
viii Contents

Exercises 134

4 Reasoning About Programs 145

4.1 What are Programs? 145

4.2 States and Executions 146

4.3 Programming Constructs 147

4.4 Program Verification 152

4.5 Exogenous and Endogenous Logics 157

4.6 Bibliographical Notes 157

Exercises 158

II PROPOSITIONAL DYNAMIC LOGIC

5 Propositional Dynamic Logic 163

5.1 Syntax 164

5.2 Semantics 167

5.3 Computation Sequences 170

5.4 Satisfiability and Validity 171

5.5 A Deductive System 173

5.6 Basic Properties 174

5.7 Encoding Hoare Logic 186

5.8 Bibliographical Notes 187

Exercises 188

6 Filtration and Decidability 191

6.1 The Fischer–Ladner Closure 191

6.2 Filtration and the Small Model Theorem 195

6.3 Filtration over Nonstandard Models 199

6.4 Bibliographical Notes 201

Exercises 202

7 Deductive Completeness 203

MIT Press Math7X9/2010/08/25:15:15 Page 8



Contents ix

7.1 Deductive Completeness 203

7.2 Logical Consequences 209

7.3 Bibliographical Notes 209

Exercises 209

8 Complexity of PDL 211

8.1 A Deterministic Exponential-Time Algorithm 211

8.2 A Lower Bound 216

8.3 Compactness and Logical Consequences 220

8.4 Bibliographical Notes 224

Exercises 225

9 Nonregular PDL 227

9.1 Context-Free Programs 227

9.2 Basic Results 228

9.3 Undecidable Extensions 232

9.4 Decidable Extensions 237

9.5 More on One-Letter Programs 250

9.6 Bibliographical Notes 255

Exercises 256

10 Other Variants of PDL 259

10.1 Deterministic PDL and While Programs 259

10.2 Restricted Tests 263

10.3 Representation by Automata 266

10.4 Complementation and Intersection 268

10.5 Converse 270

10.6 Well-Foundedness and Total Correctness 271

10.7 Concurrency and Communication 276

10.8 Bibliographical Notes 277

MIT Press Math7X9/2010/08/25:15:15 Page 9



4 Reasoning About Programs

In subsequent chapters, we will study in depth a family of program logics collectively

called Dynamic Logic (DL). Before embarking on this task, we take the opportunity

here to discuss program verification in general and introduce some key concepts on

an informal level. Many of the ideas discussed in this chapter will be developed in

more detail later on.

4.1 What are Programs?

For us, a program is a recipe written in a formal language for computing desired

output data from given input data.

Example 4.1: The following program implements the Euclidean algorithm for

calculating the greatest common divisor (gcd) of two integers. It takes as input a

pair of integers in variables x and y and outputs their gcd in variable x:

while y 
= 0 do

begin

z := x mod y;

x := y;

y := z

end

The value of the expression x mod y is the (nonnegative) remainder obtained when

dividing x by y using ordinary integer division.

Programs normally use variables to hold input and output values and interme-

diate results. Each variable can assume values from a specific domain of compu-

tation, which is a structure consisting of a set of data values along with certain

distinguished constants, basic operations, and tests that can be performed on those

values, as described in Section 3.4. In the program above, the domain of x, y, and

z might be the integers Z along with basic operations including integer division

with remainder and tests including 
=. In contrast with the usual use of variables

in mathematics, a variable in a program normally assumes different values during

the course of the computation. The value of a variable x may change whenever an

assignment x := t is performed with x on the left-hand side.

MIT Press Math7X9/2010/08/25:15:15 Page 145



146 Chapter 4

In order to make these notions precise, we will have to specify the programming

language and its semantics in a mathematically rigorous way. In this text we will

consider several programming languages with various properties, and each will be

defined formally. In this chapter we give a brief introduction to some of these

languages and the role they play in program verification.

4.2 States and Executions

As mentioned above, a program can change the values of variables as it runs.

However, if we could freeze time at some instant during the execution of the

program, we could presumably read the values of the variables at that instant,

and that would give us an instantaneous snapshot of all information that we would

need to determine how the computation would proceed from that point. This leads

to the concept of a state—intuitively, an instantaneous description of reality.

