Tree Automata, Mu-Calculus and Determinacy
(Extended Abstract)

E.A. Emerson! and C.S. Jutla?

1. The University of Texas at Austin
2. IBM, T.J. Watson Research Center

Abstract

We show that the propositional Mu-Calculus is eq-
uivalent in expressive power to finite automata on infi-
nite trees. Since complementation is trivial in the Mu-
Calculus, our equivalence provides a radically sim-
plified, alternative proof of Rabin’s complementation
lemma for tree automata, which is the heart of one
of the deepest decidability results. We also show how
Mu-Calculus can be used to establish determinacy of
infinite games used in earlier proofs of complementa-
tion lemma, and certain games used in the theory of
on-line algorithms.

1 Introduction

We propose the propositional Mu-calculus as a
uniform framework for understanding and simplify-
ing the important and technically challenging areas
of automata on infinite trees and determinacy of in-
finite games. We show that the Mu-Calculus is pre-
cisely equivalent to tree automata in expressive power,
permitting a radically simplified proof of the Comple-
mentation Lemma for tree automata. We also show
how to systematically prove the determinacy of cer-
tain infinite games, including games in the theory of
on-line algorithms.

Rabin (1969) introduced tree automata (finite state
automata on infinite trees) to prove the decidabil-
ity of the monadic second order theory of n succes-
sors (SnS). This is one of the most fundamental de-
cidability results, to which many other decidability
results in logic, mathematics, and computer science
can be reduced. The proof involves reducing satis-
fiability of SnS formulae to the nonemptiness prob-
lem of tree automata. The reduction entails showing

that tree automata are closed under disjunction, pro-
jection, and complementation. While the first two
are rather easy, the proof of Rabin’s Complemen-
tation Lemma is extraordinarily complex and diffi-
cult. Because of the importance of the Complemen-
tation Lemma, a number of authors have endeavored
(and continue to endeavor) to simplify the argument
([HR72], [GH82], [MS84], [Mu84].) Perhaps the best
known of these is the important work of Gurevich
and Harrington [GH82] which attacks the problem
from the standpoint of determinacy of infinite games.
While the presentation is brief, the argument is still
extremely difficult, and is probably best appreciated
when accompanied by the 40 page supplement of Monk
[Mon].

In this paper, we present a new, enormously sim-
plified proof of the Complementation Lemma. We
would argue that the new proof is straightforward and
natural. To obtain our proof, we show that the propo-
sitional Mu-Calculus ([Ko83]) is expressively equiva-
lent to (nondeterministic) tree automata. Since the
Mu-Calculus is trivially closed under complementa-
tion, the equivalence immediately implies that tree
automata are also closed under complementation.

We remark that the equivalence of the Mu-calculus
and tree automata is a new result of some indepen-
dent interest, since it shows that there indeed exists a
natural modal logic of programs precisely equivalent
to tree automata in expressive power (cf. [Th88]).
Actually, a brief argument establishing this equiva-
lence can be given, by appealing to known lengthy
arguments translating through SnS. However, a care-
ful examination of this argument reveals that repeated
appeals to the Complementation Lemma are involved.

Thus this argument is not at all suitable for use in a
proof of the Complementation Lemma. The relation-
ship of the Mu-Calculus and tree automata has also
been investigated previously by Niwinski. In [Ni88]
it is shown that tree automata can be translated into
the Mu-Calculus, while in [Ni86] it is shown that a re-
stricted Mu-Calculus, in which conjunctions are not
allowed, can be translated into tree automata. As we
shall see, in our translation of the full Mu-Calculus
into tree automata, the main difficulty lies in dealing
with the conjuncts.

The Mu-Calculus Ly is a modal logic (we deal
here with the propositional, Temporal version) with
fixpoint operators. It provides a least fizpoint operator
(1), and a greatest fixpoint operator (v), which makes
it possible to give extremal fixpoint characterizations
of the branching time modalities. Intuitively, the Mu-
Calculus makes it possible to characterize the modal-
ities in terms of recursively defined tree-like patterns.
First, we show that the parse tree of a formula of
Ly can be viewed as an alternating Tree Automaton
[MS84], giving a translation from Ly to alternating
Tree Automata. The problem of translating the Mu-
Calculus into nondeterministic Tree Automata then
reduces to translating alternating Tree Automata to
nondeterministic Tree Automata.

The alternating Tree Automata obtained from the
Mu-Calculus, however, have a nice property in the
sense that if there is an accepting run of an automa-
ton A on an input tree t, then there is a history-free
accepting run of A on t. A run of A on t is history-free
iff the non-deterministic choices made by A along any
path of ¢ depend only on the current state (i.e. the
choices are independent of the history of the different
“forall”-runs).

We show how these history-free, alternating Tree
Automata can be reduced to nondeterministic Tree
Automata using constructions for determinizing[Sa88]
and complementing [EJ89] automata on infinite strings.
(For general alternating tree automata, we can still do
the translation into nondeterministic tree automata,
but now we must use Gurevich and Harrington’s for-
getful strategy theorem [GHS82]; the history-freedom
of the automata derived from the Mu-Calculus allows

us to avoid the appeal to [GH82] in our translation.)
That proves the equivalence of nondeterministic Tree
Automata and the Mu-Calculus, and hence the Com-
plementation Lemma.

