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Abstract
NetKAT is a domain-specific language and logic for specifying
and verifying network packet-processing functions. It consists
of Kleene algebra with tests (KAT) augmented with primitives
for testing and modifying packet headers and encoding network
topologies. Previous work developed the design of the language
and its standard semantics, proved the soundness and completeness
of the logic, defined a PSPACE algorithm for deciding equivalence,
and presented several practical applications.

This paper develops the coalgebraic theory of NetKAT, includ-
ing a specialized version of the Brzozowski derivative, and presents
a new efficient algorithm for deciding the equational theory using
bisimulation. The coalgebraic structure admits an efficient sparse
representation that results in a significant reduction in the size of the
state space. We discuss the details of our implementation and opti-
mizations that exploit NetKAT’s equational axioms and coalgebraic
structure to yield significantly improved performance. We present
results from experiments demonstrating that our tool is competi-
tive with state-of-the-art tools on several benchmarks including all-
pairs connectivity, loop-freedom, and translation validation.

Categories and Subject Descriptors F.4.3 [Formal Languages]:
Classes defined by grammars or automata

Keywords Coalgebra; Kleene algebra with tests; Brzozowski
derivatives; automata; network verification; NetKAT.

1. Introduction
Networks have received widespread attention in recent years as
a target for domain-specific language design. The emergence of
software-defined networking (SDN) as a popular paradigm for
network programming has led to the appearance of a number of
SDN programming languages including Frenetic, Nettle, NetCore,
Pyretic, Maple, and PANE, among others [10–12, 26, 27, 39, 40].
The details of these languages differ, but each seeks to provide
high-level abstractions to simplify the task of specifying the packet-
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processing behavior of a network. In addition to SDN languages,
a number of verification tools including HSA, VeriFlow, FlowLog,
and VeriCon are also being actively developed [2, 16, 17, 28]. As
SDN is being deployed in production enterprise, data center, and
wide-area networks [14, 19, 20], it is becoming clear that SDN is
the next major step in the evolution of network technology and is
destined to have a significant impact.

Previous work by Anderson et al. [1] introduced NetKAT, a lan-
guage and logic for specifying and verifying the packet-processing
behavior of networks. NetKAT provides general-purpose program-
ming constructs such as parallel and sequential composition, con-
ditional tests, and iteration, as well as special-purpose primitives
for querying and modifying packet headers and encoding network
topologies. The language allows the desired behavior of a network
to be specified equationally. In contrast to competing approaches,
NetKAT has a formal mathematical semantics and an equational
deductive system that is sound and complete over that semantics,
as well as a PSPACE decision procedure. It is based on Kleene al-
gebra with tests (KAT), an algebraic system for propositional pro-
gram verification that has been extensively studied for nearly two
decades [22]. Several practical applications of NetKAT have been
developed, including algorithms for testing reachability and non-
interference and a syntactic correctness proof for a compiler that
translates programs to hardware instructions for SDN switches.

This paper develops the coalgebraic theory of NetKAT, defines
a new algorithm for deciding equivalence based on this technology,
and presents a full implementation in OCaml. The new algorithm
is significantly more efficient than the previous naive algorithm [1],
which was PSPACE in the best case and the worst case, as it was
based on the determinization of a nondeterministic algorithm.

The contributions of this paper are both theoretical and practi-
cal. On the theoretical side, we introduce a new coalgebraic model
of NetKAT, including a specialized version of the Brzozowski
derivative in both semantic and syntactic forms. We prove a ver-
sion of Kleene’s theorem for NetKAT that shows that the coal-
gebraic model is equivalent to the standard packet-processing and
language models introduced previously [1]. A highlight of our the-
oretical development is a representation theorem showing that the
Brzozowski derivative can be concisely encoded in matrix form. On
the practical side, we develop a new coalgebraic decision procedure
for term equivalence based on our theoretical results, along with a
full implementation in OCaml. The algorithm constructs a bisimu-
lation between coalgebras built from NetKAT expressions via the
Brzozowski derivative. The matrix representation enables us to ex-
ploit sparseness to obtain a significant reduction in the size of the
state space. The implementation is very efficient in practice—it can
verify reachability in a real-world campus network in less than a
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second on a laptop. We demonstrate the real-world applicability of
our tool by using it to decide common network verification ques-
tions such as all-pairs connectivity, loop-freedom, and translation
validation—all pressing questions in modern networks. The results
of experiments on these benchmarks demonstrates that our imple-
mentation compares favorably with the state of the art.

The rest of this paper is organized as follows. In §2 we briefly
review the syntax and semantics of NetKAT [1]. In §3 we introduce
NetKAT coalgebras along with a variant of the Brzozowski deriva-
tive. In §4 we prove our main theoretical result on which the cor-
rectness of our equivalence algorithm is based: a generalization of
Kleene’s theorem relating NetKAT expressions and NetKAT coal-
gebras. In §5 we discuss a streamlined representation of NetKAT
coalgebras using matrices, which is needed for our implementa-
tion. In §6 we present the details of our implementation, focusing
on how we exploit the NetKAT axioms and coalgebraic structure to
achieve significant performance improvements over the naive algo-
rithm defined previously [1]. In §7 we describe three applications
developed from our coalgebraic theory, which are used in the eval-
uation of our implementation. In §8 we report on the results of ex-
periments. In §9 we discuss related work, and in §10 we present
conclusions and identify directions for future research.

2. Overview
In this section we briefly review the syntax and semantics of
NetKAT, along with other results that are needed to understand
our coalgebraic algorithm described in the following sections [1].

NetKAT is based on Kleene algebra with tests (KAT) [22], a
generic equational system for reasoning about partial correctness
of programs. KAT is Kleene algebra (KA), the algebra of regular
expressions, augmented with Boolean tests. Formally, a KAT is a
two-sorted structure (K,B,+, ·,∗ , , 0, 1), where B ⊆ K and

• (K,+, ·,∗ , 0, 1) is a Kleene algebra
• (B,+, ·, , 0, 1) is a Boolean algebra
• (B,+, ·, 0, 1) is a subalgebra of (K,+, ·, 0, 1).

The Kleene algebra operators are choice (+); sequential composi-
tion (·), which is often elided in expressions; iteration (∗); fail (0),
and skip (1). Elements of B are called tests. On tests, choice, se-
quential composition behave as Boolean disjunction and conjunc-
tion, respectively, and 0 and 1 stand for falsity and truth, respec-
tively. The operator is the Boolean negation operator, sometimes
written as ¬. The axioms of Kleene algebra are as follows:

p+ (q + r) = (p+ q) + r p(qr) = (pq)r

p+ q = q + p 1 · p = p · 1 = p

p+ 0 = p+ p = p p · 0 = 0 · p = 0

p(q + r) = pq + pr (p+ q)r = pr + qr

1 + pp∗ ≤ p∗ q + px ≤ x ⇒ p∗q ≤ x
1 + p∗p ≤ p∗ q + xp ≤ x ⇒ qp∗ ≤ x

where p ≤ q ⇔ p+ q = q. The axioms of Boolean algebra are

a+ (bc) = (a+ b)(a+ c) ab = ba

a+ 1 = 1 a+ a = 1

a · a = 0 aa = a

in addition to the axioms of Kleene algebra above. KAT can model
standard imperative programming constructs,

p ; q = pq

if b then p else q = bp+ bq

while b do p = (bp)∗b

as well as Hoare partial correctness assertions

{b} p {c} ⇔ bp ≤ pc ⇔ bp = bpc ⇔ bpc = 0.

Hoare-style rules become universal Horn sentences in KAT. For
example, the Hoare while-rule

{bc} p {c}
{c}while b do p {bc}

becomes the universal Horn sentence

bcp ≤ pc ⇒ c(bp)∗b ≤ (bp)∗bbc.

KA and KAT have standard language models consisting of, respec-
tively, the regular sets of finite-length strings over a finite alphabet
and the regular sets of guarded strings over disjoint finite alphabets
of test and action symbols. These language models play an impor-
tant role in that they are the free models on their generators, which
means that they exactly characterize the equational theory. There
are other useful models, including binary relation and trace models
used in programming language semantics. KAT is complete for the
equational theory of binary relation models. The equational theo-
ries of KA and KAT are both PSPACE complete.