Formally, we will define a state to be a function that assigns a value to each

program variable. The value for variable x must belong to the domain associated

with x. In logic, such a function is called a valuation (see Sections 3.3 and 3.4).

At any given instant in time during its execution, the program is thought to be

“in” some state, determined by the instantaneous values of all its variables. If an

assignment statement is executed, say x := 2, then the state changes to a new state

in which the new value of x is 2 and the values of all other variables are the same

as they were before. We assume that this change takes place instantaneously; note

that this is a mathematical abstraction, since in reality basic operations take some

time to execute.

A typical state for the gcd program above is (15, 27, 0, . . .), where (say) the

first, second, and third components of the sequence denote the values assigned to

x, y, and z respectively. The ellipsis “. . .” refers to the values of the other variables,

which we do not care about, since they do not occur in the program.

A program can be viewed as a transformation on states. Given an initial (input)

state, the programwill go through a series of intermediate states, perhaps eventually

halting in a final (output) state. A sequence of states that can occur from the

execution of a program α starting from a particular input state is called a trace. As a

typical example of a trace for the program above, consider the initial state (15, 27, 0)

(we suppress the ellipsis). The program goes through the following sequence of

states:

(15, 27, 0), (15, 27, 15), (27, 27, 15), (27, 15, 15), (27, 15, 12), (15, 15, 12),

(15, 12, 12), (15, 12, 3), (12, 12, 3), (12, 3, 3), (12, 3, 0), (3, 3, 0), (3, 0, 0).

MIT Press Math7X9/2010/08/25:15:15 Page 146



Reasoning About Programs 147

The value of x in the last (output) state is 3, the gcd of 15 and 27.

The binary relation consisting of the set of all pairs of the form (input state,

output state) that can occur from the execution of a program α, or in other words,

the set of all first and last states of traces of α, is called the input/output relation

of α. For example, the pair ((15, 27, 0), (3, 0, 0)) is a member of the input/output

relation of the gcd program above, as is the pair ((−6,−4, 303), (2, 0, 0)). The values
of other variables besides x, y, and z are not changed by the program. These values

are therefore the same in the output state as in the input state. In this example, we

may think of the variables x and y as the input variables , x as the output variable,

and z as a work variable, although formally there is no distinction between any of

the variables, including the ones not occurring in the program.

4.3 Programming Constructs

In subsequent sections we will consider a number of programming constructs. In

this section we introduce some of these constructs and define a few general classes

of languages built on them.

In general, programs are built inductively from atomic programs and tests using

various program operators .

While Programs

A popular choice of programming language in the literature on DL is the family of

deterministic while programs. This language is a natural abstraction of familiar

imperative programming languages such as Pascal or C. Different versions can be

defined depending on the choice of tests allowed and whether or not nondeterminism

is permitted.

The language of while programs is defined inductively. There are atomic

programs and atomic tests, as well as program constructs for forming compound

programs from simpler ones.

In the propositional version of Dynamic Logic (PDL), atomic programs are

simply letters a, b, . . . from some alphabet. Thus PDL abstracts away from the

nature of the domain of computation and studies the pure interaction between

programs and propositions. For the first-order versions of DL, atomic programs

are simple assignments x := t, where x is a variable and t is a term. In addition, a

nondeterministic or wildcard assignment x :=? or nondeterministic choice construct

may be allowed.

Tests can be atomic tests , which for propositional versions are simply proposi-

MIT Press Math7X9/2010/08/25:15:15 Page 147



148 Chapter 4

tional letters p, and for first-order versions are atomic formulas p(t1, . . . , tn), where

t1, . . . , tn are terms and p is an n-ary relation symbol in the signature of the do-

main of computation. In addition, we include the constant tests 1 and 0. Boolean

combinations of atomic tests are often allowed, although this adds no expressive

power. These versions of DL are called poor test .

More complicated tests can also be included. These versions of DL are sometimes

called rich test . In rich test versions, the families of programs and tests are defined

by mutual induction.

