
This is page 7
Printer: Opaque this

Lecture 2

Strings and Sets

Decision Problems Versus Functions

A decision problem is a function with a one-bit output: “yes” or “no.” To
specify a decision problem, one must specify

• the set A of possible inputs, and

• the subset B ⊆ A of “yes” instances.

For example, to decide if a given graph is connected, the set of possible
inputs is the set of all (encodings of) graphs, and the “yes” instances are
the connected graphs. To decide if a given number is a prime, the set of
possible inputs is the set of all (binary encodings of) integers, and the “yes”
instances are the primes.

In this course we will mostly consider decision problems as opposed to func-
tions with more general outputs. We do this for mathematical simplicity
and because the behavior we want to study is already present at this level.

Strings

Now to our first abstraction: we will always take the set of possible inputs to
a decision problem to be the set of finite-length strings over some fixed finite

8 Lecture 2

alphabet (formal definitions below). We do this for uniformity and simplic-
ity. Other types of data—graphs, the natural numbers N = {0, 1, 2, . . .},
trees, even programs—can be encoded naturally as strings. By making this
abstraction, we have to deal with only one data type and a few basic op-
erations.

Definition 2.1 • An alphabet is any finite set. For example, we might use the alphabet
{0, 1, 2, . . . , 9} if we are talking about decimal numbers; the set of
all ASCII characters if talking about text; {0, 1} if talking about bit
strings. The only restriction is that the alphabet be finite. When
speaking about an arbitrary finite alphabet abstractly, we usually
denote it by the Greek letter Σ. We call elements of Σ letters or
symbols and denote them by a, b, c, We usually do not care at
all about the nature of the elements of Σ, only that there are finitely
many of them.

• A string over Σ is any finite-length sequence of elements of Σ. Exam-
ple: if Σ = {a, b}, then aabab is a string over Σ of length five. We use
x, y, z, . . . to refer to strings.

• The length of a string x is the number of symbols in x. The length of
x is denoted |x|. For example, |aabab| = 5.

• There is a unique string of length 0 over Σ called the null string or
empty string and denoted by ε (Greek epsilon, not to be confused
with the symbol for set containment ∈). Thus |ε| = 0.

• We write an for a string of a’s of length n. For example, a5 = aaaaa,
a1 = a, and a0 = ε. Formally, an is defined inductively:

a0 def
= ε,

an+1 def
= ana.

• The set of all strings over alphabet Σ is denoted Σ∗. For example,

{a, b}∗ = {ε, a, b, aa, ab, ba, bb, aaa, aab, . . .},
{a}∗ = {ε, a, aa, aaa, aaaa, . . .}

= {an | n ≥ 0}. 2

By convention, we take

∅∗ def
= {ε},

where ∅ denotes the empty set. This may seem a bit strange, but there is
good mathematical justification for it, which will become apparent shortly.

If Σ is nonempty, then Σ∗ is an infinite set of finite-length strings. Be
careful not to confuse strings and sets. We won’t see any infinite strings

Strings and Sets 9

until much later in the course. Here are some differences between strings
and sets:

• {a, b} = {b, a}, but ab 6= ba;

• {a, a, b} = {a, b}, but aab 6= ab.

Note also that ∅, {ε}, and ε are three different things. The first is a set
with no elements; the second is a set with one element, namely ε; and the
last is a string, not a set.

Operations on Strings

The operation of concatenation takes two strings x and y and makes a new
string xy by putting them together end to end. The string xy is called the
concatenation of x and y. Note that xy and yx are different in general.
Here are some useful properties of concatenation.

• concatenation is associative: (xy)z = x(yz);

• the null string ε is an identity for concatenation: εx = xε = x;

• |xy| = |x|+ |y|.

A special case of the last equation is aman = am+n for all m,n ≥ 0.

A monoid is any algebraic structure consisting of a set with an associative
binary operation and an identity for that operation. By our definitions
above, the set Σ∗ with string concatenation as the binary operation and ε
as the identity is a monoid. We will see some other examples later in the
course.

Definition 2.2 • We write xn for the string obtained by concatenating n copies of x.
For example, (aab)5 = aabaabaabaabaab, (aab)1 = aab, and (aab)0 =
ε. Formally, xn is defined inductively:

x0 def
= ε,

xn+1 def
= xnx.

• If a ∈ Σ and x ∈ Σ∗, we write #a(x) for the number of a’s in x. For
example, #0(001101001000) = 8 and #1(00000) = 0.

• A prefix of a string x is an initial substring of x; that is, a string y for
which there exists a string z such that x = yz. For example, abaab is
a prefix of abaababa. The null string is a prefix of every string, and
every string is a prefix of itself. A prefix y of x is a proper prefix of x
if y 6= ε and y 6= x. 2

10 Lecture 2

Operations on Sets

We usually denote sets of strings (subsets of Σ∗) by A,B,C, The
cardinality (number of elements) of set A is denoted |A|. The empty set ∅
is the unique set of cardinality 0.

Let’s define some useful operations on sets. Some of these you have probably
seen before, some probably not.

• Set union:

A ∪B def
= {x | x ∈ A or x ∈ B}.

In other words, x is in the union of A and B iff1 either x is in A or
x is in B. For example, {a, ab} ∪ {ab, aab} = {a, ab, aab}.

• Set intersection:

A ∩B def
= {x | x ∈ A and x ∈ B}.

In other words, x is in the intersection of A and B iff x is in both A
and B. For example, {a, ab} ∩ {ab, aab} = {ab}.

• Complement in Σ∗:

∼A def
= {x ∈ Σ∗ | x 6∈ A}.

For example,

∼{strings in Σ∗ of even length} = {strings in Σ∗ of odd length}.

Unlike ∪ and ∩, the definition of ∼ depends on Σ∗. The set ∼A is
sometimes denoted Σ∗ −A to emphasize this dependence.