NetKAT extends KAT with network-specific primitives for fil-
tering, modifying, and forwarding packets, along with additional
axioms for reasoning about programs built using those primitives.
More formally, NetKAT is KAT with primitive actions and tests

• x← n (assignment)
• dup (duplication)
• x = n (test)

We also use id and drop for 1 and 0, respectively. Intuitively,
the assignment x ← n assigns the value n to the field x in the
current packet. The test x = n tests whether field x of the current
packet contains the value n. The action dup duplicates the packet
in the packet history, which keeps track of the path the packet takes
through the network. As an example, the expression

switch = 6 ; port = 8 ; ipDst ← 10.0.1.5 ; port ← 5

encodes the command: “For all packets located at port 8 of switch
6, set the destination IP address to 10.0.1.5 and forward the packet
out on port 5.”

The NetKAT axioms consist of the KAT axioms as well as the
following axioms, which govern the behavior of tests, assignments,
duplication, and the interactions between them:

x← n ; y ← m = y ← m ;x← n (if x 6= y)
x← n ; y = m = y = m ;x← n (if x 6= y)

x = n ; dup = dup ;x = n

x← n ;x = n = x← n

x = n ;x← n = x = n

x← n ;x← m = x← m

x = n ;x = m = 0 (if n 6= m)(∑
n x = n

)
= 1

Intuitively, the first axiom states that assignments to distinct fields
may be done in either order. The third axiom says that when a
packet is duplicated, the values of the fields in the head packet are
preserved in the history. The other axioms have similar intuitive
interpretations.

There are many models that satisfy the NetKAT axioms, but
the standard model of NetKAT is formulated in terms of packet-
processing functions. A packet π is a record whose fields assign
constant values n to fields f . A packet history is a nonempty
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sequence of packets

π1 :: π2 :: · · · :: πk,
in which the head packet is π1. Operationally, only the head packet
exists in the network, but in the logic we keep track of the packet’s
history to enable precise specification of forwarding behavior in-
volving specific paths through the network. Every NetKAT expres-
sion e denotes a function:

JeK : H → 2H

whereH is the set of all packet histories. Intuitively, the expression
e takes an input packet history σ and produces a set of output packet
histories JeK(σ).

The semantics of the primitive actions and tests are as follows.
For a packet history π :: σ with head packet π,

Jx← nK(π :: σ) = {π[n/x] :: σ}

Jx = nK(π :: σ) =

{
{π :: σ} if π(x) = n

∅ if π(x) 6= n

JdupK(π :: σ) = {π :: π :: σ}
where π[n/x] denotes packet π with the field x rebound to the
value n. Note that a test x = n drops the packet if the test is
not satisfied and passes it through unaltered if it is satisfied—i.e.,
tests behave as filters on packets. The dup construct duplicates the
head packet π, yielding a fresh copy that can be modified by other
constructs. Hence, in this standard model, the dup construct can be
used to encode paths through the network, with each occurrence of
dup marking an intermediate hop.

The KAT operations are interpreted as follows:

Jp+ qK(σ) = JpK(σ) ∪ JqK(σ)

Jp · qK(σ) =
⋃

τ∈JpK(σ)

JqK(τ)

Jp∗K(σ) =
⋃
n

JpnK(σ)

J1K(σ) = {σ}
J0K(σ) = ∅

J¬bK(σ) =

{
{σ} if JbK(σ) = ∅
∅ if JbK(σ) = {σ}

The interpretation of sequential composition is often called Kleisli
composition, as it is composition in the Kleisli category of the
powerset monad. The + operator accumulates actions. Thus the
expression (port ← 8) + (port ← 9) describes the behavior of
a switch that outputs a copy of the packet on ports 8 and 9. Note
that this is a departure from the usual Kleene algebra interpretation
of + as nondeterministic choice—NetKAT treats it as conjuctive
rather than disjunctive. Nevertheless, it is not difficult to show that
the axioms of KAT and NetKAT are sound over this interpretation.

The proof of completeness is more difficult, and uses a language
model that plays a similar role as the regular sets of strings do for
KA and the regular sets of guarded strings do for KAT [1]. The
language model for NetKAT consists of the regular sets of reduced
strings of the form

αp0 dup p1 dup p2 · · · pn−1 dup pn, n ≥ 0,

where α is a complete test x1 = n1 ; · · · ;xk = nk, the pi are com-
plete assignments x1 ← n1 ; · · · ;xk ← nk, and x1, . . . , xk are
all of the fields in some arbitrary but fixed order.1 Every NetKAT
expression can be rewritten to an equivalent reduced expression

1 Note that we will use metavariables p to range over NetKAT expressions
as well as complete tests. The intended meaning will be clear from context.

in which every test is a complete test and every assignment is a
complete assignment. Likewise, every string of primitive actions
and tests is equivalent to a reduced string modulo the NetKAT ax-
ioms. The set of reduced strings is described by the expression
At · P · (dup · P )∗, where At is the set of complete tests and P
the set of complete assignments. The complete tests are the atoms
(minimal nonzero elements) of the Boolean algebra generated by
the primitive tests. Complete tests and complete assignments are in
one-to-one correspondence determined by the sequence of values
n1, . . . , nk.

It is straightforward to show that every NetKAT expression e
can be interpreted as a regular set of reduced strings G(e). The
NetKAT axioms can be expressed in a simpler form for reduced
strings. Let αp be the complete test corresponding to the complete
assignment p. Likewise, let pβ be the complete assignment corre-
sponding to the complete test β. The NetKAT axioms for reduced
strings are as follows:

α dup = dupα pαp = p αpα = α

αα = α αβ = 0, α 6= β qp = p
∑
α∈At α = 1.

See the previous paper on NetKAT [1] for a comprehensive treat-
ment of the language model, including proofs of the claims above.

3. NetKAT Coalgebra
Coalgebra is a general framework for modeling and reasoning
about state-based systems [4, 5, 30, 33, 36]. A central aspect
of coalgebra is the characterization of equivalence in terms of
bisimulation. Our work is motivated by recent experiences with
bisimulation-based decision procedures for KA and KAT [4, 5, 30].
However, to apply these techniques to NetKAT, we must first de-
velop its coalgebraic theory. This will provide a combinatorial view
of NetKAT similar to classical automata theory for KA and au-
tomata on guarded strings for KAT. This section develops this the-
ory, which provides the necessary structure for our bisimulation-
based decision procedure.

For background on the general theory of coalgebra in modeling
state-based systems, see the survey article by Rutten [34]. The only
general knowledge needed from this domain is the following:

1. Coalgebras are usually defined in terms of a set of states along
with observation and continuation maps. The observation map
gives information about each state while the continuation map
specifies transition(s) from one state to the next states(s). The
nature of these maps varies depending on the type of the system
being modeled.

2. Two states are considered bisimilar if the observation maps
yield identical information for both states and the continuation
map leads again to bisimilar states.

3. A homomorphism is a map between coalgebras that preserves
the structure of observations and continuations.

4. There is often a final coalgebra into which there is a unique
homomorphism from any other coalgebra of the same type.
Two states are bisimilar if and only if this homomorphism maps
them to the same state in the final coalgebra.

As an example, a deterministic automaton over a finite alphabet
Σ is a coalgebra with an observation map S → 2 that indicates
whether a state is an accepting state and a continuation map S ×
Σ → S that specifies the transitions of the automaton. The final
coalgebra is 2Σ∗ , the powerset of the set of all strings over Σ,
with observation and continuation maps given by the (semantic)
Brzozowski derivative ε : 2Σ∗ → 2 such that ε(L) = 1 if and
only if L contains the null string and δ(L, a) = {w | aw ∈ L}
for a ∈ Σ and w ∈ Σ∗. The unique homomorphism from an
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automaton to the final coalgebra takes a state s to the set of strings
that would be accepted by the automaton if s were the start state.

There is also a syntactic Brzozowski derivative defined induc-
tively on regular expressions Exp over Σ:

Da(e1+e2) = Da(e1) +Da(e2)

Da(e1e2) = Da(e1) · e2 + E(e1) ·Da(e2)

Da(e∗) = Da(e) · e∗

Da(1) = Da(0) = 0 Da(b) = [b = a]

E(e1+e2) = E(e1) + E(e2)

E(e1e2) = E(e1) · E(e2)

E(e∗) = 1

E(1) = 1 E(0) = E(a) = 0, a ∈ Σ,

where [ϕ] = 1 or 0 according as ϕ is true or false, respectively. The
map taking a regular expression e to the set of strings it represents
is the unique homomorphism to the final coalgebra.