Compound programs are formed from the atomic programs and tests by induc-

tion, using the composition, conditional , and while operators. Formally, if ϕ is a

test and α and β are programs, then the following are programs:

• α ; β

• if ϕ then α else β

• while ϕ do α.

We can also parenthesize with begin . . . end where necessary. The gcd program

of Example 4.1 above is an example of a while program.

The semantics of these constructs is defined to correspond to the ordinary

operational semantics familiar from common programming languages. We will give

more detail about these programs in Sections 5.1 and 5.2.

Regular Programs

Regular programs are more general than while programs, but not by much. The

advantage of regular programs is that they reduce the relatively more complicated

while program operators to much simpler constructs. The deductive system be-

comes comparatively simpler too. They also incorporate a simple form of nondeter-

minism.

For a given set of atomic programs and tests, the set of regular programs is

defined as follows:

(i) any atomic program is a program

(ii) if ϕ is a test, then ϕ? is a program

(iii) if α and β are programs, then α ; β is a program;

(iv) if α and β are programs, then α ∪ β is a program;

(v) if α is a program, then α∗ is a program.

These constructs have the following intuitive meaning:

MIT Press Math7X9/2010/08/25:15:15 Page 148



Reasoning About Programs 149

(i) Atomic programs are basic and indivisible; they execute in a single step. They

are called atomic because they cannot be decomposed further.

(ii) The program ϕ? tests whether the property ϕ holds in the current state. If so,

it continues without changing state. If not, it blocks without halting.

(iii) The operator ; is the sequential composition operator. The program α ; β

means, “Do α, then do β.”

(iv) The operator ∪ is the nondeterministic choice operator. The program α ∪ β
means, “Nondeterministically choose one of α or β and execute it.”

(v) The operator ∗ is the iteration operator. The program α means, “Execute α

some nondeterministically chosen finite number of times.”

Keep in mind that these descriptions are meant only as intuitive aids. A formal

semantics will be given in Section 5.2, in which programs will be interpreted as

binary input/output relations and the programming constructs above as operators

on binary relations.

The operators ∪, ; , ∗ may be familiar from automata and formal language theory

(see Kozen (1997a)), where they are interpreted as operators on sets of strings over

a finite alphabet. The language-theoretic and relation-theoretic semantics share

much in common; in fact, they have the same equational theory, as shown in Kozen

(1994a).

The operators of deterministic while programs can be defined in terms of the

regular operators:

if ϕ then α else β
def
= ϕ? ; α ∪ ¬ϕ? ; β (4.3.1)

while ϕ do α
def
= (ϕ? ; α)∗ ; ¬ϕ? (4.3.2)

The class of while programs is equivalent to the subclass of the regular programs

in which the program operators ∪, ?, and ∗ are constrained to appear only in these

forms.

The definitions (4.3.1) and (4.3.2) may seem a bit mysterious at first, but we

will be able to justify them after we have discussed binary relation semantics in

Section 5.2.

Recursion

Recursion can appear in programming languages in several forms. We will study two

such manifestations: recursive calls and stacks . We will show that under certain very

general conditions, the two constructs can simulate each other. We will also show

that recursive programs and while programs are equally expressive over the natural

MIT Press Math7X9/2010/08/25:15:15 Page 149



150 Chapter 4

numbers, whereas over arbitrary domains, while programs are strictly weaker.

While programs correspond to what is often called tail recursion or iteration.

R.E. Programs

A finite computation sequence of a program α, or seq for short, is a finite-length

string of atomic programs and tests representing a possible sequence of atomic steps

that can occur in a halting execution of α. Seqs are denoted σ, τ, . . . . The set of all

seqs of a program α is denoted CS (α). We use the word “possible” loosely—CS(α)

is determined by the syntax of α alone. Because of tests that evaluate to false,

CS (α) may contain seqs that are never executed under any interpretation.

