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Abstract. This paper shows how to achieve, under certain conditions, abstract-interpretation
algorithms that enjoy the best possible precision for a given abstraction. The key idea is a
simple process of successive approximation that makes repeated calls to a decision proce-
dure, and obtains the best abstract value for a set of concrete stores that are represented
symbolically, using a logical formula.

1 Introduction

Abstract interpretation [6] is a well-established technique for automatically proving cer-
tain program properties. In abstract interpretation, sets of program stores are represented
in a conservative manner by abstract values. Each program statement is given an inter-
pretation over abstract values that is conservative with respect to its interpretation over
corresponding sets of concrete stores; that is, the result of “executing” a statement must
be an abstract value that describes a superset of the concrete stores that actually arise.
This methodology guarantees that the results of abstract interpretation overapproximate
the sets of concrete stores that actually arise at each point in the program.

In [7], it is shown that, under certain reasonable conditions, it is possible to give a
specification of the most-precise abstract interpretation for a given abstract domain. For
a Galois connection defined by abstraction function � and concretization function � ,
the best abstract post operator for transition � , denoted by 	�

������� ��� , can be expressed
in terms of the concrete post operator for � , 	�
������ ��� , as follows:

	�
���� � � ����������	�

����� �������� (1)

This defines the limit of precision obtainable using a given abstraction. However, Eqn. (1)
is non-constructive; it does not provide an algorithm for finding or applying 	�

��� � � ��� .

Graf and Saı̈di [11] showed that decision procedures can be used to generate best
abstract transformers for abstract domains that are fixed, finite, Cartesian products of
Boolean values. (The use of such domains is known as predicate abstraction; predi-
cate abstraction is also used in SLAM [2] and other systems [8, 12].) The work pre-
sented in this paper shows how some of the benefits enjoyed by applications that use
the predicate-abstraction approach can also be enjoyed by applications that use ab-
stract domains other than predicate-abstraction domains. In particular, this paper’s re-
sults apply to arbitrary finite-height abstract domains, not just to Cartesian products of
Booleans. For example, it applies to the abstract domains used for constant propagation
and common-subexpression elimination [14]. When applied to a predicate-abstraction
domain, the method has the same worst-case complexity as the Graf-Saı̈di method.

To understand where the difficulties lie, consider how they are addressed in predi-
cate abstraction. In general, the result of applying � to an abstract value ! is an infinite
set of concrete stores; Graf and Saı̈di sidestep this difficulty by performing � symboli-
cally, expressing the result of �#"$!&% as a formula ' . They then introduce a function that,
in effect, is the composition of � and 	�
����(� ��� : it applies 	�
������ ��� to ' and maps the result



back to the abstract domain. In other words, Eqn. (1) is recast using two functions that
work at the symbolic level, �� and

�
��	�
������ ��� ,3 such that

�
� 	�

��� � ��� ���� ������	�
������ ��� ��� .

To provide insight on what opportunities exist as we move from predicate-abstraction
domains to the more general class of finite-height lattices, we first address a simpler
problem than

�
� 	�

��� � ��� , namely,

How can �� be implemented? That is, how can one identify the most-precise ab-
stract value of a given abstract domain that overapproximates a set of concrete
stores that are represented symbolically?

We then employ the basic idea used in �� to implement our own version of
�
� 	�

��� � ��� .

The contributions of the paper can be summarized as follows:

– The paper shows how some of the benefits enjoyed by predicate abstraction can
be extended to arbitrary finite-height abstract domains. In particular, we describe
methods for each of the operations needed to carry out abstract interpretation.

– With some logics, the result of applying 	�
������ ��� to a given set of concrete stores
(represented symbolically) can also be expressed symbolically, as a formula

���
. In

this case, we can proceed by computing �� " ��� % . For other logics, however,
���

cannot
be expressed symbolically without passing to a more powerful logic. For instance,� If sets of concrete stores are represented with quantifier-free first-order logic,

it may require quantified first-order logic to express 	�

��� � ��� .� If sets of concrete stores are represented with a decidable subset of first-order
logic, it may require second-order logic to express 	�

��� � ��� .

In such situations, the procedure that we give to compute
�
� 	�

����� ��� provides a way

to compute the best transformer while staying within the original logic.

The remainder of the paper is organized as follows: Sect. 2 motivates the work by
presenting an �� procedure for a specific finite-height lattice. Sect. 3 introduces terminol-
ogy and notation. Sect. 4 presents the general treatment of �� procedures for finite-height
lattices. Sect. 5 discusses symbolic techniques for implementing transfer functions (i.e.,�
� 	�

����� ��� ). Sect. 6 makes some additional observations about the work. Sect. 7 dis-
cusses related work.

2 Motivating Examples
This section presents several examples to motivate the work. The treatment here is at
a semi-formal level; a more formal treatment is given in later sections. (This section
assumes a certain amount of background on abstract interpretation; some readers may
find it helpful to consult Sect. 3 before reading this section.)

The example concerns a simple concrete domain: let 	�

� denote the set of variables
in the program being analyzed; the concrete domain is ���
������� .

Predicate Abstraction A predicate-abstraction domain ��� � � � is based on a set � of
predicate names, each of which has an associated defining formula: � �����! def� '" $#%'&)(*&,+.-

. Each value in ��� � � � is a set of possibly negated symbols drawn from
� , where each symbol �/ is either present in positive or negative form (but not both),
or absent entirely. For instance, with � ����� � def� ' �
0 � � def� ' �10 �32 def� '�2 - , values in
��� � � � include �
45� ��0 � �10 45�32 - , �6� �60 � � - , ��45�!2 - , and 7 .