3.1 Definitions
A NetKAT coalgebra consists of a set of states S along with con-
tinuation and observation maps

δαβ : S → S εαβ : S → 2

for α, β ∈ At. A deterministic NetKAT automaton is simply
a finite-state NetKAT coalgebra with a distinguished start state
s ∈ S. (There are also corresponding notions of nondeterministic
automaton and a determinization procedure, but we will not need
these for our formal development in this paper.) The inputs to the
automaton are reduced strings belonging to the set U = At · P ·
(dup · P )∗. That is, U contains strings of the form

αp0 dup p1 dup · · · dup pn
for some n ≥ 0. Intuitively, δαβ attempts to consume αpβ dup
from the front of the input string and move to a new state with a
residual input string. This succeeds if and only if the reduced string
is of the form αpβ dup x for some x ∈ (P · dup)∗ · P , in which
case the automaton moves to a new state as determined by δαβ
with residual input string βx. The observation map εαβ determines
whether the string αpβ should be accepted in the current state.

Formally, acceptance is determined by a coinductively defined
predicate Accept : S × U → 2:

Accept(t, αpβ dup x) = Accept(δαβ(t), βx)

Accept(t, αpβ) = εαβ(t).

A reduced string x ∈ U is accepted by the automaton if Accept(s, x),
where s is the start state. A NetKAT coalgebra is a coalgebra for
the set endofunctor

FX = XAt×At × 2At×At (3.1)

The continuation and observation maps comprise the structure map
of the coalgebra:

(δ, ε) : X → FX.

One can see immediately from equation (3.1) that XAt×At and
2At×At are isomorphic to the families of square matrices over X
and 2, respectively, with rows and columns indexed by At. Indeed,
in §5, we will exploit the one-to-one correspondence between P
and At to express δ and ε in matrix form.

The reader familiar with coalgebra might notice that the final
coalgebra of the above functor is not exactly reduced NetKAT
strings. However, the semantics of a NetKAT automaton as accep-
tor of reduced NetKAT strings can be recovered coalgebraically
by doing a generalized powerset construction [38] in which one of

the atoms in the argument of δ is hidden in the state. This is anal-
ogous to the situation for nondeterministic finite automata: these
are (compact) acceptors of languages which need to be made de-
terministic in order to recover language semantics as the canonical
equivalence. For space reasons and to keep the presentation simple,
we will not explain the generalized powerset construction involved
in recovering the language semantics categorically, but rather give
the concrete definitions of the semantic map and syntactic structure
on expressions.

3.2 The Brzozowski Derivative
This section develops a variant of the Brzozowski derivative for
NetKAT. The derivative comes in two versions: semantic and syn-
tactic. The semantic version is defined on subsets of U and gives
rise to a NetKAT coalgebra (2U , δ, ε). The syntactic version is de-
fined on expressions and also gives rise to a coalgebra (Exp, D,E).
There is a unique language interpretation G : Exp→ 2U .

Language Semantics. The language semantics for NetKAT is
given by the semantic derivative:

δαβ : 2U → 2U εαβ : 2U → 2

δαβ(A) = {βx | αpβ dup x ∈ A} εαβ(A) = [αpβ ∈ A].

Syntactic Coalgebra. There is also a syntactic derivative:

Dαβ : Exp→ Exp Eαβ : Exp→ 2,

where Exp is the set of reduced NetKAT expressions.2 It is defined
inductively as follows:

Dαβ(p) = 0 Dαβ(b) = 0 Dαβ(dup) = α · [α = β]

Dαβ(e1 + e2) = Dαβ(e1) +Dαβ(e2)

Dαβ(e1e2) = Dαβ(e1) · e2 +
∑
γ

Eαγ(e1) ·Dγβ(e2)

Dαβ(e∗) = Dαβ(e) · e∗ +
∑
γ

Eαγ(e) ·Dγβ(e∗)

Eαβ(p) = [p = pβ ] Eαβ(b) = [α = β ≤ b]

Eαβ(dup) = 0 Eαβ(e1 + e2) = Eαβ(e1) + Eαβ(e2)

Eαβ(e1e2) =
∑
γ

Eαγ(e1) · Eγβ(e2)

Eαβ(e∗) = [α = β] +
∑
γ

Eαγ(e) · Eγβ(e∗).

Note that the definitions for ∗ are circular, but both are well-defined
if we take the least fixpoint of the system of equations.

4. Kleene’s Theorem for NetKAT
In this section we prove that a subset of U is G(e) for some
NetKAT expression e if and only if it is the set of strings accepted
by some finite NetKAT automaton. This result is the generaliza-
tion of Kleene’s theorem, which relates regular expressions and au-
tomata, to NetKAT.

2 Readers familiar with previous work on NetKAT [1] may notice that the
syntactic derivative is actually defined on a superset of reduced NetKAT ex-
pressions that includes arbitrary tests b. The definition given here illustrates
the connection to previous work on derivatives in the context of KAT [23]
and remains correct when restricted to complete tests.
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4.1 From Automata to Expressions
Let M = (S, δ, ε, s) be a finite NetKAT automaton. Consider a
graph H with nodes (S × At) ∪ {halt} and labeled edges

(u, α)
pβdup−→ (v, β), if δαβ(u) = v

(u, α)
pβ−→ halt, if εαβ(u) = 1.

We claim that for x ∈ (P · dup)∗ · P ,

(t, α)
x−→ halt ⇔ Accept(t, αx). (4.1)

This can be proved by induction on the length of x. For the basis,

(t, α)
pβ−→ halt ⇔ εαβ(t) = 1 ⇔ Accept(t, αpβ).

For the induction step,

(t, α)
pβdupx−→ halt ⇔ ∃u (t, α)

pβdup−→ (u, β)
x−→ halt

⇔ ∃u δαβ(t) = u ∧ Accept(u, βx)

⇔ Accept(δαβ(t), βx)

⇔ Accept(t, αpβ dup x).

The set of labels of paths in H from (t, α) to halt is a regular
subset of (P · dup)∗ · P and is described by a regular expression
e(t, α). These expressions can be computed by taking the star ofH
considered as a square matrix. By (4.1), the set of strings accepted
by M is the regular subset of U described by e =

∑
α α · e(s, α).

As shown previously [1], ifR(e) ⊆ U , whereR is the canonical
interpretation of regular expressions as regular sets of strings, then
R(e) = G(e). Hence, we have the following theorem.

Theorem 1. Let M be a finite NetKAT automaton. There exists a
NetKAT expression e such that the set of reduced strings accepted
by M is G(e).

4.2 From Expressions to Automata
For the other direction, we show how to construct a finite NetKAT
automaton Me from an expression e. The states of the automaton
are NetKAT expressions modulo associativity, commutativity, and
idempotence (ACI), with e as the start state. The continuation and
observation maps are the syntactic derivative introduced in §3.2.

Lemma 1. The set accepted by Me is G(e).

Proof. By Lemma 4, G is a coalgebra homomorphism from the
syntactic coalagebra (Exp, D,E) to the set-theoretic coalgebra
(2U , δ, ε). Proceeding by induction on the length of the string, we
have the following:

Accept(e, αpβ)⇔ Eαβ(e) = 1

⇔ G(Eαβ(e)) = 1

⇔ εαβ(G(e)) = 1

⇔ αpβ ∈ G(e),

Accept(e, αpβ dup x)⇔ Accept(Dαβ(e), βx)

⇔ βx ∈ G(Dαβ(e))

⇔ βx ∈ δαβ(G(e))

⇔ αpβ dup x ∈ G(e).

It remains to show that Me is finite. This follows from the fact
that e has finitely many derivatives up to ACI. We defer the proof
of this fact to Lemma 6 in the next section, as it depends on some
details of our data representation.

Theorem 2. For every NetKAT expression e, there is a determin-
istic NetKAT automaton Me with at most |At| · 2` states accepting
the set G(e), where ` is the number of occurrences of dup in e.

5. Term and Automata Representations
In this section, we develop a collection of concrete structures that
are useful for representing NetKAT automata and will lead to
a practical implementation. They also provide further theoretical
insights into the structure of the NetKAT language.

