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Preface
This is a report describing the design and implementation of an application-level checkpointing system that was completed as a term project for CS 717.  In addition, it is a collection of musings on how the current system will be expanded to work with a more complete subset of the C programming language and how it will be extended to provide fault tolerance for distributed MPI programs.

It is written not in the style of a research paper, but rather like a presentation of the type that was given in the CS 717 lectures – it provides a general introduction to the material, a description of the actual system, and two brief discussions, one on expanding this system to work with a more complete version of the C language, and another on interesting research directions that might be worthy of exploration.

Introduction
Generally speaking, the ‘current’ state of a running, sequential, process can be separated into three areas: the stack, which describes the local variables of each of the live (not yet returned) functions, and the order in which these functions called one another; the heap, which represents data structures created at run-time; and the processor state, which is a collection of register and flag values.

Clearly, one way of restarting a computation at some past time t would be to restore the stack, heap, and processor state exactly as they were at time t and then resume execution.  Ignoring certain aspects of the state that are difficult to either save or restore (i.e. pid’s, open pipes, file descriptors, file states, etc.) the process would resume from t as if it had never stopped and then restarted.

Conventional operating system or library-based checkpointing systems perform exactly as described above – on taking a checkpoint they write the binary contents of the current stack, heap, and register file to the disk, and on restart they read that data from a file and place in it the appropriate portion of the process’ memory space.

Such systems have enjoyed a great deal of popularity; they are transparent (or almost transparent) to the programmer, allowing fault-tolerance to be added at almost no cost, and their implementation is relatively straight forward, enabling systems vendors to provide them without too much effort.

Problems with system-level checkpointing
For all the benefits of system level checkpointing schemes, there are also a few drawbacks.  The most visible shortcoming is the lack of portability of the checkpoints, i.e. a checkpoint must be restarted on a similar architecture (or, in some cases, the actual same machine) as it was saved on.  This is because the description of a stack frame layout is machine (and OS and compiler) specific, as is the representation of data objects (4 byte integers vs. 8).  An even more obvious example would be the description of the register file, something on which almost every architecture disagrees; even different family members of the same architecture can disagree.  Clearly, if we would like our checkpoints to be portable amongst heterogeneous machines, to allow things like starting a job on an Intel Linux box and resuming it on one running WindowsNT, or to move a job from a Macintosh to a Sun, system-level checkpointing is not a solution.

Before we can discuss the second drawback to the system-level type schemes we will need a brief prelude: It is important to consider what exactly is meant by the term “checkpoint”.  In general usage, a checkpoint is something that describes the process at a certain state of time (the term snapshot is, in my opinion, far more appropriate).  However, if our goal is to provide restartability, we might not, and often do not, need to capture the entire state of a process, just a subset of the state that would enable the program to proceed correctly.  Realizing this, we could imagine that we could exploit this observation in a way that minimizes the size of saved state, reducing the overhead that checkpointing incurs.

We can now mention the second drawback to the system-level schemes – they do not provide a means of taking an arbitrary subset of the process space.  Yes, we can be smart and exclude the unused portions of the stack and the heap, but that does not extend to excluding areas that are in use, but are no longer necessary.  Certain systems combined with compiler technology will allow us to avoid checkpointing so-called dead objects on the heap, but in a naïve manner: breaking up a continuous memory transfer into a collection of smaller memory transfers.  The increase in the number of system calls, the overhead of starting the multiple DMAs, etc. might actually make the (sum of the) smaller transfers more expensive.  These system-level systems are not flexible enough to take full advantage of dead data elimination, they allow some types of state reduction, but they are too inflexible to allow for all the valid reductions.

If we would like to provide heterogeneous checkpoint files, or derive benefits by eliminating the saving and restoring of unnecessary state, such system-level schemes will not suffice.

Application-level checkpointing

Application-level checkpointing is a different method for recording and restarting from a snapshot: it involves modifying the application source code in a manner such that the transformed program contains instructions for performing the checkpoint/restart functionality.  At its simplest, the transformed program contains code to save the current value of a program’s variables and position (analogue to a Program Counter), and code to read those values from a checkpoint file, restore the program’s variables to those values, and to reset the program’s position.