• Set concatenation:

AB
def
= {xy | x ∈ A and y ∈ B}.

In other words, z is in AB iff z can be written as a concatenation
of two strings x and y, where x ∈ A and y ∈ B. For example,
{a, ab}{b, ba} = {ab, aba, abb, abba}. When forming a set concate-
nation, you include all strings that can be obtained in this way.
Note that AB and BA are different sets in general. For example,
{b, ba}{a, ab} = {ba, bab, baa, baab}.

1iff = if and only if.

Strings and Sets 11

• The powers An of a set A are defined inductively as follows:

A0 def
= {ε},

An+1 def
= AAn.

In other words, An is formed by concatenating n copies of A together.
Taking A0 = {ε} makes the property Am+n = AmAn hold, even when
one of m or n is 0. For example,

{ab, aab}0 = {ε},
{ab, aab}1 = {ab, aab},
{ab, aab}2 = {abab, abaab, aabab, aabaab},
{ab, aab}3 = {ababab, ababaab, abaabab, aababab,

abaabaab, aababaab, aabaabab, aabaabaab}.

Also,

{a, b}n = {x ∈ {a, b}∗ | |x| = n}
= {strings over {a, b} of length n}.

• The asterate A∗ of a set A is the union of all finite powers of A:

A∗ def
=

⋃
n≥0

An

= A0 ∪A1 ∪A2 ∪A3 ∪ · · · .

Another way to say this is

A∗ = {x1x2 · · ·xn | n ≥ 0 and xi ∈ A, 1 ≤ i ≤ n}.

Note that n can be 0; thus the null string ε is in A∗ for any A.

We previously defined Σ∗ to be the set of all finite-length strings
over the alphabet Σ. This is exactly the asterate of the set Σ, so our
notation is consistent.

• We define A+ to be the union of all nonzero powers of A:

A+ def
= AA∗ =

⋃
n≥1

An.

Here are some useful properties of these set operations:

12 Lecture 2

• Set union, set intersection, and set concatenation are associative:

(A ∪B) ∪ C = A ∪ (B ∪ C),

(A ∩B) ∩ C = A ∩ (B ∩ C),

(AB)C = A(BC).

• Set union and set intersection are commutative:

A ∪B = B ∪A,
A ∩B = B ∩A.

As noted above, set concatenation is not.

• The null set ∅ is an identity for ∪:

A ∪∅ = ∅ ∪A = A.

• The set {ε} is an identity for set concatenation:

{ε}A = A{ε} = A.

• The null set ∅ is an annihilator for set concatenation:

A∅ = ∅A = ∅.

• Set union and intersection distribute over each other:

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C),

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

• Set concatenation distributes over union:

A(B ∪ C) = AB ∪AC,
(A ∪B)C = AC ∪BC.

In fact, concatenation distributes over the union of any family of sets.
If {Bi | i ∈ I} is any family of sets indexed by another set I, finite or
infinite, then

A(
⋃
i∈I

Bi) =
⋃
i∈I

ABi,

(
⋃
i∈I

Bi)A =
⋃
i∈I

BiA.

Strings and Sets 13

Here
⋃
i∈I Bi denotes the union of all the sets Bi for i ∈ I. An element

x is in this union iff it is in one of the Bi.

Set concatenation does not distribute over intersection. For example,
take A = {a, ab}, B = {b}, C = {ε}, and see what you get when you
compute A(B ∩ C) and AB ∩AC.

• The De Morgan laws hold:

∼ (A ∪B) = ∼A ∩ ∼B,
∼ (A ∩B) = ∼A ∪ ∼B.

• The asterate operation ∗ satisfies the following properties:

A∗A∗ = A∗,
A∗∗ = A∗,
A∗ = {ε} ∪AA∗ = {ε} ∪A∗A,
∅∗ = {ε}.

This is page 14
Printer: Opaque this

Lecture 3

Finite Automata and Regular Sets

States and Transitions

Intuitively, a state of a system is an instantaneous description of that sys-
tem, a snapshot of reality frozen in time. A state gives all relevant infor-
mation necessary to determine how the system can evolve from that point
on. Transitions are changes of state; they can happen spontaneously or in
response to external inputs.

We assume that state transitions are instantaneous. This is a mathemat-
ical abstraction. In reality, transitions usually take time. Clock cycles in
digital computers enforce this abstraction and allow us to treat computers
as digital instead of analog devices.

There are innumerable examples of state transition systems in the real
world: electronic circuits, digital watches, elevators, Rubik’s cube (54!/9!6

states and 12 transitions, not counting peeling the little sticky squares off),
the game of Life (2k states on a screen with k cells, one transition).

A system that consists of only finitely many states and transitions among
them is called a finite-state transition system. We model these abstractly
by a mathematical model called a finite automaton.

Finite Automata and Regular Sets 15

Finite Automata

Formally, a deterministic finite automaton (DFA) is a structure

M = (Q, Σ, δ, s, F),

where

• Q is a finite set; elements of Q are called states;

• Σ is a finite set, the input alphabet;

• δ : Q×Σ→ Q is the transition function (recall that Q×Σ is the set of
ordered pairs {(q, a) | q ∈ Q and a ∈ Σ}). Intuitively, δ is a function
that tells which state to move to in response to an input: if M is in
state q and sees input a, it moves to state δ(q, a).

• s ∈ Q is the start state;

• F is a subset of Q; elements of F are called accept or final states.

When you specify a finite automaton, you must give all five parts. Au-
tomata may be specified in this set-theoretic form or as a transition diagram
or table as in the following example.

Example 3.1 Here is an example of a simple four-state finite automaton. We’ll take the
set of states to be {0, 1, 2, 3}; the input alphabet to be {a, b}; the start state
to be 0; the set of accept states to be {3}; and the transition function to
be

δ(0, a) = 1,

δ(1, a) = 2,

δ(2, a) = δ(3, a) = 3,

δ(q, b) = q, q ∈ {0, 1, 2, 3}.