5.1 Matrices
The reader has probably noticed that many of the operations used
to define the syntactic derivative Dαβ and Eαβ closely resemble
matrix operations. Indeed, if we regard the types of the coalgebra
operations as having the following types:

δ : X → XAt×At ε : X → 2At×At,

then we can view δ(t) as an At× At matrix over X and ε(t) as an
At×At matrix over 2. Moreover, if X is a KAT, then the family of
At×At matrices overX again forms a KAT, denoted Mat(At, X),
under the standard matrix operations [9]. Thus we have

δ : X → Mat(At, X) ε : X → Mat(At, 2).

So the syntactic coalgebra defined in §3.2 takes the following form:

D(p) = 0 D(b) = 0 D(dup) = J

D(e1 + e2) = D(e1) +D(e2)

D(e1e2) = D(e1) · I(e2) + E(e1) ·D(e2)

D(e∗) = E(e∗) ·D(e) · I(e∗),

where I(e) is the diagonal matrix with e on the main diagonal and
0 elsewhere and J is the matrix with α on the main diagonal in
position αα and 0 elsewhere. Similarly, we have:3

E(dup) = 0 E(e1 + e2) = E(e1) + E(e2)

E(e1e2) = E(e1) · E(e2) E(e∗) = E(e)∗.

Note that in this formE becomes a KAT homomorphism from Exp
to Mat(At, 2).

Likewise, we can regard the set-theoretic coalgebra presented in
§3.2 as having type:

δ : 2U → Mat(At, 2U ) ε : 2U → Mat(At, 2).

Again, in this form, ε becomes a KAT homomorphism:

Lemma 2.

(i) ε(1) = I
(ii) ε(A ∪B) = ε(A) + ε(B)

(iii) ε(A ·B) = ε(A) · ε(B)
(iv) ε(A∗) = ε(A)∗

Proof. These properties follow straightforwardly from the defini-
tions in §3.2. For example, for (iii) and (iv), we have

ε(AB)αβ = [αpβ ∈ AB]

= [∃γ αpγ ∈ A ∧ γpβ ∈ B]

=
∑
γ

[αpγ ∈ A] · [γpβ ∈ B]

=
∑
γ

ε(A)αγ · ε(B)γβ

= (ε(A) · ε(B))αβ

ε(A∗) = ε(
⋃
nA

n) =
∑
n ε(A)n = ε(A)∗.

3 Here, we elide the cases for tests b and complete assignments p.
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The next lemma characterizes δ on the regular operators.

Lemma 3.

(i) δ(
⋃
nAn) =

∑
n δ(An)

(ii) δ(AB) = δ(A) · I(B) + ε(A) · δ(B)
(iii) δ(A∗) = ε(A∗) · δ(A) · I(A∗)

where I(A) is the matrix with the set A on the main diagonal and
∅ elsewhere, and the matrix sum in (i) is componentwise union.

Proof. We argue (ii) and (iii) explicitly; (i) follows from linearity.
(ii) By definition, δαβ(AB) = {βx | αpβ dup x ∈ AB}. To

show that αpβ dup x ∈ AB, the string must be the product of
two reduced strings, one from A and one from B. Depending on
which of these strings contains the first occurrence of dup, one of
the following must occur: (1) there exists γ such that αpβ dup x =
αpγ · γpβ dup x with αpγ ∈ A and γpβ dup x ∈ B; or (2) there
exist γ, y, and z such that αpβ dup x = αpβ dup ypγ · γz with
αpβ dup ypγ ∈ A, γz ∈ B, and x = ypγγz.

In the first case, we have εαγ(A) = 1 and βx ∈ δγβ(B), hence
βx ∈ εαγ(A) · δγβ(B). In the second case, we have βypγ ∈
δαβ(A) and γz ∈ B, hence βx = βyγγz ∈ δαβ(A) ·B. Thus

δαβ(AB) = δαβ(A) ·B ∪
⋃
γ εαγ(A) · δγβ(B).

Abstracting over indices, we obtain the matrix equation (ii).
(iii) From (i) and (ii):

δ(A∗) = δ(1 +AA∗) = 0 + δ(AA∗)

= δ(A) · I(A∗) + ε(A) · δ(A∗).
The derivative is the least fixpoint of this equation, which by an
axiom of KAT is the right-hand side of (iii).

The following lemma says thatG is a coalgebra morphism from
the syntactic coalgebra (Exp, D,E) to (2U , δ, ε).

Lemma 4.

(i) G(D(e)) = δ(G(e))
(ii) E(e) = ε(G(e))

where G is extended componentwise to matrices.

Proof. By induction on e.
(i) For primitive terms p, b and dup,

G(Dαβ(p)) = G(0) = ∅
= {βx | αpβ dup x ∈ {γp | γ ∈ At}}
= δαβ({γp | γ ∈ At}) = δαβ(G(p))

G(Dαβ(b)) = G(0) = ∅
= {βx | αpβ dup x ∈ {βpβ | β ≤ b}}
= δαβ({βpβ | β ≤ b}) = δαβ(G(b)).

G(Dαβ(dup)) = G(α · [α = β])

= {βpβ | α = β}
= {βx | αpβ dup x ∈ {γpγ dup pγ | γ ∈ At}}
= δαβ({γpγ dup pγ | γ ∈ At})
= δαβ(G(dup))

The case e1 + e2 is straightforward, since G, δ, and D are linear.
For products, using Lemma 3 (ii),

G(D(e1e2)) = G(D(e1) · I(e2)) +G(E(e1) ·D(e2))

= G(D(e1)) ·G(I(e2)) +G(E(e1)) ·G(D(e2))

= δ(G(e1)) · I(G(e2)) + ε(G(e1)) · δ(G(e2))

= δ(G(e1) ·G(e2))

= δ(G(e1e2))

lrsp(e1 + e2) = lrsp(e1) ∪ lrsp(e2)

lrsp(e1e2) = {(`, re2) | (`, r) ∈ lrsp(e1)} ∪
{(e1`, r) | (`, r) ∈ lrsp(e2)}

lrsp(e∗) = {(e∗`, re∗) | (`, r) ∈ lrsp(e)}
lrsp(dup) = {(1, 1)}

lrsp(b) = lrsp(p) = ∅.

Figure 1. NetKAT left-right spines.

For star, the system defining D(e∗) is

D(e∗) = D(e) · I(e∗) + E(e) ·D(e∗)

whose least solution is

D(e∗) = E(e∗) ·D(e) · I(e∗).

Using Lemma 3 (iii),

G(D(e∗)) = G(E(e∗) ·D(e) · I(e∗))

= G(E(e∗)) ·G(D(e)) ·G(I(e∗))

= ε(G(e)∗) · δ(G(e)) · I(G(e)∗)

= δ(G(e∗)).

(ii) For p, b and dup,

Eαβ(p) = [p = pβ ]

= εαβ({γp | γ ∈ At}) = ε(G(p)).

Eαβ(b) = [α = β ≤ b]
= εαβ({αpα | α ≤ b})
= εαβ(G(b)).

Eαβ(dup) = 0

= εαβ({γpγ dup pγ | γ ∈ At})
= Eαβ(G(dup))

The case e1 + e2 is straightforward, since G, ε, and E are linear.
For products, using Lemma 2 (iii),

Eαβ(e1e2) =
∑
γ

Eαγ(e1) · Eγβ(e2)

= (E(e1) · E(e2))αβ

= (ε(G(e1)) · ε(G(e2)))αβ

= (ε(G(e1) ·G(e2)))αβ

= εαβ(G(e1e2))

For star, using Lemma 2 (iv),

E(e∗) = E(e)∗ = ε(G(e))∗ = ε(G(e∗)).

5.2 Spines
As was just shown, matrices provide an elegant and compact way
to express and encode NetKAT derivatives. It turns out that the
set of derivatives of an expression is finite and can be bounded
as a function of the size of the expression itself. To prove this,
we develop the notion of the spines of a term e and show that
derivatives can always be represented as sums of spines. In our
implementation, both of these representations are put to work: we
encode the Brzozowski derivative using matrices whose elements
are sets of spines.

Intuitively, the spines of an expression can be obtained by lo-
cating the occurrences of dup and forming a pair of expressions
built from the expressions appearing to the left and right of the
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dup. The left component of the pair is called the left spine and the
right component is called the right spine. The spines are related to
the derivative in the following way: the left spine represents the ex-
pression that must be consumed before the occurrence of dup can
be consumed itself, and the right spine indicates the expression that
remains after doing so. For example, the set of spines of the ex-
pression a · dup · b is just {(a, b)}, and indeed, a is the expression
that must be consumed before the dup and b is the expression that
remains after it is consumed.

