Symbolic Implementation of the Best Transfor mer

Thomas Reps!, Mooly Sagiv2, and Greta Yorsh?

L Comp. Sci. Dept., University of Wisconsin; reps@cs.wisc.edu
2 School of Comp. Sci., Tel-Aviv University; {msagiv,gretay } @post.tau.ac.il

Abstract. This paper shows how to achieve, under certain conditions, abstract-interpretation
algorithms that enjoy the best possible precision for a given abstraction. The key idea is a
simple process of successive approximation that makes repeated calls to a decision proce-
dure, and obtains the best abstract value for a set of concrete stores that are represented
symbolically, using a logical formula.

1 Introduction

Abstract interpretation [6] is a well-established technique for automatically proving cer-
tain program properties. In abstract interpretation, sets of program stores are represented
in a conservative manner by abstract values. Each program statement is given an inter-
pretation over abstract values that is conservative with respect to its interpretation over
corresponding sets of concrete stores; that is, the result of “executing” a statement must
be an abstract value that describes a superset of the concrete stores that actually arise.
This methodology guarantees that the results of abstract interpretation overapproximate
the sets of concrete stores that actually arise at each point in the program.

In [7], it is shown that, under certain reasonable conditions, it is possible to give a
specification of the most-precise abstract interpretation for a given abstract domain. For
a Galois connection defined by abstraction function « and concretization function -,
the best abstract post operator for transition 7, denoted by Post"[r], can be expressed
in terms of the concrete post operator for 7, Post|[7], as follows:

Post*[7] = a o Post[r] 0. (1)

This defines the limit of precision obtainable using a given abstraction. However, Eqn. (1)
is non-constructive; it does not provide an algorithm for finding or applying Postﬂ[r].

Graf and Saidi [11] showed that decision procedures can be used to generate best
abstract transformers for abstract domains that are fixed, finite, Cartesian products of
Boolean values. (The use of such domains is known as predicate abstraction; predi-
cate abstraction is also used in SLAM [2] and other systems [8,12].) The work pre-
sented in this paper shows how some of the benefits enjoyed by applications that use
the predicate-abstraction approach can also be enjoyed by applications that use ab-
stract domains other than predicate-abstraction domains. In particular, this paper’s re-
sults apply to arbitrary finite-height abstract domains, not just to Cartesian products of
Booleans. For example, it applies to the abstract domains used for constant propagation
and common-subexpression elimination [14]. When applied to a predicate-abstraction
domain, the method has the same worst-case complexity as the Graf-Saidi method.

To understand where the difficulties lie, consider how they are addressed in predi-
cate abstraction. In general, the result of applying - to an abstract value [is an infinite
set of concrete stores; Graf and Saidi sidestep this difficulty by performing v symboli-
cally, expressing the result of (1) as a formula ¢. They then introduce a function that,
in effect, is the composition of a and Post[7]: it applies Post[7] to ¢ and maps the result

back to the abstract domain. In other words, Eqgn. (1) is recast using two functions that

work at the symbolic level, 5 and @[T]F such that om[ﬂ 04 = aoPost[r] o7.
To provide insight on what opportunities exist as we move from predicate-abstraction
domains to the more general class of finite-height lattices, we first address a simpler

problem than aPost[r], namely,

How can @ be implemented? That is, how can one identify the most-precise ab-
stract value of a given abstract domain that overapproximates a set of concrete
stores that are represented symbolically?

We then employ the basic idea used in & to implement our own version of of’o\st[T].
The contributions of the paper can be summarized as follows:

— The paper shows how some of the benefits enjoyed by predicate abstraction can
be extended to arbitrary finite-height abstract domains. In particular, we describe
methods for each of the operations needed to carry out abstract interpretation.

— With some logics, the result of applying Post[r] to a given set of concrete stores
(represented symbolically) can also be expressed symbolically, as a formula ¢’. In
this case, we can proceed by computing a(¢'). For other logics, however, ¢’ cannot
be expressed symbolically without passing to a more powerful logic. For instance,

o If sets of concrete stores are represented with quantifier-free first-order logic,
it may require quantified first-order logic to express Post[r].

o If sets of concrete stores are represented with a decidable subset of first-order
logic, it may require second-order logic to express Post[7].

In such situations, the procedure that we give to compute (ﬁ’o\st[r] provides a way
to compute the best transformer while staying within the original logic.

The remainder of the paper is organized as follows: Sect. 2 motivates the work by
presenting an & procedure for a specific finite-height lattice. Sect. 3 introduces terminol-
ogy and notation. Sect. 4 presents the general treatment of & procedures for finite-height
lattices. Sect. 5 discusses symbolic techniques for implementing transfer functions (i.e.,

Om[T]). Sect. 6 makes some additional observations about the work. Sect. 7 dis-
cusses related work.