3 We use the diacritic 8 on a symbol to indicate an operation that either produces or operates on
a symbolic representation of a set of concrete stores.



We will use a predicate-abstraction domain in which there is a Boolean predicate
� def� "�� ���(% for each ��� 	�
1� and each distinct constant � that appears in the program.
For instance, if the program is �	�

��
� � �
��� ����� (2)

the predicate-abstraction domain is based on the predicate set �6� � def� "�� � % % , � � def�
"�� ����% , � 2 def� "�� ���
% , ��� def� "�� � % % , ��� def� "�� ����% , ��� def� "�� ���
% - .
Note that this domain does not provide an exact representation of the final state that
arises, � � �! % � 0 �"�! � � . The best that can be done is to use the abstract value
��45� � 0 � � 0 45� 2 0 45��� 0 45��� 0 45��� - , which provides limited information about the value
of x.

Our choice of predicate-abstraction domain ��� � ��� �60 � �10 �32 0 � � 0 � � 0 � � - � was
made solely for the sake of simplicity. With a different choice of predicates, we could
have retained a greater or lesser amount of information about the value of x in the state
after program (2); however, there would always be some program that gives rise to a
state in which information is lost.

The # Function for Predicate-Abstraction Domains One of the virtues of the
predicate-abstraction method is that it provides a procedure to obtain a most-precise
abstract value, given (a specification of) a set of concrete stores as a logical formula $
[11]. We will call this procedure ��&%(' ; it relies on the aid of a decision procedure, and
can be defined as follows:

�� %(' "�$ % � �6�  #)$+* '� is valid
--, ��45�  �#($+* 4�'� is valid

-
(3)

For instance, suppose that $ is the formula "�� �.��%0/ "�� ���1�2� � % % , which captures
the final state of program (2). For ��&%(' "�"�� �	�
%(/ "�� ���3�4� � % %�% to produce the answer
��45� � 0 � � 0 45� 2 0 45��� 0 45��� 0 45��� - , the decision procedure must demonstrate that the
following formulas are valid:

"�� �.��%5/ "�� �����-� � % %6* 4 "�� � % % "�� �.��%5/ "�� �7���-� � % %6* 4 "�� � % %
"�� �.��%5/ "�� �����-� � % %6* "�� ���
% "�� �.��%5/ "�� �7���-� � % %6* 4 "�� ���
%
"�� �.��%5/ "�� �����-� � % %6* 4 "�� �7��% "�� �.��%5/ "�� �7���-� � % %6* 4 "�� �7��%

Going Beyond Predicate Abstraction We now show that the ability to implement the
� function of a Galois connection between a concrete and abstract domain is not limited
to predicate-abstraction domains. In particular, we will demonstrate this for the abstract
domain used in the constant-propagation problem: "1	.

�8!:9<; %>= . The abstract value?

represents 7 ; an abstract value such as � �@�!BA 0 � �!DC 0>E �!BA�� represents all concrete
stores in which program variables � and E are both mapped to A .4

The procedure to implement �� for the constant-propagation domain, which we call
��3FG% , is actually an instance of a general procedure for implementing �� functions that
applies to a family of Galois connections. It is presented in Fig. 1; ��HFG% is the instance of
this procedure in which the return type I is "1	.

�J!K9 ; % = , and “structure” in line [5]
means “concrete store”.

4 We write abstract values in Courier typeface (e.g., L M�NO"PRQTS�NOVU�QXWYNOZP\[ ), and concrete
stores in Roman typeface (e.g., L ]^NO"_`QTa�NO"b0c`QedYNOZ_f[ ).



[1] � 8� (formula � ) �
[2] ans := �
[3] � := �
[4] while ( � is satisfiable)

�
[5] Select a structure � such that ��� �	�
[6] ans := ans 
���
����
[7] ��� �������.8��
 ans �
[8] �
[9] return ans
[10] �
Fig. 1. An algorithm to obtain, with the aid of a decision procedure, a most-precise
abstract value that overapproximates a set of concrete stores. In Sect. 2, the return type
L is "1	.

��!B9 ; %>= , and “structure” in line [5] means “concrete store”.

As with procedure ��3%(' , ��&F % is permitted to make calls to a decision procedure
(see line [5] of Fig. 1). We make one assumption that goes beyond what is assumed in
predicate abstraction, namely, we assume that the decision procedure is a satisfiability
checker that is capable of returning a satisfying assignment, or, equivalently, that it is a
validity checker that returns a counterexample. (In the latter case, the counterexample
obtained by calling ProveValid( 4�' ) is a suitable satisfying assignment.)

The other operations used in procedure �� F % are � , � , and �� :

– The concrete and abstract domains are related by a Galois connection defined by a
representation function � that maps a concrete store ��� 	�

� !:9 to an abstract
value � "�� % � "1	�
1�.! 9 ; %e= . For instance, � maps the concrete store � � �!% � 0 �8�! � � to the abstract value � �@�! � 
 0 � �!B
�� .

– � is the join operation in "1	�
1��! 9 ; % = . For instance,

� �<�!BA 0 � �! �2
 0 E �!BA���� � �<�!BA 0 � �! �! 0 E �!BA�� � � �@�!KA 0 � �!KC 0 E �!BA��& 
– There is an operation � � that maps an abstract value ! to a formula � ��"$!&% such that !

and ���" ! % represent the same set of concrete stores. For instance, we have

���" � �<�!KA 0 � �! C 0>E �!BA�� % � "�� �#"
%5/ "�$ �#"�%� 
The resulting formula contains no term involving � because

� �!KC does not place
any restrictions on the value of

�
.

