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Abstract

We show that the propositional Mu�Calculus is eq�

uivalent in expressive power to �nite automata on in��

nite trees� Since complementation is trivial in the Mu�

Calculus� our equivalence provides a radically sim�

pli�ed� alternative proof of Rabin�s complementation

lemma for tree automata� which is the heart of one

of the deepest decidability results� We also show how

Mu�Calculus can be used to establish determinacy of

in�nite games used in earlier proofs of complementa�

tion lemma� and certain games used in the theory of

on�line algorithms�

� Introduction

We propose the propositional Mu�calculus as a

uniform framework for understanding and simplify�

ing the important and technically challenging areas

of automata on in�nite trees and determinacy of in�

�nite games� We show that the Mu�Calculus is pre�

cisely equivalent to tree automata in expressive power�

permitting a radically simpli�ed proof of the Comple�

mentation Lemma for tree automata� We also show

how to systematically prove the determinacy of cer�

tain in�nite games� including games in the theory of

on�line algorithms�

Rabin ��	
	� introduced tree automata ��nite state

automata on in�nite trees� to prove the decidabil�

ity of the monadic second order theory of n succes�

sors �SnS�� This is one of the most fundamental de�

cidability results� to which many other decidability

results in logic� mathematics� and computer science

can be reduced� The proof involves reducing satis�

�ability of SnS formulae to the nonemptiness prob�

lem of tree automata� The reduction entails showing

that tree automata are closed under disjunction� pro�

jection� and complementation� While the �rst two

are rather easy� the proof of Rabin�s Complemen�

tation Lemma is extraordinarily complex and di��

cult� Because of the importance of the Complemen�

tation Lemma� a number of authors have endeavored

�and continue to endeavor� to simplify the argument

�
HR���� 
GH���� 
MS���� 
Mu����� Perhaps the best

known of these is the important work of Gurevich

and Harrington 
GH��� which attacks the problem

from the standpoint of determinacy of in�nite games�

While the presentation is brief� the argument is still

extremely di�cult� and is probably best appreciated

when accompanied by the �� page supplement of Monk


Mon��

In this paper� we present a new� enormously sim�

pli�ed proof of the Complementation Lemma� We

would argue that the new proof is straightforward and

natural� To obtain our proof� we show that the propo�

sitional Mu�Calculus �
Ko���� is expressively equiva�

lent to �nondeterministic� tree automata� Since the

Mu�Calculus is trivially closed under complementa�

tion� the equivalence immediately implies that tree

automata are also closed under complementation�

We remark that the equivalence of the Mu�calculus

and tree automata is a new result of some indepen�

dent interest� since it shows that there indeed exists a

natural modal logic of programs precisely equivalent

to tree automata in expressive power �cf� 
Th�����

Actually� a brief argument establishing this equiva�

lence can be given� by appealing to known lengthy

arguments translating through SnS� However� a care�

ful examination of this argument reveals that repeated

appeals to the Complementation Lemma are involved�



Thus this argument is not at all suitable for use in a

proof of the Complementation Lemma� The relation�

ship of the Mu�Calculus and tree automata has also

been investigated previously by Niwinski� In 
Ni���

it is shown that tree automata can be translated into

the Mu�Calculus� while in 
Ni�
� it is shown that a re�

stricted Mu�Calculus� in which conjunctions are not

allowed� can be translated into tree automata� As we

shall see� in our translation of the full Mu�Calculus

into tree automata� the main di�culty lies in dealing

with the conjuncts�

The Mu�Calculus L� is a modal logic �we deal

here with the propositional� Temporal version� with

�xpoint operators� It provides a least �xpoint operator

���� and a greatest �xpoint operator ���� which makes

it possible to give extremal �xpoint characterizations

of the branching time modalities� Intuitively� the Mu�

Calculus makes it possible to characterize the modal�

ities in terms of recursively de�ned tree�like patterns�

First� we show that the parse tree of a formula of

L� can be viewed as an alternating Tree Automaton