2 Motivating Examples

This section presents several examples to motivate the work. The treatment here is at
a semi-formal level; a more formal treatment is given in later sections. (This section
assumes a certain amount of background on abstract interpretation; some readers may
find it helpful to consult Sect. 3 before reading this section.)

The example concerns a simple concrete domain: let Var denote the set of variables
in the program being analyzed; the concrete domain is 2 Ver =2,

Predicate Abstraction A predicate-abstraction domain P.A[B] is based on a set B of
predicate names, each of which has an associated defining formula: B = {B; £ ¢; |
1 < j < k}. Each value in PA[B] is a set of possibly negated symbols drawn from
B, where each symbol B; is either present in positive or negative form (but not both),
or absent entirely. For instance, with B = {B; £ ¢, By £ 5, B3 £ (3}, values in
P.A[B] include {‘!Bl, Bg, —|Bg}, {Bl, BQ}, {_|B3}, and .

3 We use the diacritic ™ on a symbol to indicate an operation that either produces or operates on
a symbolic representation of a set of concrete stores.

We will use a predicate-abstraction domain in which there is a Boolean predicate
BZ (z = ¢) foreach x € Var and each distinct constant ¢ that appears in the program.
For instance, if the program is

y =3
x=4xy+1 @)

the predicate-abstraction domain is based on the predicate set {B; £ (y = 1), B, =

def def def def

(y=3),Bs = (y =4),Bs = (2 =1),B = (z =3),Bs = (x = 4)}.
Note that this domain does not provide an exact representation of the final state that
arises, [z — 13,y +— 3]. The best that can be done is to use the abstract value
{~B1, B2, ~Bs, By, Bs, 1 Bg}, which provides limited information about the value
of x.

Our choice of predicate-abstraction domain PA[{By, B2, B3, By, Bs, Bg}] was
made solely for the sake of simplicity. With a different choice of predicates, we could
have retained a greater or lesser amount of information about the value of x in the state
after program (2); however, there would always be some program that gives rise to a
state in which information is lost.

The a Function for Predicate-Abstraction Domains One of the virtues of the
predicate-abstraction method is that it provides a procedure to obtain a most-precise
abstract value, given (a specification of) a set of concrete stores as a logical formula 1)
[11]. We will call this procedure @pa ; it relies on the aid of a decision procedure, and
can be defined as follows:

apa(Y) = {B; | ¥ = y; isvalid} U {-B; | ¥ = —yp; is valid} (3)

For instance, suppose that ¢ is the formula (y = 3) A (z = 4xy+ 1), which captures
the final state of program (2). For apa ((y = 3)A(z = 4+y+ 1)) to produce the answer
{-Bi, B2, Bs, By, Bs,Bg}, the decision procedure must demonstrate that the
following formulas are valid:

y=3IHA(z=4xy+1)=>-(y=1) @W=3I)A(z=4*xy+1)=>=(z=1)
(y=3IhIA(z=4xy+1)=> (w=3) =3IAN(z=4*xy+1)=>—(xz=3)
Yy=3)A(z=4+xy+1)=>-(y=4) =3)A(z=4xy+1)=>-(xz=4)

Going Beyond Predicate Abstraction We now show that the ability to implement the
a function of a Galois connection between a concrete and abstract domain is not limited
to predicate-abstraction domains. In particular, we will demonstrate this for the abstract
domain used in the constant-propagation problem: (Var — Z 7). The abstract value
1 represents (J; an abstract value such as [x = 0,y — T,z ~ 0] represents all concrete
stores in which program variables x and z are both mapped to 0.4

The procedure to implement & for the constant-propagation domain, which we call
dcp, is actually an instance of a general procedure for implementing @ functions that
applies to a family of Galois connections. It is presented in Fig. 1; acp is the instance of
this procedure in which the return type L is (Var — Z 7)1, and “structure” in line [5]
means “concrete store”.

4 We write abstract values in Courier typeface (e.g., [x +— 0,y — T,z + 0]), and concrete
stores in Roman typeface (e.g., [z — 0,y — 43, z — 0]).

[1] L a(formula v¢) {

[2] ans := 1

[3] =9

[4] while (¢ is satisfiable) {

[5] Sel ect a structure S such that SkEo
[6] ans := ans U A(S)

[7] @ =@ A-7(ans)

[8]

[9] return ans

[10] }

Fig. 1. An algorithm to obtain, with the aid of a decision procedure, a most-precise
abstract value that overapproximates a set of concrete stores. In Sect. 2, the return type
Lis (Var — Z7) 1, and “structure” in line [5] means “concrete store”.

As with procedure aipa, acp is permitted to make calls to a decision procedure
(see line [5] of Fig. 1). We make one assumption that goes beyond what is assumed in
predicate abstraction, namely, we assume that the decision procedure is a satisfiability
checker that is capable of returning a satisfying assignment, or, equivalently, that it is a
validity checker that returns a counterexample. (In the latter case, the counterexample
obtained by calling Pr oveVal i d(—y) is a suitable satisfying assignment.)