All parts of the automaton are completely specified. We can also specify
the automaton by means of a table

a b
→ 0 1 0

1 2 1
2 3 2
3F 3 3

or transition diagram

s s s s- - -g����������������j j j j-

b b b a, b

a a a

16 Lecture 3

The final states are indicated by an F in the table and by a circle in the
transition diagram. In both, the start state is indicated by→. The states in
the transition diagram from left to right correspond to the states 0, 1, 2, 3
in the table. One advantage of transition diagrams is that you don’t have
to name the states. 2

Another convenient representation of finite automata is transition matrices;
see Miscellaneous Exercise 7.

Informally, here is how a finite automaton operates. An input can be any
string x ∈ Σ∗. Put a pebble down on the start state s. Scan the input string
x from left to right, one symbol at a time, moving the pebble according
to δ: if the next symbol of x is b and the pebble is on state q, move the
pebble to δ(q, b). When we come to the end of the input string, the pebble
is on some state p. The string x is said to be accepted by the machine M if
p ∈ F and rejected if p 6∈ F . There is no formal mechanism for scanning or
moving the pebble; these are just intuitive devices.

For example, the automaton of Example 3.1, beginning in its start state 0,
will be in state 3 after scanning the input string baabbaab, so that string
is accepted; however, it will be in state 2 after scanning the string babbbab,
so that string is rejected. For this automaton, a moment’s thought reveals
that when scanning any input string, the automaton will be in state 0 if it
has seen no a’s, state 1 if it has seen one a, state 2 if it has seen two a’s,
and state 3 if it has seen three or more a’s.

This is how we do formally what we just described informally above. We
first define a function

δ̂ : Q× Σ∗ → Q

from δ by induction on the length of x:

δ̂(q, ε)
def
= q, (3.1)

δ̂(q, xa)
def
= δ(δ̂(q, x), a). (3.2)

The function δ̂ maps a state q and a string x to a new state δ̂(q, x). Intu-

itively, δ̂ is the multistep version of δ. The state δ̂(q, x) is the state M ends
up in when started in state q and fed the input x, moving in response to
each symbol of x according to δ. Equation (3.1) is the basis of the inductive
definition; it says that the machine doesn’t move anywhere under the null
input. Equation (3.2) is the induction step; it says that the state reachable
from q under input string xa is the state reachable from p under input
symbol a, where p is the state reachable from q under input string x.

Finite Automata and Regular Sets 17

Note that the second argument to δ̂ can be any string in Σ∗, not just a
string of length one as with δ; but δ̂ and δ agree on strings of length one:

δ̂(q, a) = δ̂(q, εa) since a = εa

= δ(δ̂(q, ε), a) by (3.2), taking x = ε

= δ(q, a) by (3.1).

Formally, a string x is said to be accepted by the automaton M if

δ̂(s, x) ∈ F

and rejected by the automaton M if

δ̂(s, x) 6∈ F,

where s is the start state and F is the set of accept states. This captures
formally the intuitive notion of acceptance and rejection described above.

The set or language accepted by M is the set of all strings accepted by M
and is denoted L(M):

L(M)
def
= {x ∈ Σ∗ | δ̂(s, x) ∈ F}.

A subset A ⊆ Σ∗ is said to be regular if A = L(M) for some finite au-
tomaton M . The set of strings accepted by the automaton of Example 3.1
is the set

{x ∈ {a, b}∗ | x contains at least three a’s},

so this is a regular set.

Example 3.2 Here is another example of a regular set and a finite automaton accepting
it. Consider the set

{xaaay | x, y ∈ {a, b}∗}
= {x ∈ {a, b}∗ | x contains a substring of three consecutive a’s}.

For example, baabaaaab is in the set and should be accepted, whereas
babbabab is not in the set and should be rejected (because the three a’s
are not consecutive). Here is an automaton for this set, specified in both
table and transition diagram form:

a b
→ 0 1 0

1 2 0
2 3 0
3F 3 3

18 Lecture 3

s s s s- - -g���� ����j j-

b a, b

a a a

b
b

� �& %KM

2

Finite Automata and Regular Sets 19

The idea here is that you use the states to count the number of consecutive
a’s you have seen. If you haven’t seen three a’s in a row and you see a b, you
must go back to the start. Once you have seen three a’s in a row, though,
you stay in the accept state.

This is page 20
Printer: Opaque this

Lecture 4

More on Regular Sets

Here is another example of a regular set that is a little harder than the
example given last time. Consider the set

{x ∈ {0, 1}∗ | x represents a multiple of three in binary} (4.1)

(leading zeros permitted, ε represents the number 0). For example, the
following binary strings represent multiples of three and should be accepted:

Binary Decimal equivalent
0 0

11 3
110 6

1001 9
1100 12
1111 15

10010 18
...

...

Strings not representing multiples of three should be rejected. Here is an
automaton accepting the set (4.1):

0 1
→ 0F 0 1

1 2 0
2 1 2

More on Regular Sets 21

The states 0, 1, 2 are written in boldface to distinguish them from the
input symbols 0, 1.

s s s�� ���� ��g���� ����K K K

U U U
0 1

1 0

1 0

?

In the diagram, the states are 0, 1, 2 from left to right. We prove that this
automaton accepts exactly the set (4.1) by induction on the length of the
input string. First we associate a meaning to each state:

if the number represented by then the machine
the string scanned so far is1 will be in state

0 mod 3 0
1 mod 3 1
2 mod 3 2

Let #x denote the number represented by string x in binary. For example,

#ε = 0,

#0 = 0,

#11 = 3,

#100 = 4,

and so on. Formally, we want to show that for any string x in {0, 1}∗,

δ̂(0, x) = 0 iff #x ≡ 0 mod 3, (4.2)

δ̂(0, x) = 1 iff #x ≡ 1 mod 3,

δ̂(0, x) = 2 iff #x ≡ 2 mod 3,

or in short,

δ̂(0, x) = #x mod 3. (4.3)

This will be our induction hypothesis. The final result we want, namely
(4.2), is a weaker consequence of (4.3), but we need the more general state-
ment (4.3) for the induction hypothesis.