The inductive definition of the left-right spines of e, denoted
lrsp(e), is given in Figure 1. In many situations, just the right
spines are useful. They can be defined more simply as follows (to
lighten the notation, we write A · e for {de | d ∈ A} and e · A for
{ed | d ∈ A} where A ⊆ Exp and e ∈ Exp):

rsp(e1 + e2) = rsp(e1) ∪ rsp(e2)

rsp(e1e2) = rsp(e1) · e2 ∪ rsp(e2)

rsp(e∗) = rsp(e) · e∗

rsp(dup) = {1}
rsp(b) = rsp(p) = ∅.

It is easy to show that every right spine in rsp(e) has the form
1 · e1 · e2 · · · en, where the ei are subexpressions of e, and that
there is one spine of e for every occurrence of dup in e.

The next lemma relates the derivative of e and its right spines:

Lemma 5. For any α, β,

Dαβ(e) = {βr | (`, r) ∈ lrsp(e), Eαβ(`) = 1}.

Thus the derivativeDαβ(e) is a sum of terms of the form βr, where
r ∈ rsp(e).

Proof. The proof is by induction on the structure of e. Abusing
notation slightly by representing sums of terms as sets,4 we argue
the cases for products and star explicitly.

For products, we have the following equalities:

Dαβ(e1e2)

= Dαβ(e1) · e2 ∪
⋃
Eαγ(e1)=1 Dγβ(e2)

= {βr | (`, r) ∈ lrsp(e1), Eαβ(`) = 1} · e2

∪
⋃
Eαγ(e1)=1{βr | (`, r) ∈ lrsp(e2), Eγβ(`) = 1}

= {βre2 | (`, r) ∈ lrsp(e1), Eαβ(`) = 1}
∪ {βr | (`, r) ∈ lrsp(e2), Eαβ(e1`) = 1}

= {βr | (`, r) ∈ lrsp(e1e2), Eαβ(`) = 1},

where we use the induction hypothesis in the second step.
For star, we have the following equalities:

Dαβ(e∗)

=
⋃
Eαγ(e∗)=1 Dγβ(e) · e∗

=
⋃
Eαγ(e∗)=1{βr | (`, r) ∈ lrsp(e), Eγβ(`) = 1} · e∗

= {βre∗ | (`, r) ∈ lrsp(e), Eαβ(e∗`) = 1}
= {βr | (`, r) ∈ lrsp(e∗), Eαβ(`) = 1}.

The final lemma presented in this section shows that the spines
of spines of e are themselves spines of e. Hence, taking repeated
derivatives does not introduce new terms.

Lemma 6. If d ∈ rsp(e), then rsp(βd) ⊆ rsp(e).

4 This is a convenient abuse which we take with impunity as we are working
modulo ACI. The representation of the Brzozowski derivative in this form
is often called the Antimirov derivative.

Proof. The argument for sums is straightforward. For products,

d ∈ rsp(e1e2) = rsp(e1) · e2 ∪ rsp(e2)

⇒ d ∈ rsp(e1) · e2 or d ∈ rsp(e2)

⇒ (d = ce2 and c ∈ rsp(e1)) or d ∈ rsp(e2)

⇒ (d = ce2 and rsp(βc) ⊆ rsp(e1))

or rsp(βd) ⊆ rsp(e2)

⇒ rsp(βd) = rsp(βce2) = rsp(βc) · e2 ∪ rsp(e2)

⊆ rsp(e1) · e2 ∪ rsp(e2) = rsp(e1e2)

or rsp(βd) ⊆ rsp(e2) ⊆ rsp(e1e2)

⇒ rsp(βd) ⊆ rsp(e1e2).

For star,

d ∈ rsp(e∗) = rsp(e) · e∗

⇒ d = ce∗ and c ∈ rsp(e)

⇒ rsp(βd) = rsp(βce∗) = rsp(βc)e∗ ∪ rsp(e∗)

⊆ rsp(e) · e∗ ∪ rsp(e∗) = rsp(e∗).

For dup,

d ∈ rsp(dup) = {1}
⇒ d = 1

⇒ rsp(βd) = rsp(β) = ∅ ⊆ rsp(dup).

Note that we cannot have d ∈ rsp(b) or d ∈ rsp(p), since these
sets are empty.

Taken together, these lemmas show that repeated derivatives
of e can all be represented as sums of terms of the form βd,
where d ∈ rsp(e). Thus the number of derivatives of e is at
most |At| · 2`, where ` is the number of occurrences of dup in
e. Moreover, these terms can be represented compactly as a pair
of an atom and a subset of rsp(e). Using these representations to
build NetKAT automata provides a solid foundation for building an
efficient implementation, as is described in the next section.

6. Implementation
We have built a system that decides NetKAT equivalence. Given
two NetKAT terms, it first converts these terms into automata us-
ing Brzozowski derivatives, and then tests whether the automata
are bisimilar. Our implementation consists of 4500 lines of OCaml
code and includes a parser, pretty printer, and a simple visualizer.
We have also integrated our decision procedure into the Frenetic
SDN controller platform. This integration enables automated veri-
fication of important properties for real-world network topologies
and configurations.

Our implementation incorporates a number of important en-
hancements and optimizations that avoid potential sources of com-
binatorial blowup. In particular, the derivative and matrix-based
algorithms described in the preceding sections are formulated in
terms of the NetKAT language model consisting of sets of reduced
strings of complete tests and assignments. Building a direct imple-
mentation of these algorithms would require constructing square
matrices indexed by the universe of possible complete tests and as-
signments, which is exponential in the number of constants in the
terms. Following such a strategy would be impractical, even for
small terms. Instead, our implementation uses a symbolic repre-
sentation that exploits symmetry and sparseness and incorporates
optimizations to aggressively prune away values that do not con-
tribute to the final outcome. Although the algorithm is still expo-
nential in the worst case—which is unavoidable, as the problem is
PSPACE-complete—the constrained nature of real-world networks
allows our tool to perform well in many common cases.
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6.1 Data Structures
The foundation of our implementation is based on a collection of
data structures that provide symbolic representations for building
and analyzing NetKAT automata.

Bases. Bases represent sets of pairs of complete tests and as-
signments symbolically, typically avoiding having to enumerate
every possible packet value. Let e be a NetKAT term and let
x1, . . . , xn be the collection of fields appearing in it. Likewise, let
Ui be the universe of all values associated with xi either by a test
xi = n or an assignment xi ← n. A base is a pair of sequences
X1, . . . , Xm; o1, . . . , om, where the Xi ⊆ Ui are sets of values
and the oi ∈ Ui are optional values. The set represented by a base
contains all tests where the value of the test for field xi is drawn
from Xi and the value for the assignment to xi is either ni if oi is
defined and equal to ni, or the same value as the test otherwise.

Matrices. Using bases, it is straightforward to build a sparse
matrix representation in which the rows and columns are indexed
by complete tests and assignments. To encode a 0-1 matrix, we
simply use a set of bases. To encode a matrix over a set, we
use finite maps from bases to elements of the set. For example,
when constructing the E matrix for a term e, tests xi = mi are
represented by

U1, . . . , Ui−1, {mi}, Ui+1, . . . , Un; ?, . . . , ?,

where ? denotes a missing optional value. Similarly, assignments
xi ← mi are represented by

U1, . . . , Un; ?, . . . , ?,mi, ?, . . . , ?.

Sums and products can be obtained using matrix addition and
multiplication as implemented using base sets. The product of
bases (X1, . . . , Xn; o1, . . . , on) and (Y1, . . . , Yn; q1, . . . , qn) is
nonzero if there exists a complete assignment in the left base that
matches a complete test in the right for each field. If oi = ?, then
the intersection of Xi and Yi must be nonempty, otherwise the
tests corresponding to the ith field will drop all packets produced
by the left base. On the other hand, if oi 6= ?, then its value
must belong to Yi. If these conditions hold, the resulting product
Z1, . . . , Zn;w1, . . . , wn is defined as follows:

Zi =

{
Xi if oi 6= ?

Xi ∩ Yi if oi = ?
wi =


oi if oi 6= ? and qi = ?

qi if qi 6= ?

? if oi = qi = ?