The other operations used in procedure acp are 3, L, and 7:

— The concrete and abstract domains are related by a Galois connection defined by a
representation function g that maps a concrete store S € Var — Z to an abstract
value 3(S) € (Var — ZT),. For instance, 8 maps the concrete store [z
13,y + 3] to the abstract value [x — 13,y — 3].

— LI is the join operation in (Var — Z'T) .. For instance,

[x+— 0,y 43,z 0]U[x— 0,y =46,z 0] =[x 0,y— T,z 0].

— There is an operation 7 that maps an abstract value ! to a formula (I) such that [
and 5(1) represent the same set of concrete stores. For instance, we have

¥[x 0,y T,z—0]) =(z=0)A (2 =0).
The resulting formula contains no term involving y because y — T does not place
any restrictions on the value of y.

Operation 7 permits the concretization of an abstract store to be represented sym-
bolically, using a logical formula. This allows sets of concrete stores to be manipu-
lated symbolically, via operations on formulas.

To see how acp works, consider the program

z:=0
X = y*2z

(4)

and suppose that 1 is the formula (z = 0) A (x = y * z), which captures the final state
of program (4). The following sequence of operations would be performed during the

=]

invocation of dcp((z = 0) A (z =y * 2)):

Initialization: ans := L

pi=(=0A(z=y=*z)

Iteration 1: S = [z 0,y— 43,z = 0] I Some satisfying concrete store
:J_Llﬁ([xn—>0yn—>43z+—>0])
=[x+ 0,y— 43,z 0]

Y(ans) = (z =0)A(y=43) A (z=0)
p=(2=0)A(@=y*2) A~((c=0)A(y=43) A (z=0))
=(z=0A(z=yx2)A((z#0)V(y#43) V(2 #0))
= (z=0)A(z=y*z)A(y#43)

Iteration 2: S:=[z— 0,y 46,z — 0] /I Some satisfying concrete store

ans := [x — 0,y — 43,z — 0] U B([z — 0,y — 46, z — 0])
= [x—0,y =43,z 0]U[x — 0,y —> 46,z > 0]
=[x—0,y—=T,z—0]
Y(ans) = (z=0)A(2=0)
so=]gf=) (=y*x2) Ay #43) A ((z #0) V(2 #0))
Iteration 3: is unsatisfiable
Return value: [x+—= 0,y T,z 0]

At this point the loop terminates, and a@cp returns the abstract value
[x = 0,y = T,z 0]. In effect, @cp has automatically discovered that in the ab-
stract world the best treatment of the multiplication operator is for it to be non-strict in
T. That is, 0 is a multiplicative annihilator that supersedes T: 0 = T % 0.

In general, &(y) carries out a process of successive approximation, making repeated
calls to a decision procedure. Initially, ¢ is set to ¢ and ans is set to L. On each iter-
ation of the loop in @, the value of ans becomes a better approximation of the desired
answer, and the value of ¢ describes a smaller set of concrete stores, namely, those
stores described by ¢ that are not, as yet, covered by ans. For instance, at line [7]
of Fig. 1 during lteration 1 of the second example of @cp(+), ans has the value
[x — 0,y — 43,z — 0], and the update to ¢, ¢ := ¢ A =y(ans), sets p to (z =
0) A (x =y =2) A (y # 43). Thus, ¢ describes exactly the stores that are described by
1), but are not, as yet, covered by ans.

Each time around the loop, @ selects a concrete store .S such that S = ¢. Then &
uses S and U to perform what can be viewed as a “generalization” operation: 5 con-
verts concrete store S into an abstract store; the current value of ans is augmented
with 3(S) using L. For instance, at line [6] of Fig. 1 during Iteration 2 of the sec-
ond example of acp(%), ans’s value is changed from [x — 0,y — 43,z +— 0] to
[x—0,y— 43,z 0] U S([x —» 0,y — 46,2 — 0]) =[x — 0,y — T,z 0].
In other words, the generalization from two possible values for y, 43 and 46, is T,
which indicates that y may not be a constant at the end of the program.

Fig. 2 presents a sequence of diagrams that illustrate schematically algorithm @
from Fig. 1.

3 Terminology and Notation
For us, concrete stores are logical structures. The advantage of adopting this outlook is
that it allows potentially infinite sets of concrete stores to be represented using formulas.

