploiting redundancy in the application
data to reduce the amount of checkpoint data transferred.

The rest of the report is organized as follows. Section 2 provides necessary
background in terms of the fault model desired by scientific applications and
the various application level checkpointing schemes. Section 3 describes the im-
plementation of the checkpoints. Section 4 describes the experiments performed
and the results obtained. Finally, section 5 concludes with the insights obtained
from the experiments.

2 Background

2.1 Fault Model

The fault model assumed in this report is a simple fail-stop model. When a
node fails or crashes, it simply comes to a halt. It does not behave maliciously
sending arbitrary messages across the network as in the Byzantine case.



Node failures are few but they do occur and it is important that the protocol
used is able to recover correctly from the failure. Multiple failures are possible
though the probability of multiple nodes failing at the same time decreases
rapidly with the number of concurrent failures. When a node fails, it eventually
recovers. As a consequence, the number of nodes before and after failure remains
the same.

Not only must the recovery mechanism be correct, but it must also be ef-
ficient. As failures occur rarely, the single most important property of the
recovery protocol is low failure-free overhead. The next important characteris-
tic is low recovery time from a single node crash. So the failure of a single node
should preferably not cause a majority of the other processes to be rolled back.

2.2 Checkpointing Scheme

The checkpointing scheme used is application level i.e. at each checkpoint the
live data of the application is checkpointed. The applications considered for this
project follow the model of an iterative computation where the same computa-
tion is performed over a large number of iterations. The iterative computation is
generally preceded by an initialization phase. Because of the application model
of iterative computation and the use of application level checkpointing, recovery
of the pre-failure state is done in two phases.

The first phase involves recreation of the state created by the initializa-
tion phase. There is one application level checkpoint associated with this
phase.When the application executes in normal mode, some of the data that
it creates is added to this checkpoint file. Some of the data is not checkpointed
but it is recomputed on recovery. If a failure occurs, the application runs in
recovery mode and it regenerates the data either from the checkpoint file or
recomputes it. At present, this choice is made by a manually editted recovery
script which is executed when the program is in recovery mode as indicated by
a status variable which can be set through a commandline parameter.

The second phase involves restoring the state to the prefailure iteration.
There is another application level checkpoint associated with this phase. This
checkpoint is different from the one mentioned in the previous paragraph. The
checkpoint is taken at the end of an iteration and it contains the iteration num-
ber of the next iteration. On recovery, the recovery script simply restores the
data from the checkpoint and restores the iteration index from the application
level checkpoint.

Three versions of the above scheme have been tried. The first involves storing
the application checkpoint on disk. The second involves mirroring the applica-
tion checkpoint on the memory of some other processor. In this version, every
processor is associated with another processor which is termed its mirror. When
the application level checkpoint is to be taken, a processor simply sends its data
to its mirror where it is stored in a local data structure. The third version is
an optimized version of the second where redundancy in the application data
is exploited. If some of the checkpoint data is available locally on the mirror,
then it is not sent over the network but is instead copied locally by the mirror



processor.

3 Implementation

This project implemented the checkpointing schemes described above for MPI
programs.

For the disk based checkpointing, a set of functions were implemented in C
for saving a set of program data structures to disk as a checkpoint. Functions
were also written to restore these data structures from the disk. These functions
are callable from Fortran programs as well.

For mirror checkpointing, the data was sent to the mirror using MPT calls.
For the optimized versions, a C function was written which made a local copy
of the program data structure.

4 Experimental Evaluation

The above schemes were tried out on 2 NAS benchmark kernels - CG and
SP. CG is a conjugate gradient solver. SP is a solver for three sets of scalar
pentadiagonal systems of equations. Both the programs were compiled for 4
processors. Classes B and A were chosen for CG and SP respectively.

The results obtained for CG are shown in table 1. The first column titled
Interval denotes the number of iterations after which successive checkpoints are
taken. The next three columns stand for checkpointing to the disk, checkpoint-
mirroring and optimized checkpointing. For the case of disk based checkpoint-
ing, the checkpoints are stored on the remote disk. In the case of mirroring,
the MPI process identifiers are used to map processors to mirrors. In this case,
processor i’s mirror is taken to be the processor with identifier (i+2) mod 4.
The first row represents the case when no checkpoints are taken at all.

The first observation is that for the case of CG, the overheads are not very
high. This is because the size of the checkpoints that need to be saved is
quite small(300KB). Also, checkpoint mirroring seems to perform better than
checkpointing to disk. This is probably caused by the fact that the bandwidth
available over the network is higher than that to the disk especially when all the
4 processors pound data to the same disk while in the case of mirroring, each
processor only receives the data from one other processor.