Operation �� permits the concretization of an abstract store to be represented sym-
bolically, using a logical formula. This allows sets of concrete stores to be manipu-
lated symbolically, via operations on formulas.

To see how ��&F % works, consider the program

E � � A� � � � � E (4)

and suppose that $ is the formula "�$��#"
%1/ "�� �	���%$�% , which captures the final state
of program (4). The following sequence of operations would be performed during the



invocation of ��&FG% "�"�$ �#"
%5/ "�� �	���%$�%�% :
Initialization: ����� � � �

� � � 
�d � _ � � 
 ] � a��&d �
Iteration 1: � � ��L ]^NOZ_`Q a�NOZb0c`Qed NO"_ [ // Some satisfying concrete store

����� � � � 
 ��
TL ]^NOZ_)Q a�NO b c)Qed NOZ_ [ �
�"L M�NO"PRQTS�NO �	� QTW�NOZP\[

8� 

����� � � 
 ]�� _ � � 
 a � b0c � � 
�d � _ �
� � � 
�d � _ � � 
 ] � a��&d � � � 
 
 ] � _ � � 
 a � b0c � � 
�d � _ � �
� 
�d � _ � � 
 ] � a��&d � � 
 
 ]��� _ ��
 
 a��� b c ��
 
�d��� _ � �
� 
�d � _ � � 
 ] � a��&d � � 
 a��� b c �

Iteration 2: � � ��L ]^NOZ_`Q a�NOZb��`Qed NO"_ [ // Some satisfying concrete store
����� � �.L M�NO"PRQTS�NO �	� QTW�NOZP\[ 
 ��
TL ]^NO"_`Q a�NO"b��)Qed NOZ_f[ �

�"L M�NO"PRQTS�NO �	� QTW�NOZP\[ 
<L M�NO"PRQTS�NO ��� Q WYNOZP\[
�"L M�NO"PRQTS�NOVU�QXWYNO"P\[

8� 

����� � � 
 ]�� _ � � 
�d � _ �
� � � 
�d � _ � � 
 ] � a��&d � � 
 a��� b c � � 
 
 ]��� _ ��
 
�d��� _ � �
� ff

Iteration 3: � is unsatisfiable
Return value: L M�NOZPRQ SYNO
U�Q W�NOZP\[
At this point the loop terminates, and �� F % returns the abstract value

� �<�!BA 0 � �!KC 0 E �!BA�� . In effect, ��&FG% has automatically discovered that in the ab-
stract world the best treatment of the multiplication operator is for it to be non-strict inC . That is, A is a multiplicative annihilator that supersedes C : A � C+� A .

In general, �� "�$ % carries out a process of successive approximation, making repeated
calls to a decision procedure. Initially, ' is set to $ and ����� is set to

?
. On each iter-

ation of the loop in �� , the value of ����� becomes a better approximation of the desired
answer, and the value of ' describes a smaller set of concrete stores, namely, those
stores described by $ that are not, as yet, covered by ����� . For instance, at line [7]
of Fig. 1 during Iteration 1 of the second example of ��HFG% "�$ % , ����� has the value
� �<�!BA 0 � �! � 
 0>E �!BA�� , and the update to ' , '

�
� ' /*4���#" ans % , sets ' to "�$��

"�%5/ "�� �����%$�% / "������� ��% . Thus, ' describes exactly the stores that are described by$ , but are not, as yet, covered by ����� .
Each time around the loop, �� selects a concrete store � such that � # � ' . Then ��

uses � and � to perform what can be viewed as a “generalization” operation: � con-
verts concrete store � into an abstract store; the current value of ����� is augmented
with � " � % using � . For instance, at line [6] of Fig. 1 during Iteration 2 of the sec-
ond example of �� F % "�$ % , ����� ’s value is changed from � �8�!KA 0 � �! � 
 0>E �!KA � to
� �<�!BA 0 � �! � 
 0>E �!BA�� ��� " � � �! " 0 �7�! �� 0 $ �! " � % � � �<�!BA 0 � �! C 0>E �! A � .
In other words, the generalization from two possible values for

�
, � 
 and �! , is C ,

which indicates that
�

may not be a constant at the end of the program.
Fig. 2 presents a sequence of diagrams that illustrate schematically algorithm ��

from Fig. 1.

3 Terminology and Notation
For us, concrete stores are logical structures. The advantage of adopting this outlook is
that it allows potentially infinite sets of concrete stores to be represented using formulas.

Definition 1. Let ! � �#" � 0  ( � 0 "�$ - be a finite set of predicate symbols, each with a
fixed arity; let !&% denote the set of predicate symbols with arity ' . Let ( � � � � 0  ( � 0 ��) -
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sem

antics
for

first-order
logic

(e.g.,see
[10]).W

e
use��'��� to

denote
the

setof
concrete

structures
thatsatisfy'

:
��'����

��
#�+�-��������
	��
	�����������(�	 0
�� 0�

#��
' -.

E
xam

ple
2.

��"��
�#
"
%4/

"�$�
"�%��� .���

���!
" 0�8�!

" 0$^�!
"� 0����

���!
" 0�<�!

%0$��!
"� 0

���
���!

" 0�8�!
� 0$^�!

"� 0 ( � 
/

D
efinition

2.
A

com
plete

join
sem

ilatticeI
�
	�I 0�00�10 ? �

is
a

partially
ordered

set
w

ith
partialorder 0

,such
thatfor

every
subset2

ofI
,I

contains
a

leastupper
bound

(or
join

),denoted
by 12

.
T

he
m

inim
al

elem
ent ?�I

is 1
7 .W

e
use�

��
as

a
shorthand

for 1�0� 0� -.W
e

w
rite �43+�

w
hen � 0�

and �
��	�.