Definition 1. Let P = {p1,...,pm} be a finite set of predicate symbols, each with a
fixed arity; let P; denote the set of predicate symbols with arity i. Let C' = {cy1,...,¢cn}

[6,0-V(ans,)]

Concrete Abstract Concrete
Vaues Formulas Values Values

(a) (b)

Formulas Vvalues

ans,

19,0 ans] Abstract Conarete. [#s0- tans,)] Abstract
Formulas Values Values Formulas Values

(c) (d)

ans,LIB(S)

Concrete
Values

ans

Concrete Abstract Concrete Abstract
Values Formulas Values Vaues Formulas Values

O ()

Fig. 2. Schematic diagrams that illustrate the process carried out by algorithm a(v)
from Fig. 1; ¢;, S;, and ans; denote the values of ¢, S, and ans during the it" iteration.
(@) Initially, o; is set to ¢ and ans; is set to L; Sy is a structure such that Sy = 1.
(b) ansy is set to ans; LI 3(S1) = B(S1); @2 is setto p; A =y (anss); Ss is a structure
such that Sy |= ¢2. Note that S, belongs to [p=] = [¢1 A—7(anss)]. () anss is set to
anss LIB(S2); @3 is setto o A—y(anss); Ss is astructure such that S5 = 3. (d) ans,
is set to anss LI 5(.S3); a IS set to 3 A —(ansa4); Sy is astructure such that Sy = @a.
(e) ans; isset to ansy LI 5(S4); w5 is set to o4 A —=(anss). In the case portrayed here,
the loop terminates at this point because @5 = ff. The desired answer is held in anss.
(f) @(+) obtains the most-precise abstract value ans that overapproximates [¢].

be a finite set of constant symbols. Let F' = {f1, f2, ..., fp} be afinite set of function
symbols each with a fixed arity; let F; denote the set of function symbols with arity <.
A logical structure over vocabulary V- = (P,C,F) isatuple S = (U, tp, tc, tf) in
which

— U is a (possibly infinite) set of individuals.

— Ly is the interpretation of predicate symbols, i.e., for every predicate symbol p € P;,
tp(p) C U? denotes the set of i-tuples for which p holds.

— 1 is the interpretation of constant symbols, i.e., for every constant symbol ¢ € C,
te(c) € U denotes the individual associated with c.

- vy is the interpretation of function symbols, i.e., for every function symbol f € F;,
1y (f): U* = U maps i-tuples into an individual.

Typically, some subset of the predicate symbols, constant symbols, and function symbols
have an interpretation that is fixed in advance; this defines a family of intended models.
We denote the (infinite) set of structures over V', where the interpretations of I C V are
fixed in advance, by ConcreteStruct[V, I].

Example 1. In Sect. 2, we considered concrete stores to be members of Var — Z.
This is a common way to define concrete stores; however, in the remainder of the paper
concrete stores are identified with logical structures. A store in which program vari-
ables are bound to integer values is a logical structure {Z, 0, ¢ var, ?) over vocabulary
{IntPreds, Var U IntConsts, IntFuncs), where ¢y, is a mapping of program vari-
ables to integers, and the symbols in IntPreds = {<,<,=, #,>,>,...}, IntConsts =
{0,-1,1,-2,2,...}, and IntFuncs = {+, —, %, /, .. .} have their usual meanings. For
instance, an example concrete store for a program in which Var = {z,y, z} is

(2,0,[z = 0,y = 2,2~ 0],0). ()
Henceforth, we abbreviate a store such as (5) by ¢, = [z — 0,y — 2,z — 0].

To manipulate sets of structures symbolically, we use formulas of first-order logic
with equality. If S is a logical structure and ¢ is a closed formula, the notation S |= ¢
means that S satisfies ¢ according to the standard Tarskian semantics for first-order
logic (e.g., see [10]). We use [¢] to denote the set of concrete structures that satisfy ¢:
[e]l = {S | S € ConcreteStruct[V,I],S |= ¢}.

Example 2.

_ _ _Je=lz—=0,y—=0,z2=0],tc=[z—=0,y— 1,2 0],
le=0)n=01={ 2030y Do |
Definition 2. A complete join semilattice L = (L,C,| |, L) is a partially ordered set
with partial order C, such that for every subset X of L, L contains a least upper bound
(or join), denoted by | | X.

The minimal element L € L is | |@. We use z Ll y as a shorthand for | |{z,y}. We
writex C ywhenz Cyandz # y.

The powerset of concrete stores 2 ConcreteStruct[V. 1] js 3 complete join semilattice,
where (i) X C Y iff X C Y, (i) L = 0, and (iii) | | = U.

Definition 3. Let L = (L, C,| |, L) be a complete join semilattice. A strictly increas-
ing chain in L is a sequence of values iy, 15, . .., suchthatl; C [;1,. We say that L has
finite height if every strictly increasing chain is finite.

We now define an abstract domain by means of a representation function [18].

Definition 4. Given a complete join semilattice L = (L,C,|], 1) and a rep-
resentation function g: ConcreteStruct[V,I] — L such that for all S €

ConcreteStruct[V,I] B(S) # L, a Galois connection 2ConereteStructlV,11 & [, js de-
v
fined by extending 8 pointwise, i.e., for X§ C ConcreteStruct[V,I]and!l € L,

a(XS) = _I_ B(S) v() = {S | S € ConcreteStruct[V, I],5(S) C 1}
5exs

It is straightforward to show that this defines a Galois connection, i.e., (i) « and +y are
monotonic, (ii) « distributes over U, (iii) XS C v(a(XS)), and (iv) a(y(1)) C L.