Almost all published proofs of the Complementa-
tion Lemma ([Ra69],[Bu77,83], [GH82]) can be seen
upon reflection to have taken the following approach,
best brought out by [MS87]:

Alternating Tree Automata are easy to comple-
ment, given the fact that (1) certain infinite games
are determined- i.e. at least one of the players has a
winning strategy. Nondeterministic Tree Automata,
clearly, are alternating Tree Automata. Alternating
Tree Automata can be reduced to nondeterministic
Automata (as shown in this paper) using determiniza-
tion of w-Automata and (2) a forgetful strategy theo-
rem.

Theorems (1) and (2) in all the results mentioned
above have had difficult proofs. Although [GHS82]
have somewhat simplified the proofs over [Ra69], the
proofs are far from being transparent. Moreover, their
proofs of Theorem (1) and (2) are intertwined. The
new proof of the Complementation Lemma via Mu-
Calculus suggests the following for simplifying the
above approach, i.e. (1) and (2), as well: To prove
(1), extremal fixpoints (Mu-calculus) can be used to
characterize games in which a particular Player has a
winning strategy. Indeed, in section 4, we give simple
and straightforward Mu-calculus characterizations of
games in which Players I and II have winning strate-
gies, which turn out to be trivial complements of each
other! Moreover, a totally independent ranking argu-
ment provides a simple proof of (2).

Finally, we also show that the above technique of
extremal fixpoint (Mu-calculus) characterization gives
a general method for proving various determinacy re-
sults. Wolfe (1955) (cf [Mo80]) proved the deter-
minacy of infinite games in the second level of the
Borel hierarchy (Fi;). We show that it is possible to
view such determinacy results as implicitly construct-
ing extremal fixpoints. Mu-Calculus characterization
also gives a clear and simple proof of determinacy of
specialized F, games used in de-randomizing (exis-
tentially) On-line algorithms [RS90]. This makes the

result in [RS90] only slightly more complicated (being
more general) than a determinacy result in [B90].

Detailed proofs of Theorems in section 2 and 3
appear in the second author’s dissertation [J90].

2 Alternating Tree Automata to Nondeter-
ministic Tree Automata

We deal here only with finite state Automata.

Definition 2.1: A nondeterministic binary Tree Au-
tomaton is a tuple N = (X, OR, AND,
¥,9, L, s,), where

Y is the input alphabet,

OR is the finite set of states,

AND is a set of nodes, intuitively corresponding to
entries in the transition function of the Automaton,
L : AND—Y, is a labelling of the AN D nodes with
the input symbols,

1 is a relation on OR x AN D defining the different
nondeterministic choices from OR to AN D nodes, es-
sentially the transition function.

0 : AND x {0,1}— OR, is a function specifying left
and right successor states,

so € OR is the start state,

) is the acceptance condition, to be defined below.

We now give a game theoretic definition of acceptance
of a tree t by an Automaton N.

Definition 2.2: Given an input tree ¢ : {0,1}*—=X,
we can define a 2 player infinite game T'(N,t) on the
above bipartite graph as follows. Player I picks AN D
successors of OR nodes picked by Player II, and vice
versa.

Formally, a strategy for Player I is a map pr
{0,1}*— AN D with the requirement that Vz € {0,1}*

L(pr(x)) = t(x). We say that pr is a legal strat-
egy for Iiff ¢ (so, pr(\)) and Vboby...b, € {0, 1}FF1 :
W (0(pr(boby...bg—1),br), pr(bobi...bg)). We need the
notion of “legal” to ensure that I indeed picks AN D
nodes which are successors of previously picked OR-
nodes. The class of legal strategies of Player I will
be called Strat;. A strategy for Player II is a map
prr : ANDt— {0,1}, defined similarly.

In a play, given b = bgb;...b; (i-e. the moves of
Player II) and a legal strategy py, there is a unique

sequence of OR nodes $gs1 ...Sk41 visited along b in the
play, which we define by a function path : Strat; x
{0,1}*>OR*.

Similarly, given b € {0,1}*, and a legal strategy
pr1, there is also a unique infinite sequence of OR
nodes visited along b, if Player I follows p;. Thus,
we define a function ipath : Stratr x {0,1}*—=ORY,
with ipath(pr,b) = sgs1... € ORY (where b = bgb; ...),
such that s; = d(pr(N\),bo) and, Vk > 1, s =
0(pr(boby...br.—2),br_1). Note that {path(py,b')|b" pre-
fix of b} is exactly the set of non-empty finite prefixes
of ipath(pr, b).

The acceptance condition 2 is given by a sub-
set of OR¥. We say that x € OR“ satisfies Q iff
z is in the subset representing (2. Usually, Q is de-
fined by a Temporal formula interpretted over infi-
nite sequences of OR nodes. For example, the Streett
acceptance condition has m pairs of subsets of OR,
{(GREEN,,RED;),..(GREEN,,,RED,,)}. Then
the subset of OR* defining €} is given by A;c(y) (GF
GREEN;=GF RED;). In Temporal Logic, G stands
for everywhere, and F' stands for eventually. The
Pairs acceptance condition is the complement of the
Streett condition.