Using the product operation on bases, it is easy to build other matrix
operations. For example, multiplication can be implemented by
folding over the base sets, and fixpoints can be computed using an
iterative loop that multiplies at each step or by repeated squaring.

6.2 Algorithms
The two core pieces of our implementation are (i) an algorithm that
computes automata using Brzozowski derivatives, and (ii) another
that checks bisimilarity of automata.

Brzozowski derivative. Our implementation of Brzozowski deriva-
tives uses the spines introduced in §5.2. Recall that there is one
spine for every occurrence of dup in e. If σ denotes an occurrence
of dup, let `σ and rσ denote the left spine and right spine, respec-
tively, of that occurrence. It is straightforward to show that

Dαβ(e) =
⋃
{βrσ | σ an occurrence of dup, Eαβ(`σ) = 1}

or more succinctly,

D(e) =
∑
σ

E(`σ) · J · I(rσ). (6.1)

To further streamline the computation of D(e), we can avoid
adding the βrσ term to Dαβ(e) when βrσ is zero, or equivalently

when there exists no element of G(rσ) of the form βx. Let Φ be a
function that replaces all occurrences of dup with 1 as follows:

Φ(p) = p Φ(b) = b Φ(dup) = 1

Φ(e1 + e2) = Φ(e1) + Φ(e2)

Φ(e1e2) = Φ(e1) · Φ(e2) Φ(e∗) = Φ(e)∗.

It is easy to show that for any α, the set {α | αx ∈ G(e)} is equal
to {α | αx ∈ G(Φ(e))}. Hence, βx 6∈ G(rσ) is equivalent to
βx 6∈ G(Φ(rσ)). Moreover, because Φ(rσ) does not contain dup,
the set {α | αx ∈ G(e)} is described by the left-hand sequences
(A1, . . . , An) in the base set representation of E(Φ(rσ)). Hence
the derivative can be described as:

D(e) =
∑
σ

E(`σ) · E′(Φ(rσ)) · J · I(rσ),

where E′(Φ(rσ)) is obtained from E(Φ(rσ)) by replacing each
base (A1, . . . , An; k1, . . . , kn) with (A1, . . . , An; ?, . . . , ?).

This formulation, which is used in our implementation, has
a number of advantages. First, it is expressed entirely in terms
of simple matrix operations involving the E, I , and J matrices.
Second, it aggressively filters away intermediate terms that do not
contribute to the overall result. In particular, if the αβ entry of
E(`σ) is 0, then the occurrence of dup indicated by σ does not
contribute to the first dup in any reduced string denoted by e, so the
derivative is also 0. Third, since the spines of spines of e are spines
of e, we can calculate the left-right spines once and for all when
we construct the term, and subsequent derivatives are guaranteed
to have the form of (6.1).

Bisimulation. The other step in our NetKAT decision procedure
tests the bisimilarity of the automata constructed using Brzozowski
derivatives. Once we have the coalgebraic structure, this algorithm
is fairly standard. Given two NetKAT terms e1 and e2, we first
compare the matricesE(e1) andE(e2) and check whether they are
identical, returning false immediately if they are not. Otherwise, we
calculate all derivatives of e1 and e2 and recursively check each of
the resulting pairs. The algorithm halts when we have tested every
possible derivative reachable transitively from the initial terms. The
bounds derived in §5.2 guarantee that the algorithm terminates.
This coinductive algorithm can be implemented in almost linear
time in the combined size of the automata using the union-find data
structure [13].

6.3 Optimizations
To further improve performance, our implementation incorporates
a number of optimizations designed to reduce the overhead of
representing and computing with terms, bases, sparse matrices, etc.

Hash consing and memoization. Encoding real-world network
topologies and configurations as NetKAT terms often leads to many
repetitions. Our implementation exploits this insight by using ag-
gressive normalization and hash consing so that (many) semanti-
cally equivalent terms are represented by the same syntactic term.
For instance, we represent products as lists, which gives multiplica-
tive associativity for free, and we represent sums as sets, which
gives additive associativity, commutativity, and idempotence for
free. We also use smart constructors that recognize identities in-
volving 0 and 1 (along with several others) to further optimize the
representations of terms. We calculate term metadata such as left-
right spines and the E matrix lazily and store the results alongside
the term itself.

Sparse multiplication. The straightforward way to represent ma-
trix multiplication in terms of base sets would be to use nested
folds over the sets—the product of two base sets is simply their
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point-wise cross-product. Sadly, this naive algorithm gives poor
performance, and much of the effort is wasted multiplying bases
whose product is always 0. We instead implement an algorithm
which, rather than iterating over all pairs of bases, instead proac-
tively filters the sets, only retaining elements which could produce
a nonzero result. This is done as follows. (i) We first build an as-
sociation from assignments to their originating bases from the left
matrix. (ii) For each base in the right matrix, we intersect all test
value sets in this base with the set of all assignments in the left ma-
trix (per field). We will call the result of this operation the set of
potential matches. (iii) We multiply each base in the right matrix
with the bases corresponding to its potential matches to produce
the overall product. These operations allow us to associate each
base in the right operand with a small set of left operand bases,
significantly limiting the number of pairs we multiply.

Base compaction. There can be many representations of a set of
complete tests and assignments, and as base sets are multiplied,
those representations tend to grow. Hence, another key optimiza-
tion for making matrix multiplication (and many other operations)
fast is to compact the base sets whenever possible. Two bases can be
merged when (i) one is a subset of the other or (ii) they are adjacent,
in the following senses. The base b1 = X1, . . . , Xn; o1, . . . , on is
a subset of base b2 = Y1, . . . , Yn; q1, . . . , qn when for all fields
i, we have Xi ⊆ Yi and oi = qi. In this case, b1 and b2 can
be replaced with just b2. The base b1 is adjacent to b2 if there
exists a field i such that oi = qi and for all other fields j both
Xj = Yj and oj = qj . The result of merging these two bases is
Y1, . . . , Xi∪Yi, . . . , Yn; q1, . . . , qn.Although both of these merg-
ing optimizations require bases with identical assignments, we can
efficiently reduce the number of bases we attempt to merge by sort-
ing base sets by their assignments. This yields a fast optimization
that dramatically compacts the base sets that must be maintained in
our implementation.

Fast fixpoints. The algorithm for calculating the E matrix pre-
sented in §5.1 uses a fixpoint, which is a potentially expensive oper-
ation. Our implementation incorporates several optimizations that
greatly increase the efficiency of calculating this fixpoint by ex-
ploiting the structure of terms encoding networks. Generally speak-
ing, network terms are of the form in · (p · t)∗ · p · out, where
in and out are edge policies that describe the packets entering
and leaving the network, p is a policy the describes the behav-
ior of the switches, and t encodes the topology. The edge poli-
cies are typically very small compared to p or t. Hence, we can
use the edge policies to cut down the size of the (p · t)∗ term
as we take its fixpoint. We first unfold in · (p · t)∗ · p · out to
in · out+ in · (p · t)∗ · out and then find the in · (p · t)∗ fixpoint by
calculating in · p · t+ in · p · t · p · t+ · · ·+ in · (p · t)i, stopping
when we have reached a fixpoint. We have determined empirically
that when in and out are relatively small this process converges
much faster than other techniques for computing fixpoints, such as
repeatedly squaring the (p · t) term.

7. Additional Applications
The utility of NetKAT’s coalgebraic theory is not limited to check-
ing equivalence via bisimulation. The E and D matrices are also
useful for solving many other practical verification problems di-
rectly. This section discusses several such applications: all-pairs
connectivity, loop freedom, and translation validation.

Connectivity. Reachability—whether host A can communicate
with hostB—is a fundamental property of a network. Indeed, there
are now many automated tools that can check reachability proper-
ties involving individual locations; see §9 for a survey. Connectiv-
ity is a slightly stronger property that asks whether every host in

a network can communicate with every other host. In other words,
connectivity tests whether a network provides the functionality of
one “big switch” that forwards traffic between all of its ports.