MS���� giving a translation from L� to alternating

Tree Automata� The problem of translating the Mu�

Calculus into nondeterministic Tree Automata then

reduces to translating alternating Tree Automata to

nondeterministic Tree Automata�

The alternating Tree Automata obtained from the

Mu�Calculus� however� have a nice property in the

sense that if there is an accepting run of an automa�

ton A on an input tree t� then there is a history�free

accepting run of A on t� A run of A on t is history�free

i� the non�deterministic choices made by A along any

path of t depend only on the current state �i�e� the

choices are independent of the history of the di�erent

�forall��runs��

We show how these history�free� alternating Tree

Automata can be reduced to nondeterministic Tree

Automata using constructions for determinizing
Sa���

and complementing 
EJ�	� automata on in�nite strings�

�For general alternating tree automata� we can still do

the translation into nondeterministic tree automata�

but now we must use Gurevich and Harrington�s for�

getful strategy theorem 
GH���� the history�freedom

of the automata derived from the Mu�Calculus allows

us to avoid the appeal to 
GH��� in our translation��

That proves the equivalence of nondeterministic Tree

Automata and the Mu�Calculus� and hence the Com�

plementation Lemma�

Almost all published proofs of the Complementa�

tion Lemma �
Ra
	��
Bu������� 
GH���� can be seen

upon re�ection to have taken the following approach�

best brought out by 
MS����

Alternating Tree Automata are easy to comple�

ment� given the fact that ��� certain in�nite games

are determined� i�e� at least one of the players has a

winning strategy� Nondeterministic Tree Automata�

clearly� are alternating Tree Automata� Alternating

Tree Automata can be reduced to nondeterministic

Automata �as shown in this paper� using determiniza�

tion of ��Automata and ��� a forgetful strategy theo�

rem�

Theorems ��� and ��� in all the results mentioned

above have had di�cult proofs� Although 
GH���

have somewhat simpli�ed the proofs over 
Ra
	�� the

proofs are far from being transparent� Moreover� their

proofs of Theorem ��� and ��� are intertwined� The

new proof of the Complementation Lemma via Mu�

Calculus suggests the following for simplifying the

above approach� i�e� ��� and ���� as well� To prove

���� extremal �xpoints �Mu�calculus� can be used to

characterize games in which a particular Player has a

winning strategy� Indeed� in section �� we give simple

and straightforward Mu�calculus characterizations of

games in which Players I and II have winning strate�

gies� which turn out to be trivial complements of each

other� Moreover� a totally independent ranking argu�

ment provides a simple proof of ����

Finally� we also show that the above technique of

extremal �xpoint �Mu�calculus� characterization gives

a general method for proving various determinacy re�

sults� Wolfe ��	��� �cf 
Mo���� proved the deter�

minacy of in�nite games in the second level of the

Borel hierarchy �F��� We show that it is possible to

view such determinacy results as implicitly construct�

ing extremal �xpoints� Mu�Calculus characterization

also gives a clear and simple proof of determinacy of

specialized F� games used in de�randomizing �exis�

tentially� On�line algorithms 
RS	��� This makes the



result in 
RS	�� only slightly more complicated �being

more general� than a determinacy result in 
B	���

Detailed proofs of Theorems in section � and �

appear in the second author�s dissertation 
J	���

� Alternating Tree Automata to Nondeter�

ministic Tree Automata

We deal here only with �nite state Automata�

De�nition ���� A nondeterministic binary Tree Au�

tomaton is a tuple N � ��� OR� AND�

�� �� L� s�� ��� where

� is the input alphabet�

OR is the �nite set of states�

AND is a set of nodes� intuitively corresponding to

entries in the transition function of the Automaton�

L � AND��� is a labelling of the AND nodes with

the input symbols�

� is a relation on OR � AND de�ning the di�erent

nondeterministic choices from OR to AND nodes� es�

sentially the transition function�

� � AND � f�� �g�OR� is a function specifying left

and right successor states�

s� � OR is the start state�

� is the acceptance condition� to be de�ned below�

We now give a game theoretic de�nition of acceptance

of a tree t by an Automaton N �

De�nition ���� Given an input tree t � f�� �g����

we can de�ne a � player in�nite game ��N � t� on the

above bipartite graph as follows� Player I picks AND

successors of OR nodes picked by Player II� and vice

versa�

Formally� a strategy for Player I is a map �I �

f�� �g��AND with the requirement that �x � f�� �g�

� L��I�x�� � t�x�� We say that �I is a legal strat�

egy for I i� ��s�� �I�	�� and �b�b�


bk � f�� �gk�� �

�����I �b�b�


bk���� bk�� �I�b�b�


bk��� We need the

notion of �legal� to ensure that I indeed picks AND

nodes which are successors of previously picked OR�

nodes� The class of legal strategies of Player I will

be called StratI � A strategy for Player II is a map

�II � AND��f�� �g� de�ned similarly�

In a play� given b � b�b�


bk �i�e� the moves of

Player II� and a legal strategy �I � there is a unique

sequence of OR nodes s�s�


sk�� visited along b in the

play� which we de�ne by a function path � StratI �

f�� �g��OR��

Similarly� given b � f�� �g�� and a legal strategy

�I � there is also a unique in�nite sequence of OR

nodes visited along b� if Player I follows �I � Thus�

we de�ne a function ipath � StratI � f�� �g��OR��

with ipath��I � b� � s�s�


 � OR� �where b � b�b�


��

such that s� � ���I�	�� b�� and� �k � �� sk �

���I�b�b�


bk���� bk���� Note that fpath��I � b��jb� pre�

�x of bg is exactly the set of non�empty �nite pre�xes

of ipath��I � b��

The acceptance condition � is given by a sub�

set of OR�� We say that x � OR� satis�es � i�

x is in the subset representing �� Usually� � is de�

�ned by a Temporal formula interpretted over in��

nite sequences of OR nodes� For example� the Streett

acceptance condition has m pairs of subsets of OR�

f�GREEN�� REDi�� 


�GREENm� REDm�g� Then

the subset of OR� de�ning � is given by
V
i�����m��GF

GREENi�GF REDi�� In Temporal Logic� G stands

for everywhere� and F stands for eventually� The

Pairs acceptance condition is the complement of the

Streett condition�

De�nition ���� A legal strategy �I for I is a winning

strategy for I i�

�b � f�� �g� � ipath��I � b� satis�es ��

We say that N accepts t i� I has a winning strategy in

��N � t�� L�N � � ftj Naccepts tree tg� is the language

accepted by N �

Non�deterministic Automata and TMs were gener�

alized to Alternating Automata and TMs in 
CKS����

Alternating tree Automata were �rst de�ned in 
MS����

The following de�nition of Alternating Tree Automa�

ton is the generalization of the de�nition of nondeter�

ministic Tree Automaton de�ned above� to include

�universal states�� Intuitively� we now have two kinds

of AND nodes� DAND and AAND� The DAND

nodes are as before� the directional AND nodes with

two successors specifying the transitions in the left

and right directions� The AAND nodes are the dual

of the OR nodes representing the ��nondeterminism�

De�nition ���� An Alternating binary Tree Automa�



ton is a tuple A � ��� OR� DAND�

AAND� �� �� �� L� s��  �� where

� is the input alphabet�

OR is the �nite set of states�

DAND is a set of nodes� with successors specifying

the transitions in the di�erent directions�

AAND is a set of nodes� with successors specifying

the di�erent ��nondeterministic transitions�

� � OR �DAND� de�nes the di�erent nondetermi�

nistic choices from the OR nodes�

� � DAND � f�� �g� AAND is a function de�ning

the transitions along the di�erent directions�

� � AAND � OR� de�nes the di�erent �� nondeter�

ministic transitions�

L � DAND��� is a labelling of DAND nodes with

input symbols�

s� � OR is the start state�

 is the Acceptance Condition� to be de�ned later�

We now give a game theoretic de�nition of accep�

tance of a tree t by an Automaton A�

De�nition ��	� Given t � f�� �g���� a � player in�

�nite game ��A� t� can be de�ned as for Nondetermi�

nistic Automata� Player I picks a node from DAND�

while Player II picks a pair� a binary digit de�ning an

AAND node and then an OR node successor of the

resulting AAND node� Thus Player II has additional

choice� It not only picks a path b � f�� �g�� it also

picks a ��nondeterministic sequence of transitions�

Thus a strategy for Player I is a map �I � fs�g �

�f�� �g � OR�� � DAND with the requirement that

�b�s � �f�� �g � OR��� L��I�s� � b�s�� � t�b�� We say

that �I is legal i� �b�s � �f�� �g � OR�
�� ��sk� �I�s� �

b�s�� where s � s�

sk� The class of strategies of

Player I will be called AStratI � A strategy for player

II is a map �II � DAND�� f�� �g �OR�

In contrast to the games for Nondeterministic Auto�

mata� given b � f�� �g�� and a legal strategy �I � there

is a set of sequences of OR nodes �rather than a unique

sequence of OR nodes�� The di�erent sequences in the

set correspond to di�erent ��nondeterministic choices

of Player II� Player I�s strategy �I now� is a winning

strategy i� for all b � f�� �g�� all the resulting in�nite

sequences of OR nodes along b satisfy the acceptance

condition�

Given b � f�� �g�� and a legal strategy �I � we now

de�ne a function bundle� which gives the set of se�

quences of OR nodes� Each sequence in the bun�

dle will be referred to as a thread� Thus bundle �

AStratI � f�� �g���OR
�

� such that

bundle��I � 	� � fs�g�

bundle��I � b�� � fs�s�j�����I�s��� b��� s��g�

bundle��I � b�b�


bk� � fs�s�


sksk��j s�s�


sk �

bundle�b�

bk��� and �����I �s�b�

bk��sk�� bk�� sk���g�

Similarly� we de�ne a function ibundle � AStratI�

f�� �g���OR
�

� such that ibundle��I � b�b�


� �

fs�s�


j�k � � s�s�


sk � bundle��I � b�b�


bk���g�

Each element of ibundle��I � b� will be referred to as

ithread� Note that ibundle has Automaton A and

tree t as implicit arguments�

As for Nondeterministic Tree Automata� the ac�

ceptance condition  is given by a subset of OR��

We say that x � OR� satis�es  i� x is in the subset

representing  � Once again� we may specify  using

Temporal Logic�

De�nition ��
� A legal strategy �I for Player I is a

winning strategy for Player I i�

�b � f�� �g���s � ibundle��I � b� � s satis�es  �

We say that A accepts t i� I has a winning strategy in

��A� t�� L�A� � ftj A accepts tree tg is the language

accepted by A�

De�nition ���� A strategy �I for Player I in a game

��A� t� is a History�free Strategy i� at each node of the

input tree� the strategy depends only on the current

state of the Automaton A and the node in the tree t�

Formally� i�

�k 	 ���b � f�� �gk��s � s�s�


sk � ORk����s�

� s��s
�
�


s

�
k � ORk�� sk � s�k��I�s�b� � �I�s

�
�b�

An Alternating Automaton A is a History�free Al�

ternating Automaton i� for every tree t� if Player I

has a winning strategy in ��A� t�� then Player I has a

history�free winning strategy in ��A� t��

Theorem ��� 
GH���� If Player I has a winning strat�

egy in ��A� t� then it has a forgetful winning strategy

in ��A� t�� i�e� a strategy which only depends on a

small �nite history of the play� where A is de�ned

with Muller Acceptance condition� �



��� Construction

Given an Alternating Automaton A the obligation

is to construct a nondeterministic Tree Automaton

N � such that for every tree t� Player I has a winning

strategy in ��A� t� i� Player I has a winning strategy

in ��N � t�� A legal strategy �I in ��A� t� generates for

each b � f�� �g�� an ibundle��I � b� of in�nite ithreads�

whereas a legal strategy �I in ��N � t� generates for

each b � f�� �g�� a single thread� ipath��I � b��

Thus� N must collect all the ithreads in ibundle

into a single ipath �and if ibundle is generated by a

�nite state mechanism then the ipath must also be

generated by a �nite state mechanism�� Safra�s con�

struction 
Sa���� e�g� is a mechanism which generates

a single ipath satisfying Streett acceptance condition

i� all the ithreads satisfy the complement of the Buchi

acceptance condition� A modi�cation of the co�Safra

Construction 
EJ�	� generates a single ipath satisfy�

ing pairs acceptance condition i� all ithreads satisfy

the Streett acceptance condition� which is what we

require here�

There are two main points to be noted� Firstly�

N must at each OR state have a transition function�

which is the cross product of the transition functions

of all the last nodes of the threads it is collecting into

a single path� Secondly� since the number of threads

increase arbitrarily with increasing length� if N were

to collect all the ithreads� N would require in�nitely

many states� However� by Theorem ���� every Streett

Alternating tree Automaton is forgetful� and hence

N only needs to keep the small �nite history of the

threads� thus requiring only �nitely many states� Of

course� for history�free Alternating Automaton� we do

not need theorem ����

Theorem ���� Given A � �OR� DA� AA� �� �� �� L�

s�� ��  �� a Streett alternating Tree Automaton� we

construct an equivalent nondeterministic Pairs Tree

Automaton N � �OR�� AND�� ��� ��� L�� s��� �� ���

i�e� L�A� � L�N �� If jORj � n� jDAj � m� and

 has k pairs then jOR�j � �k
��O�nlogn�

� jAND�j �

�k
��O�nlogn�

�m�O�nlogn�

� with � having k�O�nlogn� pairs�

� PropositionalMu�Calculus to Tree Automata

Using the Construction in the previous section we

translate Propositional Mu�Calculus to Rabin Tree

Automata� We begin by de�ning the Temporal ver�

sion of Propositional Mu�Calculus� Following that

we convert a Mu�Calculus formula to an equivalent

Streett history�free Alternating Tree Automaton�

��� Propositional Mu�Calculus

De�nition ���� The formulae of the Propositional

Mu�Calculus are�

��� Propositional letters P�Q�R




��� Propositional variables 


� X� Y� Z

��� 
p� p�q� and p�q� where p and q are any formulae

��� EXp and AXp� where p is any formula

��� �X
f�X� and �X
f�X�� where f�X� is any for�

mula syntactically monotone in the propositional vari�

able X �

A sentence is a formula containing no free propo�

sitional variables In the sequel� we will use 	 as a

generic symbol for � or �� Sentences are interpreted

in Kripke Trees�

De�nition ���� A Kripke Tree is an in�nite binary

tree t � f�� �g� � Prop� A satisfaction relation j� is

de�ned between f�� �g� and Prop� We say� x j� P i�

P � t�x�� Note that� usually a Kripke tree is de�ned

as a map t � f�� �g���Prop� but since we want to show

equivalence of the Mu�Calculus to Tree Automata� we

use the labelling as in Tree Automata�

De�nition ���� A model is a Kripke Tree with the

Satisfaction relation extended to all sentences by means

of the usual boolean rules and

��� x j� EXp i� 
i � f�� �g � x � i j� p

��� x j� AXp i� �i � f�� �g � x � i j� p

��� x j� �X
f�X� i� x �
T
fS � U jS � fyjy j� f�X�

with X interpreted as sgg�

��� x j� �X
f�X� i� x �
S
fS � U jS � fyjy j� f�X�

with X interpreted as sgg�

Every formula has a positive normal form in which

all negations apply directly to proposition letters� De�

�ne not�p� to be the positive normal form of 
p�

De�nition ���� The Fischer Ladner Closure of a

sentence p in positive normal form� is the smallest

set FL�p� of sentences satisfying the following con�

straints�



��� p � FL�p�

��� if q � FL�p� then not�q� � FL�p�

��� if q � r � FL�p� then q� r � FL�p�

��� if q � r � FL�p� then q� r � FL�p�

��� if EXq � FL�p� then q � FL�p�

�
� if AXp � FL�p� then q � FL�p�

��� if �X
f�X� � FL�p� then f��X
f�X�� � FL�p�

��� if �X
f�X� � FL�p� then f��X
f�X�� � FL�p��

De�nition ���� A pre�model is a Kripke Tree with a

satisfaction relation j� extended to FL�p� under the

following constraints�

��� x j� p i� x �j� not�p�

��� x j� p � q i� either x j� p or x j� q

��� x j� EXp i� 
i � f�� �g � x � i j� p

��� x j� �X
f�X� i� x j� f��X
f�X���

A premodel is almost a model� except rule ��� per�

mits �x
f�X� to be interpreted as an arbitrary �x�

point�

��� Construction

Theorem ���� Given a Mu�Calculus formula f�� we

build a Streett History�free Alternating Tree Automa�

ton equivalent to f�� in the sense that the Automaton

accepts exactly those binary trees labelled with Prop�

which are models of f�� Here Prop is the set of Propo�

sition symbols in f��

Proof Sketch� Consider the parse tree of f�� It can

be viewed as an Alternating Automaton�s transition

diagram� The �� nodes in the parse tree correspond

to AAND nodes� the ��nodes to OR nodes� while

AXp and EXp correspond to DAND nodes� More�

over� an occurence of variable x bound in 	x
f�x�� is

identi�ed with the node 	x
f�x� �i�e� makes a loop��

The above transition diagram with acceptance condi�

tion  � true de�nes an Alternating Automaton A�

Note that the transition diagram de�ned above is not

necessarily a tripartite graph�

Given a map �I � fs�g � ff�� �g � ORg��DAND�

a pre�model T ��I� can be generated from the Alter�

nating Automaton A� It can be shown that T ��I� is

a pre�model of f� extending the labelling of t i� �I is

a winning strategy for Player I in ��A� t��

Moreover� the winning strategy �also called the

choice function in 
StE���� determines a derivation

relation between occurences of sentences in the pre�

model so obtained 
StE���� We would like to say that

a pre�model is in fact a model when there is no in�nite

derivation sequence which rederives a mu�sentence in�

�nitely often� However� 
StE��� show that this claim

is true only when restricted to derivations in which

the given ��sentences appear as a subsentence of every

derivation step� We say that a ��sentence �X
f�X�

is regenerated from x to y if �X
f�X� at x derives

�X
f�X� at y in such a way that �X
f�X� is a sub�

sentence of every derivation step� A winning strategy