We have by elementary number theory that

#(x0) = 2(#x) + 0,

#(x1) = 2(#x) + 1,

1Here a mod n denotes the remainder when dividing a by n using ordinary integer division. We also write
a ≡ b mod n (read: a is congruent to b modulo n) to mean that a and b have the same remainder when divided
by n; in other words, that n divides b− a. Note that a ≡ b mod n should be parsed (a ≡ b) mod n, and that in
general a ≡ b mod n and a = b mod n mean different things. For example, 7 ≡ 2 mod 5 but not 7 = 2 mod 5.

22 Lecture 4

or in short,

#(xc) = 2(#x) + c (4.4)

for c ∈ {0, 1}. From the machine above, we see that for any state q ∈
{0,1,2} and input symbol c ∈ {0, 1},

δ(q, c) = (2q + c) mod 3. (4.5)

This can be verified by checking all six cases corresponding to possible
choices of q and c. (In fact, (4.5) would have been a great way to define
the transition function formally—then we wouldn’t have had to prove it!)

Now we use the inductive definition of δ̂ to show (4.3) by induction on |x|.

Basis For x = ε,

δ̂(0, ε) = 0 by definition of δ̂

= #ε since #ε = 0

= #ε mod 3.

Induction step Assuming that (4.3) is true for x ∈ {0, 1}∗, we show that
it is true for xc, where c ∈ {0, 1}.

δ̂(0, xc) = δ(δ̂(0, x), c) definition of δ̂

= δ(#x mod 3, c) induction hypothesis

= (2(#x mod 3) + c) mod 3 by (4.5)

= (2(#x) + c) mod 3 elementary number theory

= #xc mod 3 by (4.4).

Note that each step has its reason. We used the definition of δ, which is
specific to this automaton; the definition of δ̂ from δ, which is the same for
all automata; and elementary properties of numbers and strings.

Some Closure Properties of Regular Sets

For A,B ⊆ Σ∗, recall the following definitions:

A ∪B = {x | x ∈ A or x ∈ B} union

A ∩B = {x | x ∈ A and x ∈ B} intersection

∼A = {x ∈ Σ∗ | x 6∈ A} complement

AB = {xy | x ∈ A and y ∈ B} concatenation

A∗ = {x1x2 · · ·xn | n ≥ 0 and xi ∈ A, 1 ≤ i ≤ n}
= A0 ∪A1 ∪A2 ∪A3 ∪ · · · asterate.

More on Regular Sets 23

Do not confuse set concatenation with string concatenation. Sometimes
∼A is written Σ∗ −A.

We show below that if A and B are regular, then so are A∪B, A∩B, and
∼A. We’ll show later that AB and A∗ are also regular.

The Product Construction

Assume that A and B are regular. Then there are automata

M1 = (Q1, Σ, δ1, s1, F1),

M2 = (Q2, Σ, δ2, s2, F2)

with L(M1) = A and L(M2) = B. To show that A ∩ B is regular, we will
build an automaton M3 such that L(M3) = A ∩B.

Intuitively, M3 will have the states of M1 and M2 encoded somehow in its
states. On input x ∈ Σ∗, it will simulate M1 and M2 simultaneously on x,
accepting iff both M1 and M2 would accept. Think about putting a pebble
down on the start state of M1 and another on the start state of M2. As the
input symbols come in, move both pebbles according to the rules of each
machine. Accept if both pebbles occupy accept states in their respective
machines when the end of the input string is reached.

Formally, let

M3 = (Q3, Σ, δ3, s3, F3),

where

Q3 = Q1 ×Q2 = {(p, q) | p ∈ Q1 and q ∈ Q2},
F3 = F1 × F2 = {(p, q) | p ∈ F1 and q ∈ F2},
s3 = (s1, s2),

and let

δ3 : Q3 × Σ → Q3

be the transition function defined by

δ3((p, q), a) = (δ1(p, a), δ2(q, a)).

The automaton M3 is called the product of M1 and M2. A state (p, q) of
M3 encodes a configuration of pebbles on M1 and M2.

Recall the inductive definition (3.1) and (3.2) of the extended transition

function δ̂ from Lecture 2. Applied to δ3, this gives

δ̂3((p, q), ε) = (p, q),

δ̂3((p, q), xa) = δ3(δ̂3((p, q), x), a).

24 Lecture 4

Lemma 4.1 For all x ∈ Σ∗,

δ̂3((p, q), x) = (δ̂1(p, x), δ̂2(q, x)).

Proof. By induction on |x|.

Basis For x = ε,

δ̂3((p, q), ε) = (p, q) = (δ̂1(p, ε), δ̂2(q, ε)).

Induction step Assuming the lemma holds for x ∈ Σ∗, we show that it
holds for xa, where a ∈ Σ.

δ̂3((p, q), xa)

= δ3(δ̂3((p, q), x), a) definition of δ̂3

= δ3((δ̂1(p, x), δ̂2(q, x)), a) induction hypothesis

= (δ1(δ̂1(p, x), a), δ2(δ̂2(q, x), a)) definition of δ3

= (δ̂1(p, xa), δ̂2(q, xa)) definition of δ̂1 and δ̂2. 2

Theorem 4.2 L(M3) = L(M1) ∩ L(M2).