T
he

pow
ersetof

concrete
stores ��5�687)9 �;:
<�:>=�<�;?9 <>@�BAC8Dis

a
com

plete
join

sem
ilattice,

w
here

(i)2 0FE
iff2

� E
,(ii) ?

�
7,and

(iii) 1
�HG

.

D
efinition

3.
L

etI
�
	�I 0'00�10 ? �

be
a

com
plete

join
sem

ilattice.A
strictly

increas-
ing

chain
inI

is
a

sequence
ofvalues! �0! �0 � ( 0such

that!%I3
!%KJ �.W

e
say

thatI
has

finite
height

ifevery
strictly

increasing
chain

is
finite.

W
e

now
define

an
abstractdom

ain
by

m
eans

of
a

representation
function

[18].

D
efinition

4.
G

iven
a

com
plete

join
sem

ilatticeI
�

	�I 0'00�10 ? �
and

a
rep-

resentation
function

� ����������	��
	�����������(�	 0
��
!
I

such
that

for
all

�
�



�(�)�����	��;	��������������	 0����"�%�� ?
,a

G
alois

connection�5�6879 �;:<:;=�<�;?9 <>@�BAC8D ��� I
is

de-

fined
by

extending �
pointw

ise,i.e.,for ��
���������
	��
	�����������(�	 0
��and !&�I

,

�" ���%� ����
	= �"��%
�#"$!&%�

��
#�+����������	��;	�����������(��	 0
�� 0�"�% 0

! -

Itis
straightforw

ard
to

show
thatthis

defines
a

G
alois

connection,i.e.,(i)�
and�

are
m

onotonic,(ii) �
distributes

over ,
,(iii) ��

�
�#"$�" ���%%,and

(iv) �"�#"$!%% 0
!.

W
e

say
that !

overapproxim
ates

a
set

of
concrete

stores ��
if �#"$!%�� ��

.
It

is
straightforw

ard
to

show
that �" ���%

is
the

m
ost-precise

(i.e.,least)
abstractvalue

that
overapproxim

ates ��
.

E
xam

ple
3.

In
ourexam

ples,the
abstractdom

ain
w

illcontinue
to

be
the

one
introduced

in
Sect.2,nam

ely,"	�

�!
98;% =

.A
s

w
e

saw
in

Sect.2,�
m

aps
a

concrete
store

like
� ��

���!
" 0�8�!

� 0$^�!
"� to

an
abstractvalue��@�!B

A 0 ��!�
 0>E�!B
A�� .T

hus,

��� .� ��
���!

" 0�@�!
" 0$J�!

"� 0
� ��

���!
" 0�@�!

� 0$J�!
"� /��

�
�" � ��

���!
" 0�@�!

" 0$^�!
"�%

�
�" � ��

���!
" 0�@�!

� 0$^�!
"�%

�
��@�!B
A 0 ��!B

A 0>E�!K
A�

�
��@�!B
A 0 ��!�
 0>E�!K

A�
�
��@�!B
A 0 ��!K

C 0>E�!B
A��& 

Suppose
that

abstract
value!

is��8�!K
A 0 ��!K

C 0>E�!K
A� .B

ecause ��!K
C

does
not

place
any

restrictions
on

the
value

of �,w
e

have

�#"$!&%#� .� ��
���!

" 0�@�!
" 0$J�!

"� 0� ��
���!

" 0�8�!
%0$^�!

"� 0
� ��

���!
" 0�@�!

� 0$J�!
"� 0 ( � 

/
4

Sym
bolic

Im
plem

entation
of

the�
F

unction
T

his
section

presents
a

generalfram
ew

ork
forim

plem
enting �

functions
ofG

alois
con-

nections
using

procedure ��
from

Fig.1. ��"�$%
finds

the
m

ost-precise
abstract

value
in

a
finite-height

lattice,given
a

specification
of

a
set

of
concrete

stores
as

a
logical

for-
m

ula $
. ��

represents
sets

of
concrete

stores
sym

bolically,using
form

ulas,and
invokes

a
decision

procedure
on

each
iteration.

T
he

assum
ptions

of
the

fram
ew

ork
are

rather
m

inim
al:

–
T

he
concrete

dom
ain

is
the

pow
er

setof�(�)�����	��;	��������������	 0��� .
–

T
he

concrete
and

abstract
dom

ains
are

related
by

a
G

alois
connection

defined
by

a
representation

function �
thatm

aps
a

structure �7��(�)�����	��;	��������������	 0���to
an

abstractvalue�"��%.
–

Itis
possible

to
take

the
join

of
tw

o
abstractvalues.

–
T

here
is

an
operation ��

thatm
aps

an
abstractvalue !to

a
form

ula ���"!%
such

that

�����"!%����
�#"$!&%� 

(6)

O
peration��

perm
its

the
concretization

of
an

abstract
value

to
be

represented
sym

bol-
ically,using

a
logicalform

ula,w
hich

allow
s

sets
of

concrete
stores

to
be

m
anipulated

sym
bolically,

via
operations

on
form

ulas.
(In

this
paper,

w
e

use
first-order

logic;
in

general,how
ever,other

logics
could

be
used.)
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A
s

w
e

saw
in

Sect.
2,

because ��!K
C

does
not

place
any

restrictions
on

the
value

of �,w
e

have���"��<�!B
A 0 ��!

C 0>E�!B
A��%�

"��
�
"�%1/

"�$�
"�% .From

E
xs.2

and
3,w

e
know

that

��"��
�#
"
%5/

"�$�#
"
%��� .���

���!
" 0�8�!