Application programmers have been doing such transformations by hand, probably since the day of the first system crash.  However, as the complexity of software systems has grown, so has the difficulty of doing so.  Today’s software is so incredibly complex, with millions of variables, tens of thousands of functions, and the potential for the call stack to be thousands of calls deep, that it is a monumental task just to try and figure out what is going on; forget attempting to decide what data needs to be saved and how to restore it.

Before we continue, however, lets address the issues raised in the previous section, namely, portability and state minimization.  The program is transformed at the source code level, therefore, every machine that was capable of compiling and running the original program can do so with the modified one.  The code for saving values, for instance the write() function, will be implemented differently on each machine, but at the source code level, they look exactly the same.  Therefore, provided we have a way to store the checkpoint data in a format that can be understood by every system (which we do, but will not be discussed here), every program can run its binary version of the program, but read and restart from the same checkpoint files.  Regarding the so-called state reductions: it should be obvious that if the application programmer is doing the code transformation manually he would be able to determine what state did not need to be saved.

Automatic application-level checkpointing system

In order to gain the advantages of application-level checkpointing, while avoiding the heavy effort of converting source code by hand, research has been conducted into developing compiler, languages, or programming sysems that do (or provide) the necessary transformations automatically.  Below I will briefly describe a system that I have developed.  It is capable of transforming the source code of a C program into another C program, one that provides the necessary instructions to do checkpoint/restart.  In its current version, my system does not yet support dynamic (heap) data structures, nor passing pointers as function parameters, but such omissions will soon be fixed. Others have developed similar systems, but my system appears to be differ from those in some important respects, but a fair comparison will have to wait until my system can deal with a more complete C language.

Also, note that below I will often refer to a compiler and compiler transformations; in actuality the current version of the system does not use a compiler, but rather just a pre-processor. The current version of the system requires that the programmer annotate the source code (using C comments) so that the pre-processor can know certain things that a compiler could easily figure out, such as the beginning and end of the actual code of a function (as opposed to variable declarations).

Although an application’s source code does not contain any references (in the English, not CS, sense of the word) to the stack, heap, register files, PC, etc. of the process, an application-level checkpoint system still needs to be able to save and restore those things: after all, they constitute a program’s state.  Therefore, the program’s transformed source needs to monitor what is on the actual stack, heap, etc.  This is accomplished by maintaining a so-called shadow stack and heap.  These are source code data structures that mimic the actual system structures.  This allows a source code checkpoint routine to know what is on the stack, in an architecture independent manner.

When a checkpoint is taken, the contents of the machine’s stack describe (part of) the current process state: the current values of the variables in each function, the parameters passed to each function, where each function is in its execution (the return pointer), and so on. Our application-level checkpoint routines need someway of saving and recovering this data, so the application must contain some data structures that contain this data and that are in sync with the actual system state.  This structure is called the shadow stack.

At first thought, it would appear that the state of the shadow stack would need to closely match the state of the true stack; that every update to a variable would cause a change to both its value on the real stack and on the shadow stack. (For now we ignore the notion of return addresses, PC, etc. which we will address below.) This seems like it would be highly inefficient, at least doubling the execution time of the program, negating the benefits of using a checkpointing system. The important observation to make, however, is that the actual stack and the shadow stack only need to agree when the checkpoint is taken.
Let’s first consider a program that contains only one function, and does not make any function calls.  Assume that the programmer has annotated where checkpoints are to take place (of course, a compiler could have decided these locations) and that the compiler has inserted code for writing a checkpoint file at the location of those annotations.  For now let’s imagine that writing a checkpoint consists simply of writing the shadow stack to a file.  Therefore, when we arrive at the checkpoint location, the shadow stack must agree with the actual stack.  This is ensured by having the compiler insert, before the actual checkpointing code, code that copies all the current values of the local variables to the shadow stack (of course, we must copy them in a consistent order, but this is straightforward and doesn’t merit discussion).  When the program is restarted from this checkpoint, we need for it to resume at the point immediately after the checkpoint was taken. This is accomplished by inserting a label after the checkpointing code, and pushing the value of that label onto the shadow stack before the checkpointing code. After the checkpoint is taken the values on the shadow stack are no longer needed, so the compiler inserts code that pops them from the shadow stack (including popping the label value).  This is done so that at the next checkpoint location the code is entirely congruent. 