The set CS (α) is a subset of A∗, where A is the set of atomic programs and tests

occurring in α. For while programs, regular programs, or recursive programs, we

can define the set CS (α) formally by induction on syntax. For example, for regular

programs,

CS (a)
def
= {a}, a an atomic program or test

CS (skip)
def
= {ε}

CS (fail)
def
= ∅

CS (α ; β)
def
= {σ ; τ | σ ∈ CS (α), τ ∈ CS (β)}

CS (α ∪ β) def
= CS (α) ∪ CS (β)

CS (α∗) def
= CS (α)∗
=

⋃
n≥0

CS (αn),

where

α0 def
= skip

αn+1 def
= αn ; α.

For example, if a is an atomic program and p an atomic formula, then the

program

while p do a = (p? ; a)∗ ; ¬p?
has as seqs all strings of the form

(p? ; a)n ; ¬p? = p?; a; p?; a; · · · ; p?; a︸ ︷︷ ︸
n

;¬p?

MIT Press Math7X9/2010/08/25:15:15 Page 150



Reasoning About Programs 151

for all n ≥ 0. Note that each seq σ of a program α is itself a program, and

CS (σ) = {σ}.
While programs and regular programs give rise to regular sets of seqs, and

recursive programs give rise to context-free sets of seqs. Taking this a step further,

we can define an r.e. program to be simply a recursively enumerable set of seqs.

This is the most general programming language we will consider in the context of

DL; it subsumes all the others in expressive power.

Nondeterminism

We should say a few words about the concept of nondeterminism and its role in

the study of logics and languages, since this concept often presents difficulty the

first time it is encountered.

In some programming languages we will consider, the traces of a program need

not be uniquely determined by their start states. When this is possible, we say

that the program is nondeterministic. A nondeterministic program can have both

divergent and convergent traces starting from the same input state, and for such

programs it does not make sense to say that the program halts on a certain input

state or that it loops on a certain input state; there may be different computations

starting from the same input state that do each.

There are several concrete ways nondeterminism can enter into programs. One

construct is the nondeterministic or wildcard assignment x := ?. Intuitively, this

operation assigns an arbitrary element of the domain to the variable x, but it is

not determined which one.1 Another source of nondeterminism is the unconstrained

use of the choice operator ∪ in regular programs. A third source is the iteration

operator ∗ in regular programs. A fourth source is r.e. programs, which are just r.e.

sets of seqs; initially, the seq to execute is chosen nondeterministically. For example,

over N, the r.e. program

{x := n | n ≥ 0}
is equivalent to the regular program

x := 0 ; (x := x+ 1)∗.
Nondeterministic programs provide no explicit mechanism for resolving the

nondeterminism. That is, there is no way to determine which of many possible

1 This construct is often called random assignment in the literature. This terminology is mislead-
ing, because it has nothing at all to do with probability.

MIT Press Math7X9/2010/08/25:15:15 Page 151



152 Chapter 4

next steps will be taken from a given state. This is hardly realistic. So why study

nondeterminism at all if it does not correspond to anything operational? One good

answer is that nondeterminism is a valuable tool that helps us understand the

expressiveness of programming language constructs. It is useful in situations in

which we cannot necessarily predict the outcome of a particular choice, but we may

know the range of possibilities. In reality, computations may depend on information

that is out of the programmer’s control, such as input from the user or actions of

other processes in the system. Nondeterminism is useful in modeling such situations.

The importance of nondeterminism is not limited to logics of programs. Indeed,

the most important open problem in the field of computational complexity theory,

the P=NP problem, is formulated in terms of nondeterminism.

4.4 Program Verification

Dynamic Logic and other program logics are meant to be useful tools for facilitating

the process of producing correct programs. One need only look at the miasma of

buggy software to understand the dire need for such tools. But before we can

produce correct software, we need to know what it means for it to be correct. It is

not good enough to have some vague idea of what is supposed to happen when a

program is run or to observe it running on some collection of inputs. In order to

apply formal verification tools, we must have a formal specification of correctness

for the verification tools to work with.
In general, a correctness specification is a formal description of how the program

is supposed to behave. A given program is correct with respect to a correctness
specification if its behavior fulfills that specification. For the gcd program of
Example 4.1, the correctness might be specified informally by the assertion

If the input values of x and y are positive integers c and d, respectively, then

(i) the output value of x is the gcd of c and d, and

(ii) the program halts.