Definition 2.3: A legal strategy py for Iis a winning
strategy for I iff

Vb € {0,1}¥, ipath(pr,b) satisfies Q.
We say that NV accepts t iff I has a winning strategy in
L(NV,t). L(N) = {t| Naccepts tree t}, is the language
accepted by N.

Non-deterministic Automata and TMs were gener-
alized to Alternating Automata and TMs in [CKS81].
Alternating tree Automata were first defined in [MS84].
The following definition of Alternating Tree Automa-
ton is the generalization of the definition of nondeter-
ministic Tree Automaton defined above, to include
“universal states”. Intuitively, we now have two kinds
of AND nodes: DAND and AAND. The DAND
nodes are as before, the directional AN D nodes with
two successors specifying the transitions in the left
and right directions. The AAND nodes are the dual
of the OR nodes representing the V-nondeterminism.

Definition 2.4: An Alternating binary Tree Automa-

ton is a tuple A = (¥, OR, DAND,
AAND, ¢, §, x, L, so, ®), where

¥ is the input alphabet,

OR is the finite set of states,

DAND is a set of nodes, with successors specifying
the transitions in the different directions,

AAND is a set of nodes, with successors specifying
the different V-nondeterministic transitions,

1) C OR x DAND, defines the different nondetermi-
nistic choices from the OR nodes,

d : DAND x {0,1}—» AAND is a function defining
the transitions along the different directions,

X € AAND x OR, defines the different V- nondeter-
ministic transitions,

L: DAND—Y, is a labelling of DAN D nodes with
input symbols,

so € OR is the start state,

® is the Acceptance Condition, to be defined later.

We now give a game theoretic definition of accep-
tance of a tree ¢t by an Automaton A.

Definition 2.5: Given ¢ : {0,1}*—X, a 2 player in-
finite game T'(A,t) can be defined as for Nondetermi-
nistic Automata. Player I picks a node from DAN D,
while Player II picks a pair: a binary digit defining an
AAND node and then an OR node successor of the
resulting AAN D node. Thus Player IT has additional
choice. It not only picks a path b € {0,1}¥, it also
picks a V-nondeterministic sequence of transitions.

Thus a strategy for Player Iis a map p; : {so} -
({0,1} - OR)* - DAND with the requirement that
Vb~s € ({0,1} - OR)*, L(pr(so - b~s)) = t(b). We say
that pr is legal iff Vb~s € ({0,1} - OR)*, ¢(s, pr(so -
b~s)) where s = s;..sg. The class of strategies of
Player I will be called AStraty. A strategy for player
IT'is amap prr : DANDT— {0,1} - OR.

In contrast to the games for Nondeterministic Auto-
mata, given b € {0,1}“, and a legal strategy py, there
is a set of sequences of OR nodes (rather than a unique
sequence of OR nodes). The different sequences in the
set correspond to different V-nondeterministic choices
of Player II. Player I's strategy pr now, is a winning
strategy iff for all b € {0,1}*, all the resulting infinite
sequences of OR nodes along b satisfy the acceptance

condition.

Given b € {0,1}*, and a legal strategy ps, we now
define a function bundle, which gives the set of se-
quences of OR nodes. Each sequence in the bun-
dle will be referred to as a thread. Thus bundle :
AStraty x {0,1}*—2°F" such that

bundle(pr, A) = {so},

bundle(pr, bo) = {sos1|x(6(pr(s0),bo), 1)},

bundle(pr, bobi...by) = {soS1...SkSk+1| SoS1-.-Sk €
bundle(bg..br.—1) and x(d(pr(sobo..bk—15k), bk), Sk+1)}-

Similarly, we define a function ibundle : AStrat; x
{0,1}* =298 such that ibundle(pr, bob;...) =
{s0s1...[Vk > 0 sps1...s;x € bundle(pr,boby...bx—1)}.
Each element of ibundle(py,b) will be referred to as
ithread. Note that ibundle has Automaton A and
tree ¢ as implicit arguments.

As for Nondeterministic Tree Automata, the ac-
ceptance condition ® is given by a subset of OR“.
We say that x € OR® satisfies ® iff x is in the subset
representing ®. Once again, we may specify ® using
Temporal Logic.

Definition 2.6: A legal strategy p; for Player I is a
winning strategy for Player I iff

Vb € {0,1}¥,Vs € ibundle(pr,b) : s satisfies ®.
We say that A accepts t iff I has a winning strategy in
(A, t). L(A) = {t| A accepts tree t} is the language
accepted by A.

Definition 2.7: A strategy p; for Player I in a game
['(A,t) is a History-free Strategy iff at each node of the
input tree, the strategy depends only on the current
state of the Automaton A and the node in the tree ¢.
Formally, iff
Vk > 0,Vb € {0,1}*,Vs = s0s;...5;, € ORF 1 Vs’

= ss}...s), € ORFTL g4 = s =pr(s°b) = pr(s'"b)
An Alternating Automaton A is a History-free Al-
ternating Automaton iff for every tree t, if Player I
has a winning strategy in I'(A, t), then Player I has a
history-free winning strategy in I'(A, t).