�I in the above game is a well�founded winning strat�

egy when the regeneration relations for ��sentences

are well�founded� The main theorem in 
StE��� states

that a pre�model is a Model i� there is a well�founded

winning strategy generating it from the transition dia�

gram� Moreover� a well�founded winning strategy de�

�nes a straightforward history�free well�founded win�

ning stategy� because Player I can pick the choice with

the least rank with respect to the the regeneration re�

lations �for a formal proof� see 
StE�����

For a �xpoint formula 	X
f�X�� we say that X

is bound to this formula� W�l�o�g� assume that in f��

every �xpoint subexpression has a unique X bound to

it� We say that a �xpoint subexpression is of higher

precedence than another� if the latter is contained as a

strict subexpression in the �rst� For each �xpoint sub�

formula there is a �xpoint sentence in FL�f��� given

inductively as follows� For �xpoint sub�formulae of

maximal precedence the sub�formulae� which are sen�

tences in this case� itself are in FL�f��� We de�ne a

��� and onto map H between variables and the �x�

point sentences occuring in FL�f�� corresponding to

the �xpoint subexpression to which the variable is

bound� Thus� as already stated� H�X� � f � where

f is a maximal precedence subexpression such that X

is bound to it� H�X� � 	X
f�X�H�Y��� 

H�Yk���

where X is bound to 	X
f�X�Y�� 

Yk� in f�� Clearly�

Yi are of higher precedence than X � and hence the

above de�nition is well�founded�

It is a simple exercise to note that any rederiva�

tion of H�X� at s to H�X� at t is a regeneration i�

there is no H�Y � derived inbetween� such that Y is



of higher precedence than X � This motivates the fol�

lowing modi�cation in the acceptance condition of the

Alternating Automaton A obtained above� such that

in the new Streett Alternating Automaton B a win�

ning strategy is a well�founded winning strategy in A

and vice versa� Thus� the input tree t is a model �i�e�

has an extendable satisfaction relation as in De�nition

���� i� B has a winning strategy in ��B� t�� Since� the

only change is in the acceptance condition� a history�

free strategy in ��A� t� remains a history�free strategy

in ��B� t�� Thus B is a history�free Alternating Au�

tomaton�

Consider the partial order �
� on the set of vari�

ables in f� given by the precedence relation� We now

assign an integer height�X� to each X � All leaf vari�

ables �i�e� 

Y � �Y 
 X�� X in the partial or�

der have height�X� � �� Otherwise� height�X� �

�!max�height�Xi� � Xi 
 X�� The set GREENi

is the set of nodes corresponding to X � such that

height�X� � i and X is bound to a ��subexpression�

The set REDi is the set of nodes corresponding to

X such that height�X� 	 i and X is bound to a ��

subexpression� The Streett acceptance condition is

given by �i � �GREENi i�o� �REDi i�o���

It can be shown that A has a well�founded winning

strategy i� B has a winning strategy� Thus B is the

required Streett history�free Alternating Automaton�

�

� Tree Complementation Lemma

From Theorem ��� and Theorem ��� we conclude

that Propositional Mu�calculus can be translated to

Non�deterministic Rabin �Pairs� Tree Automata� More�

over� Niwinski 
Ni��� had shown that Non�deterministic

Pairs Automata can be translated to Propositional

Mu�Calculus� Thus� Propositional Mu�Calculus and

Non�deterministic Tree Automata are expressively eq�

uivalent� Rabin�s Tree Complementation Lemma� i�e�

languages accepted by Tree Automata are closed un�

der complementation� follows by trivial complemen�

tation of Mu�Calculus�

Note that our proof of complementation via Mu�

Calculus did indeed involve Alternating Tree Auto�

mata which was also� implicitly or explicitly� used

in all earlier proofs� as outlined in the Introduction�

However� our proof did not seem to involve di�cult

proofs of ��� and ��� �whereas� all known proofs of ���

and ��� have been intimidating�� This suggests that

their might be simple proofs of ��� and ���� Indeed�

we now give simple proofs of ��� determinacy of in�

�nite games for Tree Automata and ��� history�free

strategies for players in such games�

First� note that in the Proof of theorem ���� in�

stead of translating Mu�Calculus to Streett Automata�

the natural Automata to which Mu�Calculus trans�

lates easily is the one with the following �parity� ac�

ceptance condition�

De�nition ���� Let the states of a Tree Automaton�

or the OR nodes� be labelled with colors 
���m�� For

an in�nite path or sequence of nodes�

evenk � largest i�o� occurring color index among 
�

k�

is even�

oddk � largest i�o� occurring color index among 
�

k�

is odd�

We say that x � OR� satis�es the parity condition i�

x satis�es evenm�

Stated in terms of the usual Green� Red pairs�

the parity condition is� 
i �i�o� Greeni and �j 	 i

f�o� Redj�� Note that as opposed to Streett and

Pairs acceptance condition� parity acceptance con�

dition is trivially closed under complementation� It

is this property which makes proving determinacy of

games with parity acceptance condition much easier�

In fact� a Hossley�Racko� like �nite model theorem

for Parity Tree Automata also turns out to be much

simpler� Moreover� Parity Tree Automata are trivially

convertable to Pairs Tree Automata� Also� a simple

conversion from Pairs Tree Automata to Parity Tree

Automata can be obtained by a slight modi�cation

of 
Sa�	�� which converts a deterministic Pairs Auto�

mata to deterministic Streett Automata� This is also

the essence of the LAR argument in 
GH���� Sim�

ilarly� in�nite games with Muller or Pairs condition

easily reduce to In�nite games with Parity conditions�



��� Determinacy of in�nite games with parity

winning conditions

We studied a number of di�erent games in the

previous sections� However in general� a two player

in�nite game can be given by a game tree which is

an AND"OR in�nite tree with its nodes labelled with

colors 
���m�� W�l�o�g� we assume that each OR node

has the same color as all its AND successors� We gen�

eralize the above game trees to syntactic game trees�

in which nodes could be labelled with Mu�Calculus

expressions with or without free variables �modality

F stands for eventually�� A strategy for player I picks

an AND successor at each OR node� while a strat�

egy for Player II picks an OR successor at each AND

node� A strategy � in a game tree de�nes another tree

�which we will call ��� from the given game tree�

De�nition ����

Ik�t� � Set of game trees� s�t� Player I has a strategy

� with all paths satisfying� �evenk or Ft��

I���t� � t�

IIk�t� � Set of game trees� s�t� Player II has a strat�

egy � with all paths satisfying� �oddk or Ft��

	n � � if n is even� and � if n is odd�

Theorem ���� In�t� � 	nxn

�x��x��
W
i�����n��colori

� EXAXxi� � t��

Proof� We prove by induction over n� Consider the

equation�

y � 	n��xn��


�x��
W
i�����n����colori �EXAXxi� �

�colorn � EXAXy� � t�� when n � ��

and y � t when n � ��

Using induction hypothesis on the r�h�s� the equa�

tion above becomes

y � In���t � colorn � EXAXy��

In�t� is easily seen to be the �xpoint of the above

equation y � In���t � colorn �EXAXy� �just follow

the de�nition of Ik�t���

When n is even� to prove that In�t� is the greatest

�xpoint� let � � y be a game tree� We show that � �

In�t�� We prove by induction on k that � is a game

tree� with a strategy � for player I� s�t�

A�Ft � evenn�� � s�


s�


si


sk�� � �i � � � si is

colorn� and at sk��� EXAXy��

For k � �� it holds because� y � In���t � colorn�

EXAXy�� Suppose it holds for k� then for paths in

� where� s�

s�


si

sk�� � �i � � � si is colorn� and

at sk��� EXAXy� there is a choice �extension of ��

such that all successors y� and hence In���t� colorn�

EXAXy�� A trivial inspection shows that along all

extensions of the path one of the three disjuncts holds�

with k incremented� and we are done�

If n is odd� to prove In�t� is the least �xpoint� let

� be a strategy for player I in � � In�t�� s�t� along all

paths of �� �evenn � Ft�� Then� the relation R given

as follows on the nodes of � is well�founded� uRv i�

there is a path from u to v� and u or v is labelled n� for

otherwise we have an in�nite path in � with in�nitely

many n� Let u be a R�minimal node in �� such that

the game tree starting at u is not in y� By virtue of ��

u is in In���t � v�� where v is a node labelled colorn

and has successors v�� 

vi� 

vr� Note that� for every

i� uR�vi� since v is labelled colorn� Now� either for

all such nodes v �if any�� for all i� vi is in y� in which

case u is in y �by ����� Else� we found a vi not in y�

and uR�vi� which contradicts the R�minimality of u�

Thus� every u in � is in y� �

Theorem ���� IIn�t� � 	n��xn


�x��x��
W
i�����n�

�colori �AXEXxi� � t��

Proof� An argument symmetric to Theorem ���� �

Corrollary ���� In�nite games de�ned over game

trees with nodes labelled with colors 