We say that [overapproximates a set of concrete stores XS if yv(I) D XS. It is
straightforward to show that a(X.S) is the most-precise (i.e., least) abstract value that
overapproximates X.S.

Example 3. In our examples, the abstract domain will continue to be the one introduced
in Sect. 2, namely, (Var — ZT) . As we saw in Sect. 2, 3 maps a concrete store like
te = [z — 0,y = 2,z — 0] to an abstract value [x — 0,y — 2,z — 0]. Thus,

le
Le

[+ 0,y — 0,2+~ 0], _ Ble=[r— 0,y 0,2~ 0])

@ [~ 0,y — 2,2 0] T UBGe=[r—=0,y—=2,2-0])

Il

[x— 0,y 0,z 0]
Uz~ 0,y 2,z 0]

=[x~ 0,y T,z 0].

Suppose that abstract value [is [x — 0,y — T,z — 0]. Because y — T does not
place any restrictions on the value of y, we have

0) te=[z—~0,y—~ 0,220}, .=z~ 0,y— 1,2+ 0],
= te=[xz—0,y—2,2—0],...

4 Symbolic Implementation of the a Function

This section presents a general framework for implementing « functions of Galois con-
nections using procedure & from Fig. 1. a(v) finds the most-precise abstract value in
a finite-height lattice, given a specification of a set of concrete stores as a logical for-
mula ¢. & represents sets of concrete stores symbolically, using formulas, and invokes
a decision procedure on each iteration.

The assumptions of the framework are rather minimal:

— The concrete domain is the power set of ConcreteStruct[V, I].

The concrete and abstract domains are related by a Galois connection defined by
a representation function S that maps a structure S € ConcreteStruct[V, I] to an
abstract value 3(S).

It is possible to take the join of two abstract values.

There is an operation 7 that maps an abstract value [to a formula 7(1) such that

GOI =0). ©

Operation 4 permits the concretization of an abstract value to be represented symbol-
ically, using a logical formula, which allows sets of concrete stores to be manipulated
symbolically, via operations on formulas. (In this paper, we use first-order logic; in
general, however, other logics could be used.)

Example 4. As we saw in Sect. 2, because y — T does not place any restrictions on
the value of y, we have ¥([x — 0,y — T,z — 0]) = (z = 0) A (z = 0). From Exs. 2
and 3, we know that

te=[x—0,y—=0,2—0],t.=[z—0,y— 1,2 0],
te=[z—0,y—22—0],...

=v(x~ 0,y— T,z 0]),

and thus Eqn. (6) is satisfied. For I € (Var — Z 7)1, 4(l) is defined as follows:

ff ifl=_1
(1) = > (v=1(v)) otherwise

v € Var,

(v) #T

Specification of Alpha Procedure & is to implement «, given a specification of a set
of concrete stores as a logical formula 1. Therefore, @ must have the property that for
all 9, () = a([¥]).

Note that a logical formula) represents the set of concrete stores [[¢]; thus, a([+])
(and hence a(v), as well) is the most-precise abstract value that overapproximates the
set of concrete stores represented symbolically by).

Implementation of Alpha Procedure & is given in Fig. 1.

Example 5. A trace of a call on & for the constant-propagation domain (Var — Z 7).
was presented in Sect. 2. In generalizing the idea from Sect. 2, concrete stores have
been identified with logical structures, so instead of writing, e.g., S := [z — 0,y —
43, z — 0], we would now write S := 1. = [z = 0,y — 43,2 — 0].

Theorem 1. Suppose that the abstract domain has finite height of at most h. Given
input v, &(¢) has the following properties:

(i) The loop on lines [4]-[8] in procedure & is executed at most A times.
(i) a(y) = a([¥]) (i.e., a(y)) computes the most-precise abstract value that overap-
proximates the set of concrete stores represented symbolically by).

5 Symbolic Implementation of Transfer Functions

5.1 Transfer Functions for Statements

If Q is a set of predicate, constant, or function symbols, let Q' denote the same set of
symbols, but with a ' attached to each symbol (i.e., ¢ € Q iff ¢’ € Q").

The interpretation of statements involves the specification of transition relations
using formulas. Such formulas will be over a “double vocabulary” V U V' =
(PUP',CUC', FUF'"), where unprimed symbols will be referred to as present-state
symbols, and primed symbols as next-state symbols.> The satisfaction relation for a
two-vocabulary formula = will be written as (S, S’) |= 7, where S and S’ are structures
over vocabularies V = (P,C, F) and V' = (P',C’, F"), respectively; (S, S") is called
a two-vocabulary structure.