Theorem 2.1 [GH82]: If Player I has a winning strat-
egy in T'(A, t) then it has a forgetful winning strategy
in (A, t), i.e. a strategy which only depends on a
small finite history of the play, where A is defined
with Muller Acceptance condition. O

2.1 Construction

Given an Alternating Automaton 4 the obligation
is to construct a nondeterministic Tree Automaton
N, such that for every tree t, Player I has a winning
strategy in ['(A, t) iff Player I has a winning strategy
in T(V,t). A legal strategy py in T'(A, t) generates for
each b € {0,1}¥, an ibundle(pr, b) of infinite ithreads,
whereas a legal strategy pr in T'(N,t) generates for
each b € {0,1}¥, a single thread, ipath(pr,b).

Thus, N must collect all the ithreads in ibundle
into a single ipath (and if ibundle is generated by a
finite state mechanism then the ipath must also be
generated by a finite state mechanism). Safra’s con-
struction [Sa88], e.g. is a mechanism which generates
a single ipath satisfying Streett acceptance condition
iff all the ithreads satisfy the complement of the Buchi
acceptance condition. A modification of the co-Safra
Construction [EJ89] generates a single ipath satisfy-
ing pairs acceptance condition iff all ithreads satisfy
the Streett acceptance condition, which is what we
require here.

There are two main points to be noted. Firstly,
N must at each OR state have a transition function,
which is the cross product of the transition functions
of all the last nodes of the threads it is collecting into
a single path. Secondly, since the number of threads
increase arbitrarily with increasing length, if N were
to collect all the ithreads, " would require infinitely
many states. However, by Theorem 2.1, every Streett
Alternating tree Automaton is forgetful, and hence
N only needs to keep the small finite history of the
threads, thus requiring only finitely many states. Of
course, for history-free Alternating Automaton, we do
not need theorem 2.1.

Theorem 2.2: Given A = (OR, DA, AA, v, 4, x, L,
s0, X, @), a Streett alternating Tree Automaton, we
construct an equivalent nondeterministic Pairs Tree
Automaton N' = (OR', AND', ¢/, &', L', sj, &, Q),
ie. L(A) = LN). If |OR| = n, |[DA| = m, and
® has k pairs then |OR!| = 28°2°7""" |AND'| =
Qk?20(rloam) 20 (nioom) , with Q having k2°9("097) pairs.

3 Propositional Mu-Calculus to Tree Automata

Using the Construction in the previous section we

translate Propositional Mu-Calculus to Rabin Tree
Automata. We begin by defining the Temporal ver-
sion of Propositional Mu-Calculus. Following that
we convert a Mu-Calculus formula to an equivalent
Streett history-free Alternating Tree Automaton.

3.1 Propositional Mu-Calculus

Definition 3.0: The formulae of the Propositional
Mu-Calculus are:

(1) Propositional letters P, @, R...

(2) Propositional variables ..., X, Y, Z

(3) —p, pVq, and pAq, where p and ¢ are any formulae
(4) EXp and AXp, where p is any formula

(5) pX.f(X) and vX.f(X), where f(X) is any for-
mula syntactically monotone in the propositional vari-
able X.

A sentence is a formula containing no free propo-
sitional variables In the sequel, we will use A\ as a
generic symbol for p or v. Sentences are interpreted
in Kripke Trees.

Definition 3.1: A Kripke Tree is an infinite binary
tree t : {0,1}* — Prop. A satisfaction relation |= is
defined between {0,1}* and Prop. We say, z |= P iff
P = t(z). Note that, usually a Kripke tree is defined
asamap t : {0,1}*—2F7°P but since we want to show
equivalence of the Mu-Calculus to Tree Automata, we
use the labelling as in Tree Automata.

Definition 3.2: A model is a Kripke Tree with the
Satisfaction relation extended to all sentences by means
of the usual boolean rules and

(1) s EEXpiff 3i € {0,1} :x-i|=p
(2)zEAXpiff Vie {0,1} :2-if=p

(3) @ | vX.F(X) iff o € S C US = {yly = £(X)
with X interpreted as s}},

(4) = vX.F(X) iff 2 € ULS C UIS = {yly = £(X)
with X interpreted as s}}.

Every formula has a positive normal form in which
all negations apply directly to proposition letters. De-
fine not(p) to be the positive normal form of —p.

Definition 3.3: The Fischer Ladner Closure of a
sentence p in positive normal form, is the smallest
set FL(p) of sentences satisfying the following con-
straints:

(1)

(2)

(3)if ¢V r € FL(p) then q,r € FL(p)
(4) if g Ar € FL(p) then q,r € FL(p)
(5) if EXq € FL(p) then ¢ € FL(p)
(6) if AXp e FL(p) then ¢ € FL(p)
(7)
(8)

Definition 3.4: A pre-model is a Kripke Tree with a
satisfaction relation = extended to FL(p) under the
following constraints:

(1) z | piff = £ not(p)

(2) z EpVqiff either z =Eporz Eq
B)xEEXpiff i€ {0,1} :z-il|=p

(4) 2 uXf(X) iff 2 = F(uX.f(X)).