�

m� and with

parity winning �or acceptance� conditions are deter�

mined� �

��� History free winning strategies

We show that if a player has a winning strategy in

a parity in�nite game� then the player has a winning

strategy which does not depend on the history� More

precisely� a Player I�s winning strategy is history�free

if it has the following property� if the partial game

trees beginning at two di�erent OR nodes are identi�

cal� then the winning strategy picks the same AND

successor at these two OR nodes� A history�free win�

ning strategy for Player II is de�ned similarly�

Theorem ���� If a player A �I"II� has a winning

strategy in a parity in�nite game then A has a history�



free winning strategy�

A partial game tree beginning at node x of a game

tree �� will be denoted �x� A partial winning strategy

�and the tree de�ned by it� beginning at node x in the

winning strategy � will be denoted by �x�

Proof� We prove the result for A being Player I� The

case of Player II is handled similarly� by switching the

OR and the AND nodes�

Suppose� player I has a winning strategy �� As

remarked earlier� the winning strategy de�nes a tree

� in the game tree� Consider the following maps ��k��

from the nodes in � to the class of all ordinals�

��k���x� � �� if along all paths in �x if there is a

node labelled color�k��� then there is a node before it

labelled colorn� where n � �k ! ��

��k���x� � ��k���x�! supf��k���y� � there is a

path from x to y such that y is labelled color�k��� and

there is no node in this path with colorn� n � �k!�g�

where ��k���x� is � if x is labelled color�k��� else ��

The above de�nition is well�de�ned� because along

all paths� for all k� every occurence of color�k�� is

followed by a colorn� n � �k ! �� Thus� the above

inductive de�nition is well�founded�

Let � � ��m����m��

�� with a left�lexicographic

ordering� which is again a well�ordering� We let ���k��

� ��m����m��

��k��� The history�free strategy we

de�ne� essentially picks at each OR�node x� the AND

node with the least �� in case of contention �i�e� if

in � there are other OR nodes with partial game

trees identical to �x� with � picking di�erent AND�

successors at these OR nodes��

We now show that the strategy �� so obtained is

indeed a winning strategy for Player I� Suppose� in ��

there is a path such that eventually color�k�� appears

in�nitely often� and no colorn� n � �k ! � appears�

We show that with every two such occurences x� and

xi of color�k��� � decreases� thus contradicting that

� is a well�order� Here� xj is the successor of xj�� in

��� Let the successor of xj�� in � be x
�
j �

Fact �� �j � i�� 	 j 	 � � ���k���xj� 	 ���k���x
�
j���

	 ���k���xj����

The second inequality follows because in �� the

least mu is picked� while the �rst inequality follows

because xj has colorn� n � �k ! ��

Fact �� ��k���x�� � ��k���x
�
���

This follows by de�nition of ��k��� noting that

��k���x�� � ��

Thus� ���k���x�� � ���k���xi�� �

	 Determinacy of On�line games

Consider an in�nite game tree in which each OR

node is colored with colorn� where n is a natural num�

ber� 
RS	�� construct a game to study competitive�

ness of on�line algorithms in which Player I wins a

particular play� say x�� x�� 


 � OR�� i� 
i�k xk has

colorn� n 
 i�

As before� let I be the set of game trees in which

player I has a winning strategy� and II be the set of

game trees in which player II has a winning strategy�

Then� a proof much simpler than Theorem ��� gives

the following� proving determinacy of this game�

Theorem 	���

I � �y
i�x��EXAXx � colorn� n 
 i� � y��

II � �y�i�x��AXEXx � colorn� n 	 i� � y��

This simpli�es the existential proof �in 
RS	���

of de�randomization of competitive on�line algorithms

for task systems� where 
RS	�� was invoking Wolfe�s

proof �
W���� of determinacy of F� games� Infact� a

similar Mu�Calculus characterization can be given for

F� �countable union of closed sets� games� elucidating

Wolfe�s proof� We use terminology from 
Mo����

Let A �
S
i�� Fi be the winning set for Player I�

where each Fi is closed in the product topology of
�X �

It is well known 
Mo��� that a closed set Fi is exactly

the in�nite paths in a Tree Ti on X � We say that Ti
holds on the last node of a path p in the game tree i�

p occurs in Ti�

Theorem 	��� I � �y
i�x��EXAXx�Ti� �y�� and

II � �y�i�x��AXEXx � 
Ti� � y�� �
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