Of course, in order to work with a formal verification system, these properties must

be expressed formally in a language such as first-order logic.

The assertion (ii) is part of the correctness specification because programs do

not necessarily halt, but may produce infinite traces for certain inputs. A finite

trace, as for example the one produced by the gcd program above on input state

(15,27,0), is called halting, terminating, or convergent. Infinite traces are called

looping or divergent. For example, the program

while x > 7 do x := x+ 3

MIT Press Math7X9/2010/08/25:15:15 Page 152



Reasoning About Programs 153

loops on input state (8, . . .), producing the infinite trace

(8, . . .), (11, . . .), (14, . . .), . . .

For the purposes of this book, we will limit our attention to the behavior of

a program that is manifested in its input/output relation. Dynamic Logic is not

tailored to reasoning about program behavior manifested in intermediate states of a

computation (although there are close relatives, such as Process Logic and Temporal

Logic, that are). This is not to say that all interesting program behavior is captured

by the input/output relation, and that other types of behavior are irrelevant or

uninteresting. Indeed, the restriction to input/output relations is reasonable only

when programs are supposed to halt after a finite time and yield output results.

This approach will not be adequate for dealing with programs that normally are

not supposed to halt, such as operating systems.

For programs that are supposed to halt, correctness criteria are traditionally

given in the form of an input/output specification consisting of a formal relation

between the input and output states that the program is supposed to maintain,

along with a description of the set of input states on which the program is supposed

to halt. The input/output relation of a program carries all the information necessary

to determine whether the program is correct relative to such a specification.

Dynamic Logic is well suited to this type of verification.

It is not always obvious what the correctness specification ought to be. Some-

times, producing a formal specification of correctness is as difficult as producing

the program itself, since both must be written in a formal language. Moreover,

specifications are as prone to bugs as programs. Why bother then? Why not just

implement the program with some vague specification in mind?

There are several good reasons for taking the effort to produce formal specifi-

cations:

1. Often when implementing a large program from scratch, the programmer may

have been given only a vague idea of what the finished product is supposed to

do. This is especially true when producing software for a less technically inclined

employer. There may be a rough informal description available, but the minor

details are often left to the programmer. It is very often the case that a large

part of the programming process consists of taking a vaguely specified problem

and making it precise. The process of formulating the problem precisely can be

considered a definition of what the program is supposed to do. And it is just good

programming practice to have a very clear idea of what we want to do before we

start doing it.

MIT Press Math7X9/2010/08/25:15:15 Page 153



154 Chapter 4

2. In the process of formulating the specification, several unforeseen cases may

become apparent, for which it is not clear what the appropriate action of the

program should be. This is especially true with error handling and other exceptional

situations. Formulating a specification can define the action of the program in such

situations and thereby tie up loose ends.

3. The process of formulating a rigorous specification can sometimes suggest ideas

for implementation, because it forces us to isolate the issues that drive design

decisions. When we know all the ways our data are going to be accessed, we are

in a better position to choose the right data structures that optimize the tradeoffs

between efficiency and generality.

4. The specification is often expressed in a language quite different from the

programming language. The specification is functional—it tells what the program is

supposed to do—as opposed to imperative—how to do it. It is often easier to specify

the desired functionality independent of the details of how it will be implemented.

For example, we can quite easily express what it means for a number x to be the

gcd of y and z in first-order logic without even knowing how to compute it.

5. Verifying that a program meets its specification is a kind of sanity check. It

allows us to give two solutions to the problem—once as a functional specification,

and once as an algorithmic implementation—and lets us verify that the two are

compatible. Any incompatibilities between the program and the specification are

either bugs in the program, bugs in the specification, or both. The cycle of refining

the specification, modifying the program to meet the specification, and reverifying

until the process converges can lead to software in which we have much more

confidence.