" 0$J�!
"� 0���

���!
" 0�8�!

%0$^�!
"� 0

���
���!

" 0�8�!
� 0$J�!

"� 0 ( ( 
/

�
��"��@�!B

A 0 ��!
C 0>E�!B

A��% 0
and

thus
E

qn.(6)
is

satisfied.For !�
"	�

��!

9; %e=
, ���"!%

is
defined

as
follow

s:

���"$!&%��� ����
ff

if!�� ?
�� ��
����A

�	���

��; "�����
!�"���%%

otherw
ise

Specification
of

A
lpha

Procedure ��
is

to
im

plem
ent �

,given
a

specification
of

a
set

of
concrete

stores
as

a
logicalform

ula $
.T

herefore, ��
m

usthave
the

property
thatfor

all $
, ��"�$%��

�"���$��%.
N

ote
thata

logicalform
ula $

represents
the

setofconcrete
stores ��$��;thus, �"��$��%

(and
hence��"�$%,as

w
ell)

is
the

m
ost-precise

abstractvalue
thatoverapproxim

ates
the

setof
concrete

stores
represented

sym
bolically

by$
.

Im
plem

entation
of

A
lpha

Procedure��
is

given
in

Fig.1.

E
xam

ple
5.

A
trace

of
a

callon ��
for

the
constant-propagation

dom
ain "1	.

��!B

9; %>=
w

as
presented

in
Sect.

2.
In

generalizing
the

idea
from

Sect.
2,

concrete
stores

have
been

identified
w

ith
logical

structures,so
instead

of
w

riting,e.g.,� ��
���!

" 0��!
�R� 0$J�!

"�,w
e

w
ould

now
w

rite� ��
� ��

���!
" 0�@�!

�R� 0$J�!
"�.

T
heorem

1.
Suppose

that
the

abstract
dom

ain
has

finite
height

of
at

m
ost�.

G
iven

input$
,��"�$%

has
the

follow
ing

properties:

(i)
T

he
loop

on
lines

[4]–[8]
in

procedure��
is

executed
atm

ost�
tim

es.
(ii) ��"�$%�

�"��$��%
(i.e., ��"�$%

com
putes

the
m

ost-precise
abstractvalue

that
overap-

proxim
ates

the
setofconcrete

stores
represented

sym
bolically

by$
).

5
Sym

bolic
Im

plem
entation

of
T

ransfer
F

unctions
5.1

T
ransfer

F
unctions

for
Statem

ents

If �
is

a
set

of
predicate,constant,or

function
sym

bols,let � �denote
the

sam
e

set
of

sym
bols,butw

ith
a �attached

to
each

sym
bol(i.e., ����

iff � ���� �).
T

he
interpretation

of
statem

ents
involves

the
specification

of
transition

relations
using

form
ulas.

Such
form

ulas
w

ill
be

over
a

“double
vocabulary”

�
,
� ��

	
! ,
! �0( ,

( �0 �, � ��,w
here

unprim
ed

sym
bols

w
illbe

referred
to

as
present-state

sym
bols,

and
prim

ed
sym

bols
as

next-state
sym

bols. 5
T

he
satisfaction

relation
for

a
tw

o-vocabulary
form

ula�
w

illbe
w

ritten
as	�� 0� ��#�

�,w
here�

and� �are
structures

over
vocabularies�

�
	! 0( 0 ���

and� ��
	
! �0( �0 � ��,respectively;	�� 0� ��

is
called

a
tw

o-vocabulary
structure.

5
For

econom
y

of
notation,

w
e

w
ill

not
duplicate

the
sym

bols�����
w

hose
interpretation

is
fi

xed
in

advance.
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T
he

form
ula

thatexpresses
the

sem
antics

of
an

assignm
ent � �� �� E

w
ith

respectto
stores

over
vocabulary 	 �������
	
��� 0	.

� ,

	�
1� �,����
�(�)������� 0
������+�"����� �,de-
noted

by����� �������,can
be

specified
as���	� �
�����

def
�

"�� ��	���%$�%5/
"�� ��7�%1/

"�$ ��#
$
%.

For
parallel

form
,

w
e

w
ill

also
assum

e
that

w
e

have
tw

o
isom

orphic
abstract

do-
m

ains,I
andI �,and

associated
variants

of�
and��

� ��(�)�����	��;	��������������	 0���!
I

� � ����������	��
	�����������(�	 �0���!
I �

�� �I!
Form

ula���
�� � �I �!

Form
ula�� ��

For
the

constant-propagation
dom

ain,
this

just
m

eans
that

a
next-state

abstract
value

produced
by

one
transition,e.g.,�� ��!B

A 0 ���!K
C 0E ��!B

A��Y��I �,
can

be
identified

as
the

present-state
abstractvalue��@�!B

A 0 ��!K
C 0>E�!B

A��6�I
for

the
nexttransition. 6

Specification
G

iven
a

form
ula�

for
a

statem
ent’s

transition
relation,the

resultof
ap-

plying�
to

a
setof

concrete
stores ��

is

	�
����(�����" ���%�
�� �#exists �+� ��

such
that 	�� 0� ��#�

� - 
(N

ote
that

this
is

a
set

of
structures

over
vocabulary � �.) ���	�
���������"$!&%

is
to

return
the

m
ost-precise

abstractvalue
in I �thatoverapproxim

ates 	�
���������"��"!%�%.
Im

plem
entation

��	�

�������"$!&%
can

be
com

puted
by

the
procedure

presented
in

Fig.3.