5 For economy of notation, we will not duplicate the symbols I C V whose interpretation is
fixed in advance.

Example 6. The formula that expresses the semantics of an assignment x := y % z with

respect to stores over vocabulary {IntPreds, Var U Var' U IntConsts, IntFuncs), de-

noted by 7y:—y«z, Can be specified as 7x:—y.z £ ' =yx2)AN@Yy =y) A = 2).

For parallel form, we will also assume that we have two isomorphic abstract do-
mains, L and L', and associated variants of 5 and 5

B: ConcreteStruct[V,I] — L B': ConcreteStruct[V',I] — L'
7: L — Formula[V] y': L' — Formula[V']

For the constant-propagation domain, this just means that a next-state abstract value
produced by one transition, e.g., [x' — 0,y' = T,2' — 0] € L', can be identified as
the present-state abstract value [x +— 0,y — T,z — 0] € L for the next transition.®

Specification Given a formula 7 for a statement’s transition relation, the result of ap-
plying 7 to a set of concrete stores XS is

Post[](XS) = {S' | exists S € XS such that (S, S") E 7}.

(Note that this is a set of structures over vocabulary V'.) Q\Huo/mﬂES is to return the
most-precise abstract value in L' that overapproximates Post[7](y(1)).

Implementation a_i (1) can be computed by the procedure presented in Fig. 3.

—

After ¢ is initialized to (1) A 7 in line [3], aPost[r] operates very much like &, ex-
cept that only abstractions of the S’ structures are accumulated in variable ans’ (see
lines [5] and [6]). On each iteration of the loop in aPost[7], the value of ans’ becomes
a better approximation of the desired answer, and the value of ¢ describes a smaller set
of concrete stores, namely, those V UV stores that are described by 7(1) A7, but whose
range (i.e., projection on the next-state symbols) is not, as yet, covered by ans’ .

[11 L omv/oﬁﬁscéoomcc_ ary formula 7 over VuVv’', LI) {
[2] ans' := 1’

[3] e 1= A AT

[4] while (¢ is satisfiable) {

[5] Sel ect a two-vocabul ary structure (S,8') s.t. (5,8YE¢
[6] ans’ := ans’ U B'(S)

[7] p=¢pA-7(ans’)

[8] }

[9] return ans’

[10] }

Fig. 3. An algorithm that implements EES.

6 Alternatively, we could have used a single abstract domain, L, and the definitions
B: ConcreteStruct[V,I| - L B': ConcreteStruct[V',I] — L
¥: L — Formula[V] ¥': L — Formula[V"]
The motivation for using two abstract domains is to eliminate a possible source of confusion

in the examples. By using separate abstract domains L and L’, primed symbols always distin-
guish next-state abstract values from present-state ones.

Example 7. Suppose that! = [x — T,y — T,z — 0], and the statement to be inter-
preted is x := y * z. Then F(I) is the formula (z = 0), and 7y.—y., is the formula
(' =y*x2)A(y' =y) A (2 = 2). Fig. 4 shows why we have

aPOSHTmyua] (X = T,y = T,z 0]) = [x' = 0,5 > T,2' — 0].

Initialization: ans’ := 1’
p=(=0)A@E =yx2)A({Y =y)A(Z =2)

z—5y—17,2—0 L.
Iteration 1: (S,S") : = 4 /I Some satisfying structure

2 =0,y = 17,2 =0

ans’ := [¥’ _Ivo%_lv:N .Ivo_
¥ (ans') = (' =0) A (y =17) A (' =0)
pi=(z= vi Syr) A =y A =2)

y) A
A" #£0) V(Y #1T) V(2 #0))
=@=0A@ =yx2)AY =y) A =2)A Y #17)

. , r—12,y—=+99,2—=0 e
Iteration 2: (5,8 =t.=1| , , , /I Some satisfying structure
z =0,y =992 —0

ans’ := [x' = 0,y — 17,2’ —» 0]U [x' — 0,7 + 99,2" > 0]
=[x =0,y T,z — 0

z=0)A@E@ =yx2)AN@Y =y AN =2)A (Y #17)
A((&" #0)V (2 #0))

= ff
Iteration 3: « is unsatisfiable
Return value: [¥ =0,y = T,z — 0]

Fig. 4. Operations performed during a call a_ﬁnuwﬁ_ﬁ? — T,y T,z 0]).

Theorem 2. Suppose that the abstract domain has finite height of at most h. Given
inputs 7 and I, aPost[7](l) has the following properties:

(i) The loop on lines [4]-[8] in procedure Q\Huo/m:ﬂ:c is executed at most A times.

—

(i) ﬁ%o/m:ls = a(Post[7](v(1))) (i.e., aPost[r](l) computes the most-precise ab-
stract value in L' that overapproximates Post[7](y(1))).

The operator Pre[7] can be implemented using a procedure that is dual to Fig. 3.