As connectivity cares only about the end-to-end properties of
a network, it is agnostic to paths. Hence, it can be modeled in
NetKAT by simply setting all occurrences of dup to 1 using Φ from
§6 and checking the following:

Φ(in · (p · t)∗ · p · out)

=
∑

(sw,sw′,pt,pt′)

(
switch = sw · port = pt ·
switch ← sw ′ · port ← pt ′

)
where p encodes the switch policy, t encodes the topology, and
in the summation, (sw , pt) and (sw ′, pt ′) range over all outward-
facing switch-port pairs, that is, those adjacent to a host. Intuitively,
the left-hand side of the equation encodes the end-to-end forward-
ing behavior of the network—forwarding that starts from a state
matching in and traverses the switch policy and topology any num-
ber of times and eventually reaches a state matching out—while
the right-hand side represents a specification of a network that for-
wards directly between every outward-facing switch-port pair. Be-
cause connectivity does not involve keeping track of paths, it can
be verified simply by checking equality of E matrices.

Forwarding loops. A network has a forwarding loop if some
packets traverse a cycle repeatedly. Forwarding loops are a frequent
source of error in networks and have been identified as the cause
of outages both in local-area networks, where loops are often pro-
duced by protocols for computing broadcast spanning trees, and on
the broader Internet, where inter-domain protocols such as BGP can
easily produce loops during periods of reconvergence [15]. Making
matters worse, forwarding loops are often masked by features such
as TTL (time-to-live) fields, a run-time mechanism that enforces an
upper bound on the length of any loop by decrementing a counter
at each hop and dropping the packet when the counter reaches 0.

To check whether a packet has a loop, we need to determine if
there exists a packet that can reach the same location with the same
value twice. One possible way to express this is with the equation
in · (p · t)2n = 0, where p is the switch policy, t is the topology,
and n is the number of complete tests which occur in the program.
The intuition behind this equation is that there are only 2n distinct
packet values, so any packet that traverses the network more than
2n times must have been in some state at least twice, and thus will
loop forever. However, while this equation is correct, checking it
directly is inefficient, as exponentiation is an expensive operation.

To make the problem more tractable, we can recast it into an
equivalent formulation using a quantifier:

∀α. prefix (in · (p · t)∗) · α · p · t · (p · t)∗ · α = 0,

where prefix is the prefix closure operation. This equation directly
encodes a packet that visits the same state twice, allowing us to
avoid an expensive exponentiation operation. Moreover, it is not
hard to show that the inner term is already prefix-closed, as it ends
with a star. So we can reformulate our test to:

∀α. in · (p · t)∗ · α · p · t · (p · t)∗ · α = 0.

After converting to matrices, we obtain:

∀(α, β) ∈ E(Φ(in · (p · t)∗)). β · (p · t) · (p · t)∗ · β = 0.

We then observe that for any complete test β and term x, we have
β · x · β = 0 if and only if Eββ(Φ(x)) = 0. This yields a fast
algorithm for determining loop freedom. We iterate through the sets
of possible α and β with nonzero entries in E(Φ(in · (p · t)∗)) and
check the entry inE(Φ(p ·t ·(p ·t)∗)). If it is also nonzero, then the
network has a loop. We have used this algorithm to check for loops
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Topology Term Size # Switches Largest Policy Parse Time Loop Freedom Connectivity Translation
Airtel 2412 15 112 0.102 3.386 1.755 10.424
Uran 5000 23 264 0.327 5.905 5.757 71.18

GtsSlovakia 10388 34 385 0.99 25.361 25.166 258.83
Uunet 20350 48 539 6.684 138.147 143.387 2007.68

Telcove 41474 72 781 32.826 280.413 300.265 6959.08
Oteglobe 56844 92 838 93.045 944.955 944.555 26292.8

Pern 131092 126 4757 311.644 2140.63 2478.24 83245.7
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Figure 2. Topology Zoo experimental results.

in networks with topologies containing thousands of switches and
configurations with thousands of forwarding rules on each switch.

Translation validation. One technique for checking the correct-
ness of a compiler, often called translation validation, is to test
whether the instructions it emits have same semantics as the pro-
grams provided as input [29]. We can use translation validation
to check the NetKAT compiler itself, which is used by the Fre-
netic controller [11]. Unlike the applications just discussed, which
only depend on analyzing E matrices and do not require bisimu-
lation, translation validation uses the full NetKAT decision proce-
dure. This is due to the fact that it must check the equivalence of
the paths generated by the compiler rather than just checking end-
to-end forwarding.

We have developed a simple application that uses bisimulation
to validate the output of the Frenetic compiler. It takes an input
policy p and invokes the NetKAT compiler to convert it to a se-
quence of OpenFlow forwarding rules, one for each switch. As was
shown in the original NetKAT paper [1], the language is expres-
sive enough to encode these rules, so we can reflect them back into
NetKAT terms as nested cascades of conditionals,

c = if pat1 then acts1 else
. . .

if patk then actsk else 0

where each pati is a positive conjunction of tests and each acti is a
sequence of modifications. To verify equivalence, we simply check
whether p = (c · t)∗ · c, where t is the topology. If this succeeds,
we know that the forwarding rules emitted by the compiler encode
the same paths as those specified in the program.

8. Evaluation
To evaluate the performance of our implementation, we conducted
experiments on a variety of benchmarks. These experiments were
designed to answer the following questions: Can our coalgebraic
decision procedure effectively answer practical questions about
real-world network topologies and configurations? How does its
performance scale as the inputs grow in size? How does its perfor-
mance compare to other network verification tools?

Benchmarks. We ran experiments on the following benchmarks:

• Topology Zoo [18]: This public dataset contains a collection of
261 actual network topologies from around the world, mostly
for regional ISPs and carrier networks. The topologies range in
size from 5 nodes (ARPANET) to over 196 nodes (Cogentco).5

We generated forwarding policies by placing hosts into the
topology at random and computing paths that forward between
all pairs of hosts. This benchmark provides the ability to exper-
iment with a wide variety of topologies, ranging from trees, to
stars, to meshes, and even seemingly random structures.

• FatTrees: These topologies, which are commonly used in data
center networks, consist of a tree-structured hierarchy in which
the switches at each level have multiple redundant connections
to switches at the next higher level. We wrote a Python script to
generate FatTrees for a given pair of depth and fanout parame-
ters as well as a NetKAT policy that provides connectivity be-
tween hosts. This benchmark provides the ability to experiment
with the scalability of our tool on a commonly used topology at
varying sizes.

• Stanford Backbone [16]: This includes the 16-node topology
of the Stanford campus backbone network as well as the ac-
tual configurations of each router. This benchmark provides
an example of a complete real-world network and provides a
means to compare performance directly against other verifica-
tion tools, such as Header Space Analysis (HSA) [16].

Properties. Our experiments focused on checking the following
properties and used the applications described in §7:

• Connectivity: Does the network establish connectivity between
all pairs of hosts?

• Loop-Freedom: Does the network have forwarding loops?
• Translation Validation: Does the NetKAT compiler translate

high-level policies into equivalent OpenFlow forwarding rules?

For the Stanford benchmark, to facilitate a head-to-head compar-
ison with HSA, we also performed a reachability query from a
source to single destination.

5 We omitted one outlier topology, Kdl, which is the largest topology and
significantly larger than the next-largest topology in the Zoo.
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Fanout Depth Term Size # of Switches Largest Policy Parse Time Connectivity Translation Loop Freedom
4 2 311 6 16 0.004000 0.031 0.042 0.054

10 2 2807 15 590 0.052003 0.699997 1.511 2.742
20 2 17207 30 3880 0.636040 38.246 74.17 165.548
30 2 52207 45 8670 6.256391 435.082 832.18 1891.75
46 2 173519 69 21781 126.051878 5858.85 11338.7 25179.1
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Figure 3. FatTree experimental results.

Methodology. We ran our experiments on a small cluster of Dell
r720 servers with four eight-core 2.70GHz Intel Xeon CPU E5-
2680 processors and 64GB of RAM running Ubuntu 12.04.4 LTS.
We restricted each experiment to run on a single core. We collected
running times using the Unix time command for total process
times and the OCaml function Sys.time() for sub-process times.
In each experiment, we exclude the time required to parse inputs
and generate policies and only report the amount of time used for
the actual verification task.

Results and Analysis. The results of our experiments on the
Topology Zoo and FatTree benchmarks are depicted in Figures 2
and 3. We plot the running times of the benchmarks on inputs of
varying size and also provide a sampling of data points in a table.
All times are reported in seconds.