A premodel is almost a model, except rule (4) per-
mits px.f(X) to be interpreted as an arbitrary fix-
point.

3.2 Construction

Theorem 3.1: Given a Mu-Calculus formula fo, we
build a Streett History-free Alternating Tree Automa-
ton equivalent to fy, in the sense that the Automaton
accepts exactly those binary trees labelled with Prop,
which are models of f,. Here Prop is the set of Propo-
sition symbols in fj.

Proof Sketch: Consider the parse tree of fy. It can
be viewed as an Alternating Automaton’s transition
diagram. The A- nodes in the parse tree correspond
to AAND nodes, the V-nodes to OR nodes, while
AXp and EXp correspond to DAND nodes. More-
over, an occurence of variable z bound in Az.f(z), is
identified with the node Az.f(z) (i.e. makes a loop).
The above transition diagram with acceptance condi-
tion ® = true defines an Alternating Automaton A.
Note that the transition diagram defined above is not
necessarily a tripartite graph.

Given a map pr : {so} - {{0,1}- OR}*>DAND,
a pre-model T'(ps) can be generated from the Alter-
nating Automaton 4. It can be shown that T'(py) is
a pre-model of fy extending the labelling of ¢ iff p; is
a winning strategy for Player I in ['(A, t).

Moreover, the winning strategy (also called the

choice function in [StE84]) determines a derivation
relation between occurences of sentences in the pre-
model so obtained [StE84]. We would like to say that
a pre-model is in fact a model when there is no infinite
derivation sequence which rederives a mu-sentence in-
finitely often. However, [StE84] show that this claim
is true only when restricted to derivations in which
the given u-sentences appear as a subsentence of every
derivation step. We say that a p-sentence uX.f(X)
is regenerated from x to y if uX.f(X) at x derives
uX.f(X) at y in such a way that uX.f(X) is a sub-
sentence of every derivation step. A winning strategy
pr in the above game is a well-founded winning strat-
egy when the regeneration relations for p-sentences
are well-founded. The main theorem in [StE84] states
that a pre-model is a Model iff there is a well-founded
winning strategy generating it from the transition dia-
gram. Moreover, a well-founded winning strategy de-
fines a straightforward history-free well-founded win-
ning stategy, because Player I can pick the choice with
the least rank with respect to the the regeneration re-
lations (for a formal proof, see [StE84]).

For a fixpoint formula AX.f(X), we say that X
is bound to this formula. W.l.o.g. assume that in fo,
every fixpoint subexpression has a unique X bound to
it. We say that a fixpoint subexpression is of higher
precedence than another, if the latter is contained as a
strict subexpression in the first. For each fixpoint sub-
formula there is a fixpoint sentence in FL(fy), given
inductively as follows: For fixpoint sub-formulae of
maximal precedence the sub-formulae, which are sen-
tences in this case, itself are in FL(fy). We define a
1-1 and onto map H between variables and the fix-
point sentences occuring in F'L(fp) corresponding to
the fixpoint subexpression to which the variable is
bound. Thus, as already stated, H(X) = f, where
f is a maximal precedence subexpression such that X
is bound to it. H(X) = AX.f(X,H),.. H(Y)),
where X is bound to AX.f(X,Y7,..Y}) in fy. Clearly,
Y; are of higher precedence than X, and hence the
above definition is well-founded.

It is a simple exercise to note that any rederiva-
tion of H(X) at s to H(X) at t is a regeneration iff
there is no H(Y') derived inbetween, such that Y is

of higher precedence than X. This motivates the fol-
lowing modification in the acceptance condition of the
Alternating Automaton A obtained above, such that
in the new Streett Alternating Automaton B a win-
ning strategy is a well-founded winning strategy in A
and vice versa. Thus, the input tree ¢ is a model (i.e.
has an extendable satisfaction relation as in Definition
3.2) iff B has a winning strategy in ['(3,¢). Since, the
only change is in the acceptance condition, a history-
free strategy in I'(A, ¢) remains a history-free strategy
in I'(B,t). Thus B is a history-free Alternating Au-
tomaton.

Consider the partial order “<” on the set of vari-
ables in fy given by the precedence relation. We now
assign an integer height(X) to each X. All leaf vari-

ables (i.e. =3V : (Y < X)) X in the partial or-
der have height(X) = 1. Otherwise, height(X) =
1+max(height(X;) : X; < X). The set GREEN;

is the set of nodes corresponding to X, such that
height(X) =i and X is bound to a p-subexpression.
The set RED; is the set of nodes corresponding to
X such that height(X) > i and X is bound to a v-
subexpression. The Streett acceptance condition is
given by Vi : (GREEN; i.o. =RED; i.0.).