Proof. For all x ∈ Σ∗,

x ∈ L(M3)

⇐⇒ δ̂3(s3, x) ∈ F3 definition of acceptance

⇐⇒ δ̂3((s1, s2), x) ∈ F1 × F2 definition of s3 and F3

⇐⇒ (δ̂1(s1, x), δ̂2(s2, x)) ∈ F1 × F2 Lemma 4.1

⇐⇒ δ̂1(s1, x) ∈ F1 and δ̂2(s2, x) ∈ F2 definition of set product

⇐⇒ x ∈ L(M1) and x ∈ L(M2) definition of acceptance

⇐⇒ x ∈ L(M1) ∩ L(M2) definition of intersection.2

To show that regular sets are closed under complement, take a determinis-
tic automaton accepting A and interchange the set of accept and nonaccept
states. The resulting automaton accepts exactly when the original automa-
ton would reject, so the set accepted is ∼A.

Once we know regular sets are closed under ∩ and ∼, it follows that they
are closed under ∪ by one of the De Morgan laws:

A ∪B = ∼ (∼A ∩ ∼B).

If you use the constructions for ∩ and ∼ given above, this gives an automa-
ton for A ∪ B that looks exactly like the product automaton for A ∩ B,
except that the accept states are

F3 = {(p, q) | p ∈ F1 or q ∈ F2} = (F1 ×Q2) ∪ (Q1 × F2)

More on Regular Sets 25

instead of F1 × F2.

Historical Notes

Finite-state transition systems were introduced by McCulloch and Pitts in
1943 [84]. Deterministic finite automata in the form presented here were
studied by Kleene [70]. Our notation is borrowed from Hopcroft and Ullman
[60].

This is page 26
Printer: Opaque this

Lecture 5

Nondeterministic Finite Automata

Nondeterminism

Nondeterminism is an important abstraction in computer science. It refers
to situations in which the next state of a computation is not uniquely
determined by the current state. Nondeterminism arises in real life when
there is incomplete information about the state or when there are external
forces at work that can affect the course of a computation. For example,
the behavior of a process in a distributed system might depend on messages
from other processes that arrive at unpredictable times with unpredictable
contents.

Nondeterminism is also important in the design of efficient algorithms.
There are many instances of important combinatorial problems with effi-
cient nondeterministic solutions but no known efficient deterministic so-
lution. The famous P = NP problem—whether all problems solvable in
nondeterministic polynomial time can be solved in deterministic polyno-
mial time—is a major open problem in computer science and arguably one
of the most important open problems in all of mathematics.

In nondeterministic situations, we may not know how a computation will
evolve, but we may have some idea of the range of possibilities. This is
modeled formally by allowing automata to have multiple-valued transition
functions.

Nondeterministic Finite Automata 27

In this lecture and the next, we will show how nondeterminism is incor-
porated naturally in the context of finite automata. One might think that
adding nondeterminism might increase expressive power, but in fact for
finite automata it does not: in terms of the sets accepted, nondeterminis-
tic finite automata are no more powerful than deterministic ones. In other
words, for every nondeterministic finite automaton, there is a deterministic
one accepting the same set. However, nondeterministic machines may be
exponentially more succinct.

Nondeterministic Finite Automata

A nondeterministic finite automaton (NFA) is one for which the next state
is not necessarily uniquely determined by the current state and input sym-
bol. In a deterministic automaton, there is exactly one start state and
exactly one transition out of each state for each symbol in Σ. In a nonde-
terministic automaton, there may be one, more than one, or zero. The set
of possible next states that the automaton may move to from a particular
state q in response to a particular input symbol a is part of the specifica-
tion of the automaton, but there is no mechanism for deciding which one
will actually be taken. Formally, we won’t be able to represent this with
a function δ : Q × Σ → Q anymore; we will have to use something more
general. Also, a nondeterministic automaton may have many start states
and may start in any one of them.

Informally, a nondeterministic automaton is said to accept its input x if it
is possible to start in some start state and scan x, moving according to the
transition rules and making choices along the way whenever the next state
is not uniquely determined, such that when the end of x is reached, the
machine is in an accept state. Because the start state is not determined
and because of the choices along the way, there may be several possible
paths through the automaton in response to the input x; some may lead
to accept states while others may lead to reject states. The automaton is
said to accept x if at least one computation path on input x starting from
at least one start state leads to an accept state. The automaton is said to
reject x if no computation path on input x from any start state leads to an
accept state. Another way of saying this is that x is accepted iff there exists
a path with label x from some start state to some accept state. Again, there
is no mechanism for determining which state to start in or which of the
possible next moves to take in response to an input symbol.

It is helpful to think about this process in terms of guessing and verifying.
On a given input, imagine the automaton guessing a successful computation
or proof that the input is a “yes” instance of the decision problem, then
verifying that its guess was indeed correct.

28 Lecture 5

For example, consider the set

A = {x ∈ {0, 1}∗ | the fifth symbol from the right is 1}.

Thus 11010010 ∈ A but 11000010 6∈ A.

Here is a six-state nondeterministic automaton accepting A:

s s s s s s- - - - -g����j-

0, 1

1 0, 1 0, 1 0, 1 0, 1

There is only one start state, namely the leftmost, and only one accept
state, namely the rightmost. The automaton is not deterministic, because
there are two transitions from the leftmost state labeled 1 (one back to
itself and one to the second state) and no transitions from the rightmost
state. This automaton accepts the set A, because for any string x whose
fifth symbol from the right is 1, there exists a sequence of legal transitions
leading from the start state to the accept state (it moves from the first
state to the second when it scans the fifth symbol from the right); and for
any string x whose fifth symbol from the right is 0, there is no possible
sequence of legal transitions leading to the accept state, no matter what
choices it makes (recall that to accept, the machine must be in an accept
state when the end of the input string is reached).