5.2 Transfer Functions for Conditions

Specification The interpretation of a condition ¢ with respect to a given abstract value
must “pass through” all structures that are both represented by / and satisfy ¢, i.e., those
in y(1) N [¢]. Thus, the most-precise approximation to the interpretation of condition

¢, denoted by Assume?[i](1), is defined by

Assume*[p](1) = a(y(1) N [¢]).

Implementation Assume®[](1) can be computed by the following method:

Assume’[p] (1) = A A).

Example 8.
Assume?[(y < 2)]([x — 0,7 — 2,z +— 7])

a((x=0)A(y=2)A(z=T7)A(y <2))
[x— 0,y 2,2 7]
Assumel[(y > 2))(fx - 0,y 2,20 7) =a((z = 0) Ay =2) A (s = T) A (y >))

=1
Assume![(y < 2)](x = 0,y T,z=T) =a((x=0)A(z=7)A(y < 2))
=[x~ 0y~ T,z2—7]
Assume![(y = 2)]([x = 0,y =» T,z T) =a((x=0)A(z=T7) A (y = 2))

=[x—0,y—=T,z— 7]

6 Discussion

This paper shows how the most-precise versions of the basic operations needed to create
an abstract interpreter are, under certain conditions, implementable. These techniques
use the idea of considering a first-order formula ¢ as a device for describing (or accept-
ing) a set of concrete structures, namely, the set of structures that satisfy ¢. Not every
subset of concrete structures can be described by a first-order formula; however, it is
straightforward to generalize the approach to other types of logics, which can be consid-
ered as alternative structure-description formalisms (possibly more powerful, possibly
less powerful). For the basic approach to carry over, all that is required is that a decision
procedure exist for the logic.

Automatic theorem provers—such as MACE [16], SEM [20], and Finder [19]—
can be used to implement the procedures presented in this paper because they return
counterexamples to validity: a counterexample to the validity of —y is a structure that
satisfies . Such tools also exist for logics other than first-order logic; for example,
MONA [15] can generate counterexamples for formulas in weak monadic second-order
logic.

Some tools, such as Simplify [9] and SVC [1], provide counterexamples in symbolic
form, i.e., as a formula. The formula represents a set of counterexamples; any structure
that satisfies the formula is a counterexample to the query. For example, if p isz > y
at line [5] of Fig. 1, the value returned would be the formula (z > y) itself, rather than
a particular satisfying structure, such as [z — 7,y — 3]. This presents an obstacle
because at line [6] 8 requires an argument that is a single structure. In the case of
quantifier-free first-order logic with linear arithmetic, such a structure can be obtained
by feeding the counterexample formula to a solver for mixed-integer programming,
such as CPLEX [13].

) With the aid of Simplify, we have verified the
Int x, y, z constant-propagation examples in this paper, as well

mo.o_| Bl, B2 as examples that combine the constant-propagation
y :=3 . . - . . L
X i=a4*y+1 domain with a predicate-abstraction domain. This is
ﬂm.m&Nv an additional benefit of the approach: it can be used
Bl := z < 29 to generate the best transformer for combined do-
B2 := 7z < 27 mains, such as reduced cardinal product and those cre-
if BL theny := 5 ated using other domain constructors [7]. For exam-
if B2 then x :=y + 8 ple, the best transformer for the combined constant-

propagation/predicate-abstraction domain determines

Fig. 5. A program with corre- nat the variable x must be 13 at the end of the program
lated branches. given in Fig. 5.

7 Reated Work

This paper is most closely related to past work on predicate abstraction, which also
uses decision procedures to implement most-precise versions of the basic abstract-
interpretation operations. Predicate abstraction only applies to a family of finite-height
abstract domains that are finite Cartesian products of Boolean values; our results gen-
eralize these ideas to a broader setting. In particular, our work shows that when a small
number of conditions are met, most of the benefits that predicate-abstraction domains
enjoy can also be enjoyed in arbitrary abstract domains of finite height, and possibly
infinite cardinality. However, procedure & of Fig. 1 uses an approach that is fundamen-
tally different from the one used in predicate abstraction. Although both approaches use
multiple calls on a decision procedure to pass from the space of formulas to the domain
of abstract values, apa goes directly from a formula to an abstract value, whereas a of
Fig. 1 makes use of the domain of concrete values in a critical way: each time around
the loop, & selects a concrete value S such that S |= ¢; @ uses 3 and LI to generalize
from concrete value S to an abstract value.

Procedure « is also related to an algorithm used in machine learning, called Find-S
[17, Section 2.4]. In machine-learning terminology, both algorithms search a space of
“hypotheses” to find the most-specific hypothesis that is consistent with the positive
training examples of the “concept” to be learned. Find-S receives a sequence of train-
ing examples, and generalizes its current hypothesis each time it is presented with a
positive training example that falls outside its current hypothesis. The problem settings
for the two algorithms are slightly different: Find-S receives a sequence of positive and
negative examples of the concept. @ already starts with a precise statement of the con-
cept in hand, namely, the formula ¢; on each iteration, the decision procedure is used
to generate the next (positive) training example.