It can be shown that A has a well-founded winning
strategy iff B has a winning strategy. Thus B is the
required Streett history-free Alternating Automaton.
O

4 Tree Complementation Lemma

From Theorem 3.1 and Theorem 2.2 we conclude
that Propositional Mu-calculus can be translated to
Non-deterministic Rabin (Pairs) Tree Automata. More-
over, Niwinski [Ni88] had shown that Non-deterministic
Pairs Automata can be translated to Propositional
Mu-Calculus. Thus, Propositional Mu-Calculus and
Non-deterministic Tree Automata are expressively eq-
uivalent. Rabin’s Tree Complementation Lemma, i.e.
languages accepted by Tree Automata are closed un-
der complementation, follows by trivial complemen-
tation of Mu-Calculus.

Note that our proof of complementation via Mu-
Calculus did indeed involve Alternating Tree Auto-
mata which was also, implicitly or explicitly, used

in all earlier proofs, as outlined in the Introduction.
However, our proof did not seem to involve difficult
proofs of (1) and (2) (whereas, all known proofs of (1)
and (2) have been intimidating). This suggests that
their might be simple proofs of (1) and (2). Indeed,
we now give simple proofs of (1) determinacy of in-
finite games for Tree Automata and (2) history-free
strategies for players in such games.

First, note that in the Proof of theorem 3.1, in-
stead of translating Mu-Calculus to Streett Automata,
the natural Automata to which Mu-Calculus trans-
lates easily is the one with the following “parity” ac-
ceptance condition.

Definition 4.0: Let the states of a Tree Automaton,
or the OR nodes, be labelled with colors [0..m]. For
an infinite path or sequence of nodes,

eveny, = largest i.0. occurring color index among [0..k]
is even,

odd), = largest i.0. occurring color index among [0..k]
is odd.

We say that z € OR satisfies the parity condition iff
x satisfies even,.

Stated in terms of the usual Green, Red pairs,
the parity condition is: 3i (i.o. Green; and Vj > i
fo. Red;).
Pairs acceptance condition, parity acceptance con-

Note that as opposed to Streett and

dition is trivially closed under complementation. It
is this property which makes proving determinacy of
games with parity acceptance condition much easier.
In fact, a Hossley-Rackoff like finite model theorem
for Parity Tree Automata also turns out to be much
simpler. Moreover, Parity Tree Automata are trivially
convertable to Pairs Tree Automata. Also, a simple
conversion from Pairs Tree Automata to Parity Tree
Automata can be obtained by a slight modification
of [Sa89], which converts a deterministic Pairs Auto-
mata to deterministic Streett Automata. This is also
the essence of the LAR argument in [GH82]. Sim-
ilarly, infinite games with Muller or Pairs condition
easily reduce to Infinite games with Parity conditions.

4.1 Determinacy of infinite games with parity
winning conditions

We studied a number of different games in the
previous sections. However in general, a two player
infinite game can be given by a game tree which is
an AND/OR infinite tree with its nodes labelled with
colors [0..m]. W.l.o.g. we assume that each OR node
has the same color as all its AND successors. We gen-
eralize the above game trees to syntactic game trees,
in which nodes could be labelled with Mu-Calculus
expressions with or without free variables (modality
F stands for eventually). A strategy for player I picks
an AND successor at each OR node, while a strat-
egy for Player IT picks an OR successor at each AND
node. A strategy p in a game tree defines another tree
(which we will call p), from the given game tree.

Definition 4.1:

I (t) = Set of game trees, s.t. Player I has a strategy
p with all paths satisfying: (even;, or F't).
I,(t)=t.

IT;(t) = Set of game trees, s.t. Player IT has a strat-
egy p with all paths satisfying: (oddy or F't).

Ap = v if nis even, and p if n is odd.

Theorem 4.1: I,,(t) = A\pzy,..uxivao(V
NEXAXz;) V t).

i€[0..n] (color;

Proof: We prove by induction over n. Consider the
equation,

y= /\n,lxn,l...ymg(\/ie[o__n_l] (colori N\EXAXx;) V
(color, NEXAXy) V t), when n > 0,

and y =t when n = 0.

Using induction hypothesis on the r.h.s, the equa-
tion above becomes
y=1I,_1(t V color, N\EXAXy).

I,,(t) is easily seen to be the fixpoint of the above
equation y = I,,—1 (¢t V color, NEX AXy) (just follow
the definition of I(t)).

When n is even, to prove that I,,(¢) is the greatest
fixpoint, let ¢ € y be a game tree. We show that ¢ €
I,,(t). We prove by induction on k that ¢ is a game
tree, with a strategy p for player I, s.t.

A(Ft V evenn—1 V $p...81...8;...8p—1 : Vi > 0 :s; is
color,, and at sp_1: EXAXy).

For k =1, it holds because, y = I,,_1(t V color,A
EXAXy). Suppose it holds for k, then for paths in
p where: sg..81...8;..5k—1 : Vi > 0 : s; is color,, and
at sp—1: EXAXy, there is a choice (extension of p)
such that all successors y, and hence I,,_1 (¢ V color,, A
EXAXy). A trivial inspection shows that along all
extensions of the path one of the three disjuncts holds,
with k& incremented, and we are done.