Partial and Total Correctness

Typically, a program is designed to implement some functionality. As mentioned

above, that functionality can often be expressed formally in the form of an in-

put/output specification. Concretely, such a specification consists of an input con-

dition or precondition ϕ and an output condition or postcondition ψ. These are

properties of the input state and the output state, respectively, expressed in some

formal language such as the first-order language of the domain of computation. The

program is supposed to halt in a state satisfying the output condition whenever the

input state satisfies the input condition. We say that a program is partially correct

with respect to a given input/output specification ϕ, ψ if, whenever the program is

started in a state satisfying the input condition ϕ, then if and when it ever halts,

it does so in a state satisfying the output condition ψ. The definition of partial

MIT Press Math7X9/2010/08/25:15:15 Page 154



Reasoning About Programs 155

correctness does not stipulate that the program halts; this is what we mean by

partial.

A program is totally correct with respect to an input/output specification ϕ, ψ

if

• it is partially correct with respect to that specification; and

• it halts whenever it is started in a state satisfying the input condition ϕ.

The input/output specification imposes no requirements when the input state

does not satisfy the input condition ϕ—the program might as well loop infinitely or

erase memory. This is the “garbage in, garbage out” philosophy. If we really do care

what the program does on some of those input states, then we had better rewrite

the input condition to include them and say formally what we want to happen in

those cases.

For example, in the gcd program of Example 4.1, the output condition ψ might

be the condition (i) stating that the output value of x is the gcd of the input values

of x and y. We can express this completely formally in the language of first-order

number theory (we show how to do this later on). We may try to start off with the

input specification ϕ0 = 1 (true); that is, no restrictions on the input state at all.

Unfortunately, if the initial value of y is 0 and x is negative, the final value of x will

be the same as the initial value, thus negative. If we expect all gcds to be positive,

this would be wrong. Another problematic situation arises when the initial values

of x and y are both 0; in this case the gcd is not defined. Therefore, the program

as written is not partially correct with respect to the specification ϕ0, ψ.

We can remedy the situation by providing an input specification that rules out

these troublesome input values. We can limit the input states to those in which x

and y are both nonnegative and not both zero by taking the input specification

ϕ1 = (x ≥ 0 ∧ y > 0) ∨ (x > 0 ∧ y ≥ 0).

The gcd program of Example 4.1 above would be partially correct with respect

to the specification ϕ1, ψ. It is also totally correct, since the program halts on all

inputs satisfying ϕ1.

Perhaps we want to allow any input in which not both x and y are zero. In

that case, we should use the input specification ϕ2 = ¬(x = 0 ∧ y = 0). But then

the program of Example 4.1 is not partially correct with respect to ϕ2, ψ; we must

amend the program to produce the correct (positive) gcd on negative inputs.

MIT Press Math7X9/2010/08/25:15:15 Page 155



156 Chapter 4

Hoare Logic

A precursor to Dynamic Logic, and one of the first formal verification systems,

was Hoare Logic, introduced by Hoare (1969). This is a system for proving partial

correctness of deterministic while programs related to the invariant assertion

method of Floyd (1967). Hoare Logic allows statements of the form

{ϕ} α {ψ}, (4.4.1)

which says that the program α is partially correct with respect to the input/output

specification ϕ, ψ; that is, if α is started in an input state satisfying ϕ, then if and

when it halts, it does so in a state satisfying ψ.

The deductive system for Hoare Logic consists of a small set of rules for

deriving partial correctness assertions of the form (4.4.1) for compound programs

inductively from similar assertions about their subprograms. There is one rule for

each programming construct:

Assignment rule:

{ϕ[x/e]} x := e {ϕ},
where e is free for x in ϕ (see Section 3.4);

Composition rule:

{ϕ} α {σ}, {σ} β {ψ}
{ϕ} α ; β {ψ}

Conditional rule:

{ϕ ∧ σ} α {ψ}, {ϕ ∧ ¬σ} β {ψ}
{ϕ} if σ then α else β {ψ}

While rule:

{ϕ ∧ σ} α {ϕ}
{ϕ}while σ do α {ϕ ∧ ¬σ} .

In addition, we include a rule

Weakening rule:

ϕ′ → ϕ, {ϕ} α {ψ}, ψ → ψ′

{ϕ′} α {ψ′}
that will allow us to incorporate the deductive apparatus of the underlying logic in

which the pre- and postconditions are written.