Intuitively, we can think of the machine in the leftmost state as guessing,
every time it sees a 1, whether that 1 is the fifth letter from the right. It
might be and it might not be—the machine doesn’t know, and there is no
way for it to tell at that point. If it guesses that it is not, then it goes
around the loop again. If it guesses that it is, then it commits to that guess
by moving to the second state, an irrevocable decision. Now it must verify
that its guess was correct; this is the purpose of the tail of the automaton
leading to the accept state. If the 1 that it guessed was fifth from the right
really is fifth from the right, then the machine will be in its accept state
exactly when it comes to the end of the input string, therefore it will accept
the string. If not, then maybe the symbol fifth from the right is a 0, and
no guess would have worked; or maybe the symbol fifth from the right was
a 1, but the machine just guessed the wrong 1.

Note, however, that for any string x ∈ A (that is, for any string with a
1 fifth from the right), there is a lucky guess that leads to acceptance;
whereas for any string x 6∈ A (that is, for any string with a 0 fifth from the
right), no guess can possibly lead to acceptance, no matter how lucky the
automaton is.

In general, to show that a nondeterministic machine accepts a set B, we
must argue that for any string x ∈ B, there is a lucky sequence of guesses
that leads from a start state to an accept state when the end of x is reached;
but for any string x 6∈ B, no sequence of guesses leads to an accept state
when the end of x is reached, no matter how lucky the automaton is.

Nondeterministic Finite Automata 29

Keep in mind that this process of guessing and verifying is just an intuitive
aid. The formal definition of nondeterministic acceptance will be given in
Lecture 6.

There does exist a deterministic automaton accepting the set A, but any
such automaton must have at least 25 = 32 states, since a deterministic
machine essentially has to remember the last five symbols seen.

The Subset Construction

We will prove a rather remarkable fact: in terms of the sets accepted, nonde-
terministic finite automata are no more powerful than deterministic ones.
In other words, for every nondeterministic finite automaton, there is a
deterministic one accepting the same set. The deterministic automaton,
however, may require more states.

This theorem can be proved using the subset construction. Here is the
intuitive idea; we will give a formal treatment in Lecture 6. Given a nonde-
terministic machine N , think of putting pebbles on the states to keep track
of all the states N could possibly be in after scanning a prefix of the input.
We start with pebbles on all the start states of the nondeterministic ma-
chine. Say after scanning some prefix y of the input string, we have pebbles
on some set P of states, and say P is the set of all states N could possibly
be in after scanning y, depending on the nondeterministic choices that N
could have made so far. If input symbol b comes in, pick the pebbles up
off the states of P and put a pebble down on each state reachable from a
state in P under input symbol b. Let P ′ be the new set of states covered
by pebbles. Then P ′ is the set of states that N could possibly be in after
scanning yb.

Although for a state q of N , there may be many possible next states after
scanning b, note that the set P ′ is uniquely determined by b and the set
P . We will thus build a deterministic automaton M whose states are these
sets. That is, a state of M will be a set of states of N . The start state of
M will be the set of start states of N , indicating that we start with one
pebble on each of the start states of N . A final state of M will be any set
P containing a final state of N , since we want to accept x if it is possible
for N to have made choices while scanning x that lead to an accept state
of N .

It takes a stretch of the imagination to regard a set of states of N as a
single state of M . Let’s illustrate the construction with a shortened version
of the example above.

Example 5.1 Consider the set

A = {x ∈ {0, 1}∗ | the second symbol from the right is 1}.

30 Lecture 5

s s s- -g����j-

0, 1

1 0, 1

p q r

Label the states p, q, r from left to right, as illustrated. The states of M
will be subsets of the set of states of N . In this example there are eight
such subsets:

∅, {p}, {q}, {r}, {p, q}, {p, r}, {q, r}, {p, q, r}.

Here is the deterministic automaton M :

0 1
∅ ∅ ∅

→ {p} {p} {p, q}
{q} {r} {r}
{r}F ∅ ∅
{p, q} {p, r} {p, q, r}
{p, r}F {p} {p, q}
{q, r}F {r} {r}
{p, q, r}F {p, r} {p, q, r}

For example, if we have pebbles on p and q (the fifth row of the table), and
if we see input symbol 0 (first column), then in the next step there will be
pebbles on p and r. This is because in the automaton N , p is reachable
from p under input 0 and r is reachable from q under input 0, and these
are the only states reachable from p and q under input 0. The accept states
of M (marked F in the table) are those sets containing an accept state of
N . The start state of M is {p}, the set of all start states of N .

Following 0 and 1 transitions from the start state {p} of M , one can see
that states {q, r}, {q}, {r}, ∅ of M can never be reached. These states of
M are inaccessible, and we might as well throw them out. This leaves

0 1
→ {p} {p} {p, q}
{p, q} {p, r} {p, q, r}
{p, r}F {p} {p, q}
{p, q, r}F {p, r} {p, q, r}

This four-state automaton is exactly the one you would have come up with
if you had built a deterministic automaton directly to remember the last
two bits seen and accept if the next-to-last bit is a 1:

Nondeterministic Finite Automata 31

s s'
&

$
%s

s-
�

gg���� ����M K

U N
0 1

1 1

0 0

? 6

?

1 0[00] [11]

[01]

[10]

Here the state labels [bc] indicate the last two bits seen (for our purposes
the null string is as good as having just seen two 0’s). Note that these
two automata are isomorphic (i.e., they are the same automaton up to the
renaming of states):

{p} ≈ [00],

{p, q} ≈ [01],

{p, r} ≈ [10],

{p, q, r} ≈ [11]. 2

Example 5.2 Consider the set

{x ∈ {a}∗ | |x| is divisible by 3 or 5}. (5.1)

Here is an eight-state nondeterministic automaton N with two start states
accepting this set (labels a on transitions are omitted since there is only
one input symbol).

2 3 6 7

1 5 8

4k k
-

-

�
�� -A

AK A
AU

-
�
��

QQk��+

The only nondeterminism is in the choice of start state. The machine
guesses at the outset whether to check for divisibility by 3 or 5. After
that, the computation is deterministic.