If n is odd, to prove I,,(t) is the least fixpoint, let
p be a strategy for player I in ¢ € I,,(¢), s.t. along all
paths of p: (even,, V Ft). Then, the relation R given
as follows on the nodes of p is well-founded: uRwv iff
there is a path from u to v, and u or v is labelled n; for
otherwise we have an infinite path in p with infinitely
many n. Let v be a R-minimal node in p, such that
the game tree starting at « is not in y. By virtue of p,
wisin I,,_1(t V v), where v is a node labelled color,,
and has successors vy, ..v;,..v,. Note that, for every
i, uRTv;, since v is labelled color,,. Now, either for
all such nodes v (if any), for all i, v; is in y, in which
case u is in y (by (1)). Else, we found a v; not in y,
and uRTv;, which contradicts the R-minimality of u.
Thus, every u in p is in y. m|

Theorem 4.2: II,,(t) = A\p_1Zp...v21 pxo(\/
(color; NAXEXx;) V t).

1€[0..n]

Proof: An argument symmetric to Theorem 4.1. O

Corrollary 4.3: Infinite games defined over game
trees with nodes labelled with colors [0..m] and with
parity winning (or acceptance) conditions are deter-
mined. |

4.2 History free winning strategies

We show that if a player has a winning strategy in
a parity infinite game, then the player has a winning
strategy which does not depend on the history. More
precisely, a Player I’s winning strategy is history-free
if it has the following property: if the partial game
trees beginning at two different OR nodes are identi-
cal, then the winning strategy picks the same AND
successor at these two OR nodes. A history-free win-
ning strategy for Player II is defined similarly.

Theorem 4.4: If a player A (I/II) has a winning
strategy in a parity infinite game then A has a history-

free winning strategy.

A partial game tree beginning at node z of a game
tree ¢, will be denoted v,,. A partial winning strategy
(and the tree defined by it) beginning at node z in the
winning strategy p will be denoted by p,.

Proof: We prove the result for A being Player I. The
case of Player II is handled similarly, by switching the
OR and the AND nodes.

Suppose, player I has a winning strategy p. As
remarked earlier, the winning strategy defines a tree
p in the game tree. Consider the following maps pag11
from the nodes in p to the class of all ordinals:

pak+1(x) = 0, if along all paths in p, if there is a
node labelled coloryy1, then there is a node before it
labelled color,,, where n > 2k + 1,

p2k+1(T) = O2k41(7)+ sup{pk+1(y) :
path from z to y such that y is labelled coloragy1, and
there is no node in this path with color,, n > 2k+1},
where da541(z) is 1 if z is labelled colorag41, else 0.

there is a

The above definition is well-defined, because along
all paths, for all k, every occurence of coloraiyi is
followed by a color,, n > 2k + 1. Thus, the above
inductive definition is well-founded.

Let g = ptom+1t2m—1--441 with a left-lexicographic
ordering, which is again a well-ordering. We let u>o541
= MUom41l2m—1--H2k+1- The history-free strategy we
define, essentially picks at each O R-node z, the AN D
node with the least u, in case of contention (i.e. if
in 9 there are other OR nodes with partial game
trees identical to ., with p picking different AN D-
successors at these OR nodes).

We now show that the strategy p’ so obtained is
indeed a winning strategy for Player I. Suppose, in p’
there is a path such that eventually colors1 appears
infinitely often, and no colory,, n > 2k + 1 appears.
We show that with every two such occurences z; and
x; of colorsgy1, p decreases, thus contradicting that
p is a well-order. Here, z; is the successor of z;_; in
p'. Let the successor of z;_; in p be /.

Fact 1: ¥ 1i=12> 37 > 1: poop1(75) > p>ok+1()yq)
> p>okt1(Tj41)-

The second inequality follows because in p' the

least mu is picked, while the first inequality follows
because x; has color,, n <2k + 1.

Fact 2: popy1(x1) > pogs1(2h).

This follows by definition of pag41, noting that
dokt1(z1) = 1.

Thus, p>ok+1(21) > p>ok41 (). O
5 Determinacy of On-line games

Consider an infinite game tree in which each OR
node is colored with color,, where n is a natural num-
ber. [RS90] construct a game to study competitive-
ness of on-line algorithms in which Player I wins a
particular play, say zg,z1,... € ORY, iff AiVk z; has
colory, n < i.

As before, let I be the set of game trees in which
player I has a winning strategy, and I be the set of
game trees in which player II has a winning strategy.
Then, a proof much simpler than Theorem 4.1 gives
the following, proving determinacy of this game.

Theorem 5.1:
I = pyJive((EXAXx A colorp,,n < i) Vy),
IT = vyVipz((AXEXz V colorp,n > i) Ay).

This simplifies the existential proof (in [RS90])
of de-randomization of competitive on-line algorithms
for task systems, where [RS90] was invoking Wolfe’s
proof ([W55]) of determinacy of F, games. Infact, a
similar Mu-Calculus characterization can be given for
F, (countable union of closed sets) games, elucidating
Wolfe’s proof. We use terminology from [Mo80].

Let A = ;e
where each Fj is closed in the product topology of “ X.