MIT Press Math7X9/2010/08/25:15:15 Page 156



Reasoning About Programs 157

We will see later on in Section 5.7 how these rules are subsumed by Dynamic

Logic.

4.5 Exogenous and Endogenous Logics

There are two main approaches to modal logics of programs: the exogenous ap-

proach, exemplified by Dynamic Logic and its precursor Hoare Logic (Hoare (1969)),

and the endogenous approach, exemplified by Temporal Logic and its precursor, the

invariant assertions method of Floyd (1967). A logic is exogenous if its programs are

explicit in the language. Syntactically, a Dynamic Logic program is a well-formed

expression built inductively from primitive programs using a small set of program

operators. Semantically, a program is interpreted as its input/output relation. The

relation denoted by a compound program is determined by the relations denoted by

its parts. This aspect of compositionality allows analysis by structural induction.

The importance of compositionality is discussed in van Emde Boas (1978). In

Temporal Logic, the program is fixed and is considered part of the structure over

which the logic is interpreted. The current location in the program during execution

is stored in a special variable for that purpose, called the program counter, and is

part of the state along with the values of the program variables. Instead of program

operators, there are temporal operators that describe how the program variables,

including the program counter, change with time. Thus Temporal Logic sacrifices

compositionality for a less restricted formalism. We discuss Temporal Logic further

in Section 17.2.

4.6 Bibliographical Notes

Systematic program verification originated with the work of Floyd (1967) and Hoare

(1969). Hoare Logic was introduced in Hoare (1969); see Cousot (1990); Apt (1981);

Apt and Olderog (1991) for surveys.

The digital abstraction, the view of computers as state transformers that operate

by performing a sequence of discrete and instantaneous primitive steps, can be

attributed to Turing (1936). Finite-state transition systems were defined formally

by McCulloch and Pitts (1943). State-transition semantics is based on this idea

and is quite prevalent in early work on program semantics and verification; see

Hennessy and Plotkin (1979). The relational-algebraic approach taken here, in

which programs are interpreted as binary input/output relations, was introduced

in the context of DL by Pratt (1976).

MIT Press Math7X9/2010/08/25:15:15 Page 157



158 Chapter 4

The notions of partial and total correctness were present in the early work of

Hoare (1969). Regular programs were introduced by Fischer and Ladner (1979) in

the context of PDL. The concept of nondeterminism was introduced in the original

paper of Turing (1936), although he did not develop the idea. Nondeterminism was

further developed by Rabin and Scott (1959) in the context of finite automata.

Exercises

4.1. In this exercise we will illustrate the use of Hoare Logic by proving the

correctness of the gcd program of Example 4.1 on p. 145. The program is of the

form while σ do α, where σ is the test y 
= 0 and α is the program

z := x mod y ; x := y ; y := z.

We will use the precondition

¬(x = 0 ∧ y = 0) ∧ x = x0 ∧ y = y0, (4.6.1)

where x0 and y0 are new variables not appearing in the program. The purpose of x0
and y0 is to remember the initial values of x and y. The condition ¬(x = 0∧ y = 0)

ensures that the gcd exists.

The postcondition is

x = gcd(x0, y0), (4.6.2)

which says that the final value of the program variable x is the gcd of the values

of x0 and y0. This can be expressed in the language of first order number theory if

desired (see Exercise 3.27), although you do not need to do so for this exercise.

We assume that the variables range over N, the natural numbers, thus we do not

have to worry about fractional or negative values. The practical significance of this

is that we may omit conditions such as x ≥ 0 in our pre- and postconditions, since

these are satisfied automatically by all elements of our domain of computation.

The partial correctness assertion that asserts the correctness of the gcd program

is

{¬(x = 0 ∧ y = 0) ∧ x = x0 ∧ y = y0}while σ do α {x = gcd(x0, y0)}.
(a) Let ϕ be the formula

¬(x = 0 ∧ y = 0) ∧ gcd(x, y) = gcd(x0, y0).