If the program should need to resume from a checkpoint, the recovery steps are as follows.  On entry to the function, compiler inserted code checks if it is indeed running in recovery mode.  If it is, it recreates its shadow stack by copying the (relevant portion of the) checkpoint file, and then copies the values from the shadow stack onto the actual stack.  This is accomplished merely by assigning the stored values to the correct variables.  The code then reads the label stored on the shadow stack, and jumps to the appropriate label, which would be the next line immediately following the checkpointing code.  Observe that the actual stack is how it was immediately after the checkpoint file was generated, that the shadow stack has been recreated, and that the program is at the same point.  Therefore, we have recovered from this checkpoint file, and we switch from recovery mode to regular mode and resume normal computation.

Extending this model to a multi-function one is straightforward.  Assume that function A calls function B, and that the checkpointing is done in function B.  Function B is handled exactly as described in the previous paragraph.   We must ensure that at the time the checkpoint is taken, the shadow stack contains the shadow stack frame of A.  This is easily accomplished by pushing A’s local variables onto the shadow stack immediately before the call to B, and popping them off after the call returns.  In order to recover the PC, a label is placed (by the compiler) before the call to B, and the value of this label is pushed on the shadow stack before the call is made to B.  This label is popped of the shadow stack after the call to B returns.

If the program needed to be restarted from a checkpoint taken in B, it would proceed as follows.  The application would begin in recovery mode.   The shadow stack of A would be restored from the file, then A’s local variables (actual stack) would be loaded with the appropriate values, finally a jump would be made to the label stored in A’s shadow stack frame.  The next call immediately below this label would be the call to B.  B would restore its portion of the shadow stack, and make the jump to the label stored in its shadow stack frame, jumping below the take-checkpoint code.  The application would be switched to regular mode, popping B’s shadow stack, running as normal, and eventually returning to A.  A would pop its shadow stack, and continue on.

It is important to notice that if A contained multiple calls to B, and B contained multiple checkpoint locations, on recovery we would always have the proper set of labels on the stack, so that we could restart the application at the correct point.  In this manner we provide a functional and correct checkpointing system.

Extensions and Future Work
I will now list the extension to the current system and the future work I plan to do, roughly in the order I plan to proceed in.

My immediate plans for this system are to implement checkpointing of the heap.  This will be accomplished in a similar manner, using a shadow heap but will be more complicated, because it will require snooping on the calls to the memory system manager (malloc(), etc.).  At the same time, I plan to provide support for passing pointers as function arguments.

Currently the checkpoint files are written in a machine specific format.  I plan to change this by converting all the data in the checkpoint file to a universal format, most likely XDR.

As mentioned, the ‘compiler’ in this version of this system is actually a set of hand inserted preprocessor commands.  It will be simple to develop a restructuring compiler that either inserts those preprocessor commands automatically, or takes over the work of the preprocessor entirely.

Once the source language is a reasonable approximation to the C language, I plan to extend this system so that it works with distributed, MPI-based, programs.  This would not entail much work, provided the programmer can insert the checkpoint annotations in the appropriate spots (to provide blocking-coordinated checkpointing).

Once the system has matured to the point that it can handle a reasonably complex source language, I plan to investigate compiler optimizations for minimizing the state that is saved, finding the optimal checkpoint location, and choosing between the restoration of or the recomputation of program data structures.  

Finally, I plan to compare the performance of this system to other systems (both system and application-level based technology).  It is my belief that with the proper compiler technology an application-level checkpointing system could have much less overhead than a comparable system-level system, while allowing for heterogeneous checkpoints.  Additionally, such a system would bring a powerful and useful checkpointing system to anyone with a C compiler, independent of what architecture or OS they use.