The second observation that can be made is that the overhead for mirror
checkpointing is negligible. So, in this case the optimized checkpointing does not
seem to have much of a gain over mirroring. In the case of CG, the application
data is fully replicated allowing for significant optimization to be made, but still
the results are not impressive because of the small size of the checkpoints.

On the whole, however application level checkpointing seems to be a win.
The total number of iterations in the program is 75. So, for instance if we
checkpoint every 6 iterations, we can obtain a log-size reduction by a factor of
12 for a negligible overhead.



Interval Disk Mirror Optimized
- 421.74 422.94 422.99
1 440.04 423.94 421.89
2 428.98 422.18 421.84
4 424.98 422.36 421.65
6 423.19 421.63 421.45
9 423.56 421.38 422.86
12 423.06 423.21 421.59
15 422.52. 422.07 423.30
20 422.51 422.00 421.19

Table 1: Execution time in seconds of class B of CG running on 4 processors with the different checkpointing schemes

Interval Disk Mirror Optimized
- 488.92 485.87 485.11
1 1275.81 742.51 758.37
2 897.76 614.43 623.64
4 717.62 571.73 576.00
8 696.32 528.21 523.06
16 531.35 509.84 504.35
32 521.89 504.92 508.00
48 518.69 481.16 493.91
64 512.33 502.33 482.70

Table 2: Execution time in seconds of class A of SP running on 4 processors with the different checkpointing schemes

In the case of SP, the runtimes obtained are shown in table 2. The overheads
obtained are much higher in this case.This is because the checkpoint sizes are
much larger(about 4MB). Again as expected the mirrored checkpointing scheme
seems to work better than disk based checkpointing.Also in this case, the opti-
mized version does not do much better than the unoptimized version. This is
because there does not seem to be much scope for the optimization. Only the
elements at the faces of the 3 dimensional array can be locally copied so the
bulk of the data needs to be communicated. The overheads are more because
of the overhead involved with extracting the interior elements and transporting
them. This was done by collecting all the elements in a buffer using mpi_pack
and transporting them. Some of the readings in the runtime for the optimized
case seem to be better than the values obtained for unoptimized checkpoint
mirroring making it possible for the existence of bugs at the present time in the
optimization. Also because the recovery has not been worked out it is not clear
if the above optimization is correct. A difficulty associated with checkpointing
parts of data structures was the fact that it was not always laid out in mem-
ory in a convenient manner requiring explicit loops to traverse the area to be
extracted.

In this case it is not clear if the overheads are acceptable or not as they seem
to be considerable. The total number of iterations in the program is 400. So



for example if we checkpoint every 32 iterations, we get a log size reduction by
a factor of 12 but at an overhead of about 4 percent. However, system level
checkpoints are likely to be atleast a factor of 5 or 6 larger than the application
level checkpoint because of several similar large arrays also present in the pro-
gram which would also have to be checkpointed if system level checkpointing
was used. This would be true even if incremental checkpointing was used as the
other arrays are modified during each iteration.

5 Conclusion

In this project, 3 different schemes were tried out for application level itera-
tion based checkpointing in order to reduce the message log sizes. The results
obtained show that application level checkpoints are likely to be much smaller
than system level checkpoints and one can afford to take them more frequently.
The experiments also showed that checkpoint mirroring has a lower overhead
than checkpointing to the remote disk.

One of the optimizations that was tried to checkpoint mirroring was trying
to recognize replication and exploiting it to reduce the amount of data sent
over the network. This optimization did not seem to be very helpful. In the
case of CG, there was tremendous scope because of the replicated nature of
the implementation but because of the small size of the checkpoint, not much
improvement could be observed. In the case of SP, there was hardly any repli-
cation in the data. It is not very clear if applications in general have a lot of
replication to make this optimization useful in practice.

References

[1] T. Chiueh and P. Deng. Efficient checkpoint mechanisms for massively
parallel machines. In 26th Int. Symp. on FaultTolerant Comp., Sendai,
June 1996.

[2] James S. Plank, Kai Li, Michael Puening. Diskless Checkpointing. In
IEEE Transactions on Parallel and Distributed Systems, 1997

[3] A. Beguelin, E. Seligman and P. Stephan. Application level fault tol-
erance in heterogeneous networks of workstations. In Journal Parallel
and Distributed Computing, 43(2):147-155, Jun. 1997.

[4] E. Seligman and A. Beguelin. High-level fault tolerance in distributed
programs. Technical Report CMU-CS-94-223, Department of Computer
Science, Carnegie Mellon University, Dec. 1994.