This will be the invariant of our loop. Using informal number-theoretic arguments,

MIT Press Math7X9/2010/08/25:15:15 Page 158



Reasoning About Programs 159

prove that the precondition (4.6.1) implies ϕ and that ϕ ∧¬σ implies the postcon-

dition (4.6.2). Conclude using the weakening rule of Hoare Logic that it suffices to

establish the partial correctness assertion

{ϕ}while σ do α {ϕ ∧ ¬σ}.
(b) By (a) and the while rule of Hoare Logic, it suffices to prove the partial

correctness assertion

{ϕ ∧ σ} α {ϕ}.
Prove this using a sequence of applications of the composition and weakening rules

of Hoare Logic. You may use common number-theoretic facts such as

y 
= 0 → gcd(x, y) = gcd(x mod y, y)

without proof.

4.2. When the domain of computation is the natural numbers N, we can define a

for loop construct. The syntax of the construct is for y do α, where y is a variable

and α is a program. The intuitive operation of the for loop is as follows: upon

entering the loop for y do α, the current (nonnegative integral) value of variable

y is determined, and the program α is executed that many times. Assignment to

the variable y within α does not change the number of times the loop is executed,

nor does execution of α alone decrement y or change its value in any way except

by explicit assignment.

(a) Show how to encode a for loop as a while loop. You may introduce new

variables if necessary.

(b) Argue thatwhile programs with for loops only but nowhile loops must always

halt. (Hint. Use induction on the depth of nesting of for loops in the program.)

4.3. The repeat-until construct repeat α until ϕ is like the while loop, except

that the body of the loop α is executed before the test ϕ (therefore is always

executed at least once), and control exits the loop if the test is true. Show that

in the presence of the other program operators, repeat-until and while-do are

equivalent.

MIT Press Math7X9/2010/08/25:15:15 Page 159



160 Chapter 4

MIT Press Math7X9/2010/08/25:15:15 Page 160



II PROPOSITIONAL DYNAMIC LOGIC

MIT Press Math7X9/2010/08/25:15:15 Page 161



MIT Press Math7X9/2010/08/25:15:15 Page 162



5 Propositional Dynamic Logic

Propositional Dynamic Logic (PDL) plays the same role in Dynamic Logic that

classical propositional logic plays in classical predicate logic. It describes the prop-

erties of the interaction between programs and propositions that are independent of

the domain of computation. Just as propositional logic is the appropriate place to

begin the study of classical predicate logic, so too is PDL the appropriate place to

begin our investigation of Dynamic Logic. Since PDL is a subsystem of first-order

DL, we can be sure that all properties of PDL that we establish in Part II of the

book will also be valid in first-order DL, which we will deal with in Part III.

Since there is no domain of computation in PDL, there can be no notion of

assignment to a variable. Instead, primitive programs are interpreted as arbitrary

binary relations on an abstract set of states K. Likewise, primitive assertions are

just atomic propositions and are interpreted as arbitrary subsets of K. Other than

this, no special structure is imposed.

This level of abstraction may at first appear too general to say anything of

interest. On the contrary, it is a very natural level of abstraction at which many

fundamental relationships between programs and propositions can be observed.

For example, consider the PDL formula

[α](ϕ ∧ ψ) ↔ [α]ϕ ∧ [α]ψ. (5.0.1)

The left-hand side asserts that the formula ϕ ∧ ψ must hold after the execution of

program α, and the right-hand side asserts that ϕ must hold after execution of α

and so must ψ. The formula (5.0.1) asserts that these two statements are equivalent.

This implies that to verify a conjunction of two postconditions, it suffices to verify

each of them separately. The assertion (5.0.1) holds universally, regardless of the

domain of computation and the nature of the particular α, ϕ, and ψ.

As another example, consider

[α ; β]ϕ ↔ [α][β]ϕ. (5.0.2)

The left-hand side asserts that after execution of the composite program α ; β, ϕ

must hold. The right-hand side asserts that after execution of the program α, [β]ϕ

must hold, which in turn says that after execution of β, ϕ must hold. The formula

(5.0.2) asserts the logical equivalence of these two statements. It holds regardless of

the nature of α, β, and ϕ. Like (5