A
fter'

is
initialized

to���"$!&%H/
�

in
line

[3], ���	�
���������
operates

very
m

uch
like��

,
ex-

cept
that

only
abstractions

of
the� �structures

are
accum

ulated
in

variable
a
n
s
’

(see
lines

[5]and
[6]).O

n
each

iteration
ofthe

loop
in ���	�
��������� ,the

value
of
a
n
s
’

becom
es

a
better

approxim
ation

of
the

desired
answ

er,and
the

value
of '

describes
a

sm
aller

set
ofconcrete

stores,nam
ely,those � ,� �stores

thatare
described

by ���"$!&%)/�,butw
hose

range
(i.e.,projection

on
the

next-state
sym

bols)
is

not,as
yet,covered

by
a
n
s
’

.

[
1
]

� �

����������(

t
w
o
-
v
o
c
a
b
u
l
a
r
y
f
o
r
m
u
l
a

�
o
v
e
r��

�� �,
��

� )
�

[
2
]

a
n
s
’
:
=
� �

[
3
]

�
:
=
8��
������

[
4
]

w
h
i
l
e
( �

i
s

s
a
t
i
s
f
i
a
b
l
e
)

�
[
5
]

S
e
l
e
c
t
a

t
w
o
-
v
o
c
a
b
u
l
a
r
y
s
t
r
u
c
t
u
r
e

���5Q� ���
s
.
t
.

���Q� �����	
�

[
6
]

a
n
s
’
:
=

a
n
s
’

�
� �
�� ��

[
7
]

�
��	
���

��8� �
a
n
s
’ �

[
8
]

�
[
9
]

r
e
t
u
r
n
a
n
s
’

[
1
0
]

�

F
ig.3.A

n
algorithm

thatim
plem

ents ���	�
���������"$!&% .

6
A

lternatively,w
e

could
have

used
a

single
abstractdom

ain,�
,and

the
defi

nitions

��! !"$#&%�')(+*,(+-.*�'�/0%�*L21�Q+30[O
�

� ��! !"$#4%�'2(+*,(+-.*�'�/0%�*L21 �Q�3[O
�

8�%��O
Form

ulaL�[
8� ���O

Form
ulaL� �[

T
he

m
otivation

for
using

tw
o

abstract
dom

ains
is

to
elim

inate
a

possible
source

of
confusion

in
the

exam
ples.B

y
using

separate
abstractdom

ains�
and� �,prim

ed
sym

bols
alw

ays
distin-

guish
next-state

abstractvalues
from

present-state
ones.
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Suppose
that!�

��@�!K
C 0 ��!D

C 0>E�!K
A� ,

and
the

statem
ent

to
be

inter-
preted

is � �� �� E.
T

hen ��#"$!&%
is

the
form

ula
"�$

�
"�%,

and
���� ���	�)�

is
the

form
ula

"�� ������%$
%5/
"�� ����%5/

"�$ ��
$�%.Fig.4

show
s

w
hy

w
e

have
���	�
���������� ��������"���@�!K

C 0 ��!K
C 0>E�!K

A��%�
�� ��!K

A 0 ���!K
C 0>E ��!B

A�� 
Initialization:

����� ���
� �

�
��

�d�_��


] ��a�d��

a ��a��


�d ��d�
Iteration

1:
���5Q� � �������� �]^NO��)QTa�NO��
	)QedYNOZ

_
] �NOZ
_)Qa �NO��
	)Qed �NOZ

_��
//S

om
e

satisfying
structure

����� ����LM �NO"
PRQTS �NO�

�RQW �NOZ

P\[
8� �

����� ���


] ��_��

a �����	��


�d ��_�
�
��

�d�_��


] ��a�d��

a ��a��


�d ��d�
�


] ���_��



a ������	��


�d ���_��

�

�d�_��


] ��a�d��

a ��a��


�d ��d��

a ������	�

Iteration
2:

���5Q� ������ �� �]^NO����(Qa�NO����`QedNO"
_

] �NOZ
_)Qa �NO����`Qed �NOZ

_��
//S

om
e

satisfying
structure

����� ����LM �NO"
PRQTS �NO�

�RQW �NOZ

P\[
�LM �NO"
PRQS �NO����RQTW �NOZ

P\[
�Z
LM �NO"
PRQTS �NOV

U�QXW �NOZ
P\[

8� �

����� ���

] ��_��


�d ��_�
�
��

�d�_��


] ��a�d��

a ��a��


�d ��d��

a ������	�

�


] ���_��



�d ���_��
�

ff
Iteration

3:
�

is
unsatisfi

able
R

eturn
value:

LM �NO"
PRQTS �NOZ

U�QXW �NO"
P\[

F
ig.4.O

perations
perform

ed
during

a
call ���	�
��������� ��������"���@�!K

C 0 ��!K
C 0E�!B

A��%.
T

heorem
2.

Suppose
that

the
abstract

dom
ain

has
finite

height
of

at
m

ost �.
G

iven
inputs�

and! , ���	�
��������"!%
has

the
follow

ing
properties:

(i)
T

he
loop

on
lines

[4]–[8]
in

procedure ��	�

�������"$!&%
is

executed
atm

ost�
tim

es.

(ii) ��	�

�������"$!&%�
�"	�
����������"��"!%�%%

(i.e., ���	�
���������"!%
com

putes
the

m
ost-precise

ab-
stractvalue

in I �thatoverapproxim
ates 	�
����(�����"�#"$!&%�%).

T
he

operator 	���������can
be

im
plem

ented
using

a
procedure

thatis
dualto

Fig.3.