We have sometimes been asked “How do your techniques compare with predicate
abstraction augmented with an iterative-refinement scheme that generates new predi-
cates, as in SLAM [3] or BLAST [12]?”. We do not have a complete answer to this
question; however, a few observations can be made:

— Our results extend ideas employed in the setting of predicate abstraction to a more
general setting.

— For the simple examples used for illustrative purposes in this paper, iterative re-
finement would obtain suitable predicates with appropriate constant values in one
iteration. Our techniques achieve the desired precision using roughly the same log-
ical machinery (i.e., the availability of a decision procedure), but do not rely on
heuristics-based machinery for changing the abstract domain in use.

— This paper studies the problem “How can one obtain most-precise results for a
given abstract domain?”. Iterative refinement addresses a different problem: “How
can one go about improving an abstract domain?” These are orthogonal questions.

The question of how to go about improving an abstract domain has not yet been
studied for abstract domains as rich as the ones in which our techniques can be ap-
plied. This is the subject of future work, and thus something about which one can
only speculate. However, we have observed that our approach does provide a funda-
mental primitive for mapping values from one abstract domain to another: suppose
that L, and L, are two different abstract domains that meet the conditions of the
framework; given [; € L, the most-precise value I, € Lo that overapproximates
~1(l1) is obtained by lo = @ (71 (11)).

The domain-changing primitive opens up several possibilities for future work.
For example, counterexample-guided abstraction-refinement strategies [5, 4] iden-
tify the shortest invalid prefix of a spurious counterexample trace, and then refine
the abstract domain to eliminate invalid transitions out of the last valid abstract
state of the prefix. The domain-changing primitive appears to provide a system-
atic way to salvage information from the counterexample trace: for instance, it can
be invoked to convert the last valid abstract state of the prefix into an appropriate
abstract state in the refined abstract domain. Moreover, it yields the most-precise
value that any conservative salvaging operation is allowed to produce.

In summary, because our results enable a better separation of concerns between the
issue of how to obtain most-precise results for a given abstract domain and that of how
to improve an abstract domain, they contribute to a better understanding of abstraction
and symbolic approaches to abstract interpretation.

References

10.
11.

12.

13.
14.

15.

16.

18.

19.
20.

Stanford validity checker. “http://verify.stanford.edu/SVC/", 1999.

T. Ball, R. Majumdar, T. Millstein, and S.K. Rajamani. Automatic predicate abstraction of
C programs. In Prog. Lang. Design and Impl., New York, NY, 2001. ACM Press.

T. Ball and S.K. Rajamani. The SLAM toolkit. In Computer-Aided Verif., Lec. Notes in
Comp. Sci., pages 260-264, 2001.

E. Clarke, A. Gupta, J. Kukula, and O. Strichman. SAT based abstraction-refinement using
ILP and machine learning techniques. In Computer-Aided Verif., 2002.

E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement. In Computer-Aided Verif., pages 154-169, July 2000.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction of approximation of fixed points. In Princ. of Prog. Lang., 1977.
P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Princ. of
Prog. Lang., pages 269-282, New York, N, 1979. ACM Press.

S. Das, D.L. Dill, and S. Park. Experience with predicate abstraction. In Computer-Aided
Verif., pages 160-171. Springer-Verlag, July 1999.

D. Detlefs, G. Nelson, and J. Saxe. Simplify. Compaq Systems Research Center, Palo Alto,
CA, 1999.

H.B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.

S. Graf and H. Sa'1di. Construction of abstract state graphs with PVS. In Computer-Aided
Verif., pages 72-83, June 1997.

T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Princ. of Prog.
Lang., pages 58-70, New York, NY, January 2002. ACM Press.

ILOG. ILOG optimization suite: White paper. ILOG S.A., Gentilly, France, 2001.

G.A. Kildall. A unified approach to global program optimization. In Princ. of Prog. Lang.,
pages 194-206, New York, NY, 1973. ACM Press.

N. Klarlund and A. Mgller. MONA Version 1.4 User Manual. BRICS Notes Series NS-01-1,
Univ. of Aarhus, January 2001.

W. McCune. MACE User Manual and Guide. Argonne Nat. Lab., May 2001.

T.M. Mitchell. Machine Learning. WCB/McGraw-Hill, Boston, MA, 1997.

F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-Verlag,
1999.

J. Slaney. Finder — Finite Domain Enumerator, Version 3.0. Aust. Nat. Univ., July 1995.

J. Zhang and H. Zhang. Generating models by SEM. In Int. Conf. on Auto. Deduc., volume
1104 of Lec. Notesin Art. Intell., pages 308-312. Springer-Verlag, 1996.