Let Q be the states of N . We will build a deterministic machine M whose
states are subsets of Q. There are 28 = 256 of these in all, but most will
be inaccessible (not reachable from the start state of M under any input).
Think about moving pebbles—for this particular automaton, if you start
with pebbles on the start states and move pebbles to mark all states the
machine could possibly be in, you always have exactly two pebbles on N .
This says that only subsets of Q with two elements will be accessible as
states of M .

The subset construction gives the following deterministic automaton M
with 15 accessible states:

32 Lecture 5

{1, 4}
�� ��{2, 5} {3, 6} {1, 7}

�� ��{2, 8} {3, 4}
�� ��{1, 5}�� ��

{2, 6}{3, 7}{1, 8}
�� ��{2, 4}

�� ��{3, 5}{1, 6}
�� ��{2, 7}{3, 8}

- - - - - - -

� � � � � � �

��@R

2

In the next lecture we will give a formal definition of nondeterministic finite
automata and a general account of the subset construction.

This is page 33
Printer: Opaque this

Lecture 6

The Subset Construction

Formal Definition of Nondeterministic Finite Automata

A nondeterministic finite automaton (NFA) is a five-tuple

N = (Q, Σ, ∆, S, F),

where everything is the same as in a deterministic automaton, except for
the following two differences.

• S is a set of states, that is, S ⊆ Q, instead of a single state. The
elements of S are called start states.

• ∆ is a function

∆ : Q× Σ → 2Q,

where 2Q denotes the power set of Q or the set of all subsets of Q:

2Q
def
= {A | A ⊆ Q}.

Intuitively, ∆(p, a) gives the set of all states that N is allowed to move to
from p in one step under input symbol a. We often write

p
a−→ q

34 Lecture 6

if q ∈ ∆(p, q). The set ∆(p, a) can be the empty set ∅. The function ∆ is
called the transition function.

Now we define acceptance for NFAs. The function ∆ extends in a natural
way by induction to a function

∆̂ : 2Q × Σ∗ → 2Q

according to the rules

∆̂(A, ε)
def
= A, (6.1)

∆̂(A, xa)
def
=

⋃
q∈∆̂(A,x)

∆(q, a). (6.2)

Intuitively, for A ⊆ Q and x ∈ Σ∗, ∆̂(A, x) is the set of all states reachable
under input string x from some state in A. Note that ∆ takes a single state
as its first argument and a single symbol as its second argument, whereas
∆̂ takes a set of states as its first argument and a string of symbols as its
second argument.

Equation (6.1) says that the set of all states reachable from a state in A
under the null input is just A. In (6.2), the notation on the right-hand side

means the union of all the sets ∆(q, a) for q ∈ ∆̂(A, x); in other words,

r ∈ ∆̂(A, xa) if there exists q ∈ ∆̂(A, x) such that r ∈ ∆(q, a).

p q r- -
x a

Thus q ∈ ∆̂(A, x) if N can move from some state p ∈ A to state q under

input x. This is the nondeterministic analog of the construction of δ̂ for
deterministic automata we have already seen.

Note that for a ∈ Σ,

∆̂(A, a) =
⋃

p∈∆̂(A,ε)

∆(p, a)

=
⋃
p∈A

∆(p, a).

The automaton N is said to accept x ∈ Σ∗ if

∆̂(S, x) ∩ F 6= ∅.

In other words, N accepts x if there exists an accept state q (i.e., q ∈ F)
such that q is reachable from a start state under input string x (i.e., q ∈
∆̂(S, x)).

We define L(N) to be the set of all strings accepted by N :

L(N) = {x ∈ Σ∗ | N accepts x}.

The Subset Construction 35

Under this definition, every DFA

(Q, Σ, δ, s, F)

is equivalent to an NFA

(Q, Σ, ∆, {s}, F),

where ∆(p, a)
def
= {δ(p, a)}. Below we will show that the converse holds as

well: every NFA is equivalent to some DFA.

Here are some basic lemmas that we will find useful when dealing with
NFAs. The first corresponds to Exercise 3 of Homework 1 for deterministic
automata.

Lemma 6.1 For any x, y ∈ Σ∗ and A ⊆ Q,

∆̂(A, xy) = ∆̂(∆̂(A, x), y).

Proof. The proof is by induction on |y|.

Basis For y = ε,

∆̂(A, xε) = ∆̂(A, x)

= ∆̂(∆̂(A, x), ε) by (6.1).

Induction step For any y ∈ Σ∗ and a ∈ Σ,

∆̂(A, xya) =
⋃

q∈∆̂(A,xy)

∆(q, a) by (6.2)

=
⋃

q∈∆̂(∆̂(A,x),y)

∆(q, a) induction hypothesis

= ∆̂(∆̂(A, x), ya) by (6.2). 2

Lemma 6.2 The function ∆̂ commutes with set union: for any indexed family Ai of
subsets of Q and x ∈ Σ∗,

∆̂(
⋃
i

Ai, x) =
⋃
i

∆̂(Ai, x).

Proof. By induction on |x|.

Basis By (6.1),

∆̂(
⋃
i

Ai, ε) =
⋃
i

Ai =
⋃
i

∆̂(Ai, ε).

36 Lecture 6

Induction step

∆̂(
⋃
i

Ai, xa) =
⋃

p∈∆̂(
⋃

i Ai,x)

∆(p, a) by (6.2)

=
⋃

p∈
⋃

i ∆̂(Ai,x)

∆(p, a) induction hypothesis

=
⋃
i

⋃
p∈∆̂(Ai,x)

∆(p, a) basic set theory

=
⋃
i

∆̂(Ai, xa) by (6.2).
2

In particular, expressing a set as the union of its singleton subsets,

∆̂(A, x) =
⋃
p∈A

∆̂({p}, x). (6.3)

The Subset Construction: General Account

The subset construction works in general. Let

N = (QN , Σ, ∆N , SN , FN)

be an arbitrary NFA. We will use the subset construction to produce an
equivalent DFA. Let M be the DFA

M = (QM , Σ, δM , sM , FM),

where

QM
def
= 2QN ,

δM (A, a)
def
= ∆̂N (A, a),

sM
def
= SN ,

FM
def
= {A ⊆ QN | A ∩ FN 6= ∅}.