F; be the winning set for Player I,

It is well known [Mo80] that a closed set F; is exactly
the infinite paths in a Tree T; on X. We say that T;
holds on the last node of a path p in the game tree iff
p occurs in T;.

Theorem 5.2: [= pyJive((EXAXxzAT;) Vy), and
IT = vyVipz((AXEXz vV —T;) Ay). |
6 Acknowledgement
We thank Joe Halpern and Prasad Sistla for point-
ing out the alternative argument establishing equiva-

lence of the Mu-Calculus and tree automata by trans-
lation through SnS.

References

[Bu77]

[Bu83]

[B90]

[CKS81]

[EJ88)

[EJ89]

[GHS82]

[HR72]

[790]

[Ko83]

[Ma75]

[Mc66]

[Mo80]

[Mon]
[Mu84]

J.R. Buchi, “ Using Determinacy to eliminate
quantifiers”, Fundamentals of Computation The-
ory, LNCS 56, 367-378.

J.R. Buchi, “ State-Strategies for Games in F;5N
Gss”, J. Symbolic Logic 48, 1983, 1171-1198.

S. Ben-David, A. Borodin, R. Karp, G. Tardos,
A. Wigderson, “On the Power of Randomization
in On-line algorithms”, Proc. ACM STOC 90.

A K. Chandra, D.C. Kozen, L.J. Stockmeyer,
“Alternation”, J. ACM 28 (1981), pp. 117-141.

E. A. Emerson and C.S. Jutla, “Complexity of
Tree Automata and Modal logics of Programs”,
IEEE FOCS 1988.

E. A. Emerson and C.S. Jutla, “On Simulta-
neously Determinizing and Complementing w-
Automata”, IEEE LICS 1989.

Y. Gurevich, L. Harrington, “Trees, Automata,
and Games”, 14th ACM STOC, 1982.

R. Hossley and C. Rackoff, “The emptiness prob-
lem for automata on infinite trees”, Proc. 13th
IEEE Symp. Switching and Automata Theory,
1972, pp. 121-124.

C.S. Jutla, “Automata on Infinite Objects and
Modal Logics of Programs”, PhD Thesis, The
University of Texas at Austin, May 1990.

D. Kozen, “Results on the Propositional Mu-
Calculus”, Theoretical Computer Science , 27,
1983, pp. 333-354.

D.A. Martin, “Borel Determinacy”, Annals of
Mathematics, 1975, 102, 363-371.

R. McNaughton, “Testing and Generating Infi-
nite Sequences by a finite Automaton”, Infor-
mation and Control, 9, 521-530, 1966.

Y. Moschovakis, “Descriptive Set Theory”, North
Holland, 1980.

J. D. Monk, unpublished notes.

A.A. Muchnik, Games on Infinite trees and auto-
mata with dead-ends: a new proof of the decid-
ability of the monadic theory of two successors,
Semiotics and Information, 24, 1984, 17-40 (in
Russian).

[MS84]

[MS87]

[Nis4]

[Ni86]

[Ni88]

[Ra69]

[RS90]

[Sa88]

[Sa89]

[St81]

[StE84]

[Thsg]

[W55]

D.E. Muller, P.E. Schupp, “Alternating Auto-
mata on Infinite Objects, Determinacy and Ra-
bin’s Theorem”, Automata on Infinite Words,
1984, Lecture Notes in Computer Science, 192.

D.E. Muller, P.E. Schupp, “ Alternating Auto-
mata on Infinite Trees”, Theoretical Computer
Science 54, 267-276.

D. Niwinski, “The Propositional u-Calculus is
more expressive than the propositional dynamic
logic of looping”, manuscript, June 84, Institute
of Mathematics, University of Warsaw.

D. Niwinski, “On fixed-point Clones”, Proc. 13th
ICALP, LNCS 226, 464-473, 1986.

D. Niwinski, “Fixed Points vs. Infinite Genera-
tion”, Proc. 3rd. IEEE LICS 1988, 402-409.

M.O. Rabin, “Decidability of Second Order The-
ories and Automata on Infinite Trees”, Trans.
AMS, 141(1969), pp. 1-35.

P. Raghavan, and M. Snir, “ Memory versus
Randomization in On-Line Algorithms”, Resea-
rch Report IBM T.J. Watson Research Center,
March 1990.

S. Safra, “On Complexity of w-automata”, Proc.
29th IEEE FOCS, 1988.

S. Safra, “Complexity of Automata on Infinite
Objects”, PhD Thesis, Weizmann Institute of
Science, Rehovo, Israel, March 1989.

R.S. Streett, “A Propositional dynamic Logic
of Looping and Converse”, MIT LCS Technical
Report TR-263.

R.S.Streett, E.A. Emerson, “An Elementary De-
cision Procedure for the Mu-calculus”, Proc. 11th
Int. Collog. on Automata, languages and Pro-
gramming, 1984, Lecture Notes in Computer Sci-
ence, Springer-Verlag.

W. Thomas, “ Automata on Infinite Objects”,
to appear in The Handbook of Theoretical Com-
puter Science, North-Holland.

P. Wolfe, “The strict determinateness of certain
infinite games”, Pacific J. Math., 5, Supplement
1:841-847, 1955