5.2
T

ransfer
F

unctions
for

C
onditions

Specification
T

he
interpretation

ofa
condition'

w
ith

respectto
a

given
abstractvalue!

m
ust“pass

through”
allstructures

thatare
both

represented
by!and

satisfy'
,i.e.,those

in�#"$!&%��
��'�� .

T
hus,the

m
ost-precise

approxim
ation

to
the

interpretation
of

condition
'

,denoted
by���� "!#�� �'��"$!%,is

defined
by

���� "!#���'�"$!%�
�"�#"$!%$�

��'��%� 

Im
plem

entation���� "!#�� �'�"$!%
can

be
com

puted
by

the
follow

ing
m

ethod:

���% &!'� ��'���"!%�
��"���"!%5/'#%� 
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��2������
���L
a


	d�[�
TLM�NOZ
PRQTS�NO�

�`QTW�NO��\[��
8 �

]�_��


a����

�d�	��


a

	d��

�.LM�NOZ
PRQSYNO�

�`QWYNO��\[
��2������

��L
a

�d�[�
TLM�NOZ

PRQTS�NO�
�`QTW�NO��\[��

8 �

]�_��

a����


�d�	��

a

�d��

�
�

��2������
��L
a


	d�[�
TLM�NOZ
PRQXS�NOZ

U�QXW�NO��\[��
8 �

]�_��


�d�	��
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6
D

iscussion

T
his

papershow
s

how
the

m
ost-precise

versions
ofthe

basic
operations

needed
to

create
an

abstract
interpreter

are,under
certain

conditions,im
plem

entable.T
hese

techniques
use

the
idea

of
considering

a
first-orderform

ula '
as

a
device

fordescribing
(oraccept-

ing)
a

set
of

concrete
structures,nam

ely,the
set

of
structures

thatsatisfy '
.N

ot
every

subset
of

concrete
structures

can
be

described
by

a
first-order

form
ula;

how
ever,it

is
straightforw

ard
to

generalize
the

approach
to

othertypes
oflogics,w

hich
can

be
consid-

ered
as

alternative
structure-description

form
alism

s
(possibly

m
ore

pow
erful,possibly

less
pow

erful).Forthe
basic

approach
to

carry
over,allthatis

required
is

thata
decision

procedure
existfor

the
logic.

A
utom

atic
theorem

provers—
such

as
M

A
C

E
[16],

SE
M

[20],
and

Finder
[19]—

can
be

used
to

im
plem

ent
the

procedures
presented

in
this

paper
because

they
return

counterexam
ples

to
validity:a

counterexam
ple

to
the

validity
of4�'

is
a

structure
that

satisfies'
.

Such
tools

also
exist

for
logics

other
than

first-order
logic;

for
exam

ple,
M

O
N

A
[15]can

generate
counterexam

ples
forform

ulas
in

w
eak

m
onadic

second-order
logic.Som

e
tools,such

as
Sim

plify
[9]and

SV
C

[1],provide
counterexam

plesin
sym

bolic
form

,i.e.,as
a

form
ula.T

he
form

ula
represents

a
setof

counterexam
ples;any

structure
thatsatisfies

the
form

ula
is

a
counterexam

ple
to

the
query.For

exam
ple,if '

is � %�
atline

[5]
of

Fig.1,the
value

returned
w

ould
be

the
form

ula"�� %�%
itself,rather

than
a

particular
satisfying

structure,
such

as���!�
� 0���!

��.
T

his
presents

an
obstacle

because
at

line
[6]�

requires
an

argum
ent

that
is

a
single

structure.
In

the
case

of
quantifier-free

first-order
logic

w
ith

linear
arithm

etic,such
a

structure
can

be
obtained

by
feeding

the
counterexam

ple
form

ula
to

a
solver

for
m

ixed-integer
program

m
ing,

such
as

C
PL

E
X

[13].

i
n
t
x
,

y
,
z

B
o
o
l
B
1
,
B
2

y
:
=
3

x
:
=
4

*
y

+
1

r
e
a
d
(
z
)

B
1
:
=

z
<
2
9

B
2
:
=

z
<
2
7

i
f
B
1

t
h
e
n
y

:
=
5

i
f
B
2

t
h
e
n
x

:
=
y

+
8

F
ig.5.A

program
w

ith
corre-

lated
branches.

W
ith

the
aid

of
Sim

plify,
w

e
have

verified
the

constant-propagation
exam

ples
in

this
paper,

as
w

ell
as

exam
ples

that
com

bine
the

constant-propagation
dom

ain
w

ith
a

predicate-abstraction
dom

ain.
T

his
is

an
additional

benefit
of

the
approach:

it
can

be
used

to
generate

the
best

transform
er

for
com

bined
do-

m
ains,such

as
reduced

cardinalproductand
those

cre-
ated

using
other

dom
ain

constructors
[7].

For
exam

-
ple,

the
best

transform
er

for
the

com
bined

constant-
propagation/predicate-abstraction

dom
ain

determ
ines

thatthe
variable

x
m

ustbe %�
atthe

end
of

the
program

given
in

Fig.5.
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R

elated
W

ork

T
his

paper
is

m
ost

closely
related

to
past

w
ork

on
predicate

abstraction,
w

hich
also

uses
decision

procedures
to

im
plem

ent
m

ost-precise
versions

of
the

basic
abstract-

interpretation
operations.Predicate

abstraction
only

applies
to

a
fam

ily
of

finite-height
abstract

dom
ains

that
are

finite
C

artesian
products

of
B

oolean
values;our

results
gen-

eralize
these

ideas
to

a
broader

setting.In
particular,our

w
ork

show
s

thatw
hen

a
sm

all
num

ber
of

conditions
are

m
et,m

ost
of

the
benefits

that
predicate-abstraction

dom
ains

enjoy
can

also
be

enjoyed
in

arbitrary
abstract

dom
ains

of
finite

height,
and

possibly
infinite

cardinality.H
ow

ever,procedure��
of

Fig.1
uses

an
approach

thatis
fundam

en-
tally

differentfrom
the

one
used

in
predicate

abstraction.A
lthough

both
approaches

use
m

ultiple
calls

on
a

decision
procedure

to
pass

from
the

space
of

form
ulas

to
the

dom
ain

of
abstractvalues, ��%('