Note that δM is a function from states of M and input symbols to states
of M , as it should be, because states of M are sets of states of N .

Lemma 6.3 For any A ⊆ QN and x ∈ Σ∗,

δ̂M (A, x) = ∆̂N (A, x).

Proof. Induction on |x|.

Basis For x = ε, we want to show

δ̂M (A, ε) = ∆̂N (A, ε).

But both of these are A, by definition of δ̂M and ∆̂N .

The Subset Construction 37

Induction step Assume that

δ̂M (A, x) = ∆̂N (A, x).

We want to show the same is true for xa, a ∈ Σ.

δ̂M (A, xa) = δM (δ̂M (A, x), a) definition of δ̂M

= δM (∆̂N (A, x), a) induction hypothesis

= ∆̂N (∆̂N (A, x), a) definition of δM

= ∆̂N (A, xa) Lemma 6.1. 2

Theorem 6.4 The automata M and N accept the same set.

Proof. For any x ∈ Σ∗,

x ∈ L(M)

⇐⇒ δ̂M (sM , x) ∈ FM definition of acceptance for M

⇐⇒ ∆̂N (SN , x) ∩ FN 6= ∅ definition of sM and FM , Lemma 6.3

⇐⇒ x ∈ L(N) definition of acceptance for N . 2

ε-Transitions

Here is another extension of finite automata that turns out to be quite
useful but really adds no more power.

An ε-transition is a transition with label ε, a letter that stands for the null
string ε:

p
ε−→ q.

The automaton can take such a transition anytime without reading an
input symbol.

Example 6.5

p q rk
s t u- -

? ? ?�
�
�
��3

�
�
�
��3

ε ε

ε ε
b b b

-

If the machine is in state s and the next input symbol is b, it can nonde-
terministically decide to do one of three things:

• read the b and move to state p;

• slide to t without reading an input symbol, then read the b and move
to state q; or

• slide to t without reading an input symbol, then slide to u without
reading an input symbol, then read the b and move to state r.

38 Lecture 6

The set of strings accepted by this automaton is {b, bb, bbb}. 2

Example 6.6 Here is a nondeterministic automaton with ε-transitions accepting the set
{x ∈ {a}∗ | |x| is divisible by 3 or 5}:s
s
s s
s
s s
ssg g

-
@
@@R

�
��	

� -J

J
J] B

B
BBN -�

�
���
c

cc
k#

##+
ε ε

a a a a

a a

a a

The automaton chooses at the outset which of the two conditions to check
for (divisibility by 3 or 5) and slides to one of the two loops accordingly
without reading an input symbol. 2

The main benefit of ε-transitions is convenience. They do not really add
any power: a modified subset construction involving the notion of ε-closure
can be used to show that every NFA with ε-transitions can be simulated
by a DFA without ε-transitions (Miscellaneous Exercise 10); thus all sets
accepted by nondeterministic automata with ε-transitions are regular. We
will also give an alternative treatment in Lecture 10 using homomorphisms.

More Closure Properties

Recall that the concatenation of sets A and B is the set

AB = {xy | x ∈ A and y ∈ B}.

For example,

{a, ab}{b, ba} = {ab, aba, abb, abba}.

If A and B are regular, then so is AB. To see this, let M be an automaton
for A and N an automaton for B. Make a new automaton P whose states
are the union of the state sets of M and N , and take all the transitions of
M and N as transitions of P . Make the start states of M the start states of
P and the final states of N the final states of P . Finally, put ε-transitions
from all the final states of M to all the start states of N . Then L(P) = AB.

Example 6.7 Let A = {aa}, B = {bb}. Here are automata for A and B:

s s s- -g- a a s s s- -g- b b

Here is the automaton you get by the construction above for AB:s s s s s s- - - - -g- εa a b b
2

The Subset Construction 39

If A is regular, then so is its asterate:

A∗ = {ε} ∪A ∪A2 ∪A3 ∪ · · ·
= {x1x2 · · ·xn | n ≥ 0 and xi ∈ A, 1 ≤ i ≤ n}.

To see this, take an automaton M for A. Build an automaton P for A∗
as follows. Start with all the states and transitions of M . Add a new state
s. Add ε-transitions from s to all the start states of M and from all the
final states of M to s. Make s the only start state of P and also the only
final state of P (thus the start and final states of M are not start and final
states of P). Then P accepts exactly the set A∗.

Example 6.8 Let A = {aa}. Consider the three-state automaton for A in Example 6.7.
Here is the automaton you get for A∗ by the construction above:

s s s s- - -g
-' $
ε

ε

a a
2

In this construction, you must add the new start/final state s. You might
think that it suffices to put in ε-transitions from the old final states back
to the old start states and make the old start states final states, but this
doesn’t always work. Here’s a counterexample:

s s-g��
��
j-

a

b

The set accepted is {anb | n ≥ 0}. The asterate of this set is

{ε} ∪ {strings ending with b},

but if you put in an ε-transition from the final state back to the start state
and made the start state a final state, then the set accepted would be
{a, b}∗.

Historical Notes

Rabin and Scott [102] introduced nondeterministic finite automata and
showed using the subset construction that they were no more powerful
than deterministic finite automata.

Closure properties of regular sets were studied by Ginsburg and Rose [46,
48], Ginsburg [43], McNaughton and Yamada [85], and Rabin and Scott
[102], among others.