For the Topology Zoo benchmark, we see that our implementa-
tion is able to check small topologies with dozens of switches and
policies with hundreds of rules on each switch in tens of seconds,
and it scales to topologies with hundreds of switches and policies
with thousands of rules without difficulty. The graphs in Figure 2
plot the running time of all three applications against the size of
the NetKAT input term. Note that the plots use a semi-logarithmic
scale to show the overall trend. The performance of loop detection
is similar to connectivity. The performance of translation validation
is slower, taking about an order of magnitude longer on large in-
puts, taking tens of hours for topologies with thousands of switches.
This is expected, as translation validation involves invoking the full
bisimulation algorithm, a step not required to perform most prac-
tical verification tasks. However, our tool is still able to complete
and produce the correct result.

For the FatTree benchmark, we measured the scalability of our
tool as the size of the network increases from a small number of
nodes to several hundred nodes. The graph on the left of Figure 3
plots the performance of all three applications against the size of the
NetKAT input term. We observe similar scaling as for the Topology
Zoo benchmarks: small networks complete in seconds, while larger
networks can take up to several hours. The graph on the right of
Figure 3 compares the performance of our three applications, giv-
ing the relative running time compared to the slowest application—
loop freedom—on FatTrees of increasing size. On small inputs, all
three applications take roughly the same amount of time, whereas
on larger inputs, connectivity is fastest, loop detection is about half
as fast, and translation validation is again half as fast.

For our final benchmark, we compared the running time of our
tool against the HSA network property-checking tool [16]. HSA
works by doing a symbolic ternary simulation of the space of pos-
sible packet values through the policy. It incorporates numerous
optimizations to prune the space and keep the representation com-
pact. HSA is able to answer simple queries like reachability and
loop detection involving a single host or port, but it does not check
full equivalence, unless one performs iterated reachability queries
over the entire state space. Nevertheless, for many properties of in-
terest, HSA is able to produce an answer in a few seconds.

To facilitate a comparison with HSA, we made several further
improvements to our tool. First, we wrote a front end to parse router
configurations for the Stanford backbone. Second, we wrote a tool
to convert configurations based on IP prefix matching into policies
that only test concrete IP values. This tool works by computing a
partitioning of the space of all possible IP addresses that respects
the constants mentioned in the program and then replacing each IP
prefix with the union of representatives of the equivalence classes
it includes. Third, we developed an optimization that statically ana-
lyzes NetKAT policies and determines which fields are static, using
the NetKAT axioms and partial evaluation to considerably reduce
the size of the search space. For example, if a policy matches on
IP destination addresses and never modifies those addresses, then
for any particular address we can partially evaluate the policy to
obtain a smaller policy that is specialized to that host. This analysis
and optimization is integrated into our algorithm for constructing
NetKAT automata and applied automatically during the computa-
tion of fixpoints for Kleene star.

With these enhancements, our tool is able to answer a reacha-
bility query involving a single source host in 0.67 seconds. Note
that this query is evaluated on the production Stanford backbone
network with 16 routers and thousands of forwarding rules. In the
original HSA paper, the authors report 13 seconds for a single
reachability query. We were able to replicate this number on our
own testbed. Since publishing their original paper, the authors have
built a hand-optimized version of HSA in C that can answer the
same query in 0.5 seconds, but we were not able to replicate this
figure at the time of the writing of this paper.

Discussion. Overall, our experiments demonstrate that our tool
for deciding NetKAT equivalence is able to scale to real-world
network topologies and configurations and provides good perfor-
mance on many common properties. Although the general problem
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of NetKAT equivalence is PSPACE complete, our implementation
is still fast enough to be used for offline verification of production
networks and can answer simpler questions such as point-to-point
reachability in well under a second, making it also suitable for more
dynamic situations.

9. Related Work
NetKAT [1] is the latest in a series of domain-specific languages for
SDN programming developed as a part of the Frenetic project [11,
12, 26, 27]. NetKAT largely inherits its syntax, semantics, and ap-
plication methodology from these earlier efforts but adds a com-
plete deductive system and PSPACE decision procedure [1]. These
new results in NetKAT build on the strong connection to earlier
algebraic work in KA and KAT [21, 22, 24]. The present paper ex-
tends work on NetKAT further, developing the coalgebraic theory
of the language and engineering an implementation of these ideas
in an OCaml prototype. The overall result is the first practical im-
plementation for deciding NetKAT equivalence.

The coalgebraic theories of KA and KAT and related systems
have been studied extensively in recent years [8, 23, 33, 36], un-
covering strong relationships between the algebraic/logical view of
systems and the combinatorial/automata-theoretic view. We have
exploited these ideas heavily in the development of NetKAT coal-
gebra and NetKAT automata. Finally, in our implementation, we
have borrowed many ideas and optimizations from the coalge-
braic implementations of KA and KAT and other related systems
[4, 5, 30] to provide enhanced performance, making automated de-
cision feasible even in the face of PSPACE completeness. Recent
work by Pous developed symbolic techniques for constructing KAT
automata and deciding equivalence using binary-decision diagrams
(BDDs) [31]. It would be interesting to investigate extending these
techniques to NetKAT in the future.

A large number of languages for SDN programming have been
proposed in recent years. Nettle [39] applies ideas from functional
reactive programming to SDN programming, and focuses on mak-
ing it easy to express dynamic programs using time-varying sig-
nals rather than event loops and callbacks as in most other systems.
PANE [10] exposes an interface that allows individual hosts in a
network to request explicit functionality such as increased band-
width for a large bulk transfer or bounded latency for a phone call.
Internally PANE uses hierarchical tables to represent and man-
age the set of requests and a compiler inspired by NetCore [26].
Maple [40] provides a high-level programming interface that en-
ables programmers to express network programs directly in Java,
using a special library to match and modify packet headers. Un-
der the hood, the Maple compiler builds up representations of net-
work traffic flows using a tree structure and then compiles these
to hardware-level forwarding rules. Several different network pro-
gramming languages based on logic programming have been pro-
posed including NDLog [25] and FlowLog [28]. The key difference
between all of these languages and the system presented in this pa-
per is that NetKAT has a formal mathematical semantics along with
a sound and complete deductive apparatus that supports automated
reasoning about program equivalence.

Lastly, there is a growing body of work focused on applica-
tions of formal methods ranging from lightweight testing to full-
blown verification to SDN. The NICE tool [7] uses a model checker
and symbolic execution to find bugs in network programs writ-
ten in Python. Automatic Test Packet Generation [42] constructs
a set of packets that provide coverage for a given network-wide
configuration. The SDN Troubleshooting System [35] uses tech-
niques inspired by delta debugging to reduce bugs to minimal
causal sequences. The VeriCon [2] system uses first-order logic and
a notion of admissible topologies to automatically check network-
wide properties. It uses the Z3 SMT solver as a back-end de-

cision procedure. Several different systems have proposed tech-
niques for checking network reachability properties including sem-
inal work by Xie et al. [41], Header Space Analysis [16], and
VeriFlow[17]. These tools either translate reachability problems
into problem instances for other tools, or they use custom deci-
sion procedures that extend basic satisfiability checking or ternary
simulation with domain-specific optimizations to obtain improved
performance. Compared to these tools, NetKAT is unique in its fo-
cus on algebraic and coalgebraic structure of network programs.
Moreover, as shown in the original NetKAT paper, many properties
including reachability can be reduced to equivalence.

10. Conclusion
This paper develops the coalgebraic theory of NetKAT and a new
decision procedure based on bisimulation. The coalgebraic theory
includes a definition of NetKAT automata, a variant of the Brzo-
zowski derivative, and a version of Kleene’s theorem relating terms
and automata. A novel aspect of the theory is the concise represen-
tation of the Brzozowski derivative in terms of matrices and spines.
Our implementation improves on a previous naive algorithm [1]
and initial experimental results are promising. In the future, we in-
tend to continue to make further enhancements and perform exten-
sive testing on additional practical examples [1]. A straightforward
extension is to incorporate well-studied algorithmic enhancements
to the bisimulation construction such as up-to techniques [4, 32].
We also plan to explore extending alternative algorithms for decid-
ing equivalence of KAT expressions [6, 37]. Another possible di-
rection is to study nondeterministic NetKAT automata, which could
provide more compact representations, or algorithms for deciding
equivalence [3, 4]. We also intend to deploy our tool in the Frenetic
SDN controller [11].
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Reis. On the average size of Glushkov and equation automata for
KAT expressions. In FCT, pages 72–83, August 2013.

354



[7] Marco Canini, Daniele Venzano, Peter Perešı́ni, Dejan Kostić, and
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