goes
directly

from
a

form
ula

to
an

abstractvalue,w
hereas ��

of
Fig.1

m
akes

use
of

the
dom

ain
of

concrete
values

in
a

criticalw
ay:

each
tim

e
around

the
loop, ��

selects
a

concrete
value �

such
that �

#�
'

; ��
uses �

and
�

to
generalize

from
concrete

value �
to

an
abstractvalue.

Procedure��
is

also
related

to
an

algorithm
used

in
m

achine
learning,called

Find-S
[17,Section

2.4].In
m

achine-learning
term

inology,both
algorithm

s
search

a
space

of
“hypotheses”

to
find

the
m

ost-specific
hypothesis

that
is

consistent
w

ith
the

positive
training

exam
ples

of
the

“concept”
to

be
learned.Find-S

receives
a

sequence
of

train-
ing

exam
ples,

and
generalizes

its
current

hypothesis
each

tim
e

it
is

presented
w

ith
a

positive
training

exam
ple

thatfalls
outside

its
currenthypothesis.T

he
problem

settings
for

the
tw

o
algorithm

s
are

slightly
different:Find-S

receives
a

sequence
of

positive
and

negative
exam

ples
of

the
concept.��

already
starts

w
ith

a
precise

statem
entof

the
con-

cept
in

hand,nam
ely,the

form
ula$

;
on

each
iteration,the

decision
procedure

is
used

to
generate

the
next(positive)

training
exam

ple.
W

e
have

som
etim

es
been

asked
“H

ow
do

your
techniques

com
pare

w
ith

predicate
abstraction

augm
ented

w
ith

an
iterative-refinem

ent
schem

e
that

generates
new

predi-
cates,

as
in

SL
A

M
[3]

or
B

L
A

ST
[12]?”.

W
e

do
not

have
a

com
plete

answ
er

to
this

question;how
ever,a

few
observations

can
be

m
ade:

–
O

ur
results

extend
ideas

em
ployed

in
the

setting
of

predicate
abstraction

to
a

m
ore

generalsetting.
–

For
the

sim
ple

exam
ples

used
for

illustrative
purposes

in
this

paper,
iterative

re-
finem

entw
ould

obtain
suitable

predicates
w

ith
appropriate

constant
values

in
one

iteration.O
ur

techniques
achieve

the
desired

precision
using

roughly
the

sam
e

log-
ical

m
achinery

(i.e.,
the

availability
of

a
decision

procedure),but
do

not
rely

on
heuristics-based

m
achinery

for
changing

the
abstractdom

ain
in

use.
–

T
his

paper
studies

the
problem

“H
ow

can
one

obtain
m

ost-precise
results

for
a

given
abstractdom

ain?”.Iterative
refinem

entaddresses
a

differentproblem
:“H

ow
can

one
go

aboutim
proving

an
abstractdom

ain?”
T

hese
are

orthogonalquestions.
T

he
question

of
how

to
go

aboutim
proving

an
abstractdom

ain
has

notyetbeen
studied

for
abstractdom

ains
as

rich
as

the
ones

in
w

hich
our

techniques
can

be
ap-

plied.T
his

is
the

subjectof
future

w
ork,and

thus
som

ething
aboutw

hich
one

can
only

speculate.H
ow

ever,w
e

have
observed

thatourapproach
does

provide
a

funda-
m

entalprim
itive

for
m

apping
values

from
one

abstractdom
ain

to
another:suppose

thatI �
andI �

are
tw

o
differentabstract

dom
ains

that
m

eet
the

conditions
of

the
fram

ew
ork;given! ��I �,the

m
ost-precise

value! ��I �
that

overapproxim
ates

� �"$! �%
is

obtained
by! ��

�� �"�� �"$! �%�% .



T
he

dom
ain-changing

prim
itive

opens
up

several
possibilities

for
future

w
ork.

For
exam

ple,counterexam
ple-guided

abstraction-refinem
entstrategies

[5,4]
iden-

tify
the

shortest
invalid

prefix
of

a
spurious

counterexam
ple

trace,and
then

refine
the

abstract
dom

ain
to

elim
inate

invalid
transitions

out
of

the
last

valid
abstract

state
of

the
prefix.

T
he

dom
ain-changing

prim
itive

appears
to

provide
a

system
-

atic
w

ay
to

salvage
inform

ation
from

the
counterexam

ple
trace:for

instance,itcan
be

invoked
to

convertthe
last

valid
abstract

state
of

the
prefix

into
an

appropriate
abstract

state
in

the
refined

abstract
dom

ain.M
oreover,it

yields
the

m
ost-precise

value
thatany

conservative
salvaging

operation
is

allow
ed

to
produce.

In
sum

m
ary,

because
our

results
enable

a
better

separation
of

concerns
betw

een
the

issue
of

how
to

obtain
m

ost-precise
results

for
a

given
abstractdom

ain
and

thatof
how

to
im

prove
an

abstractdom
ain,they

contribute
to

a
better

understanding
of

abstraction
and

sym
bolic

approaches
to

abstractinterpretation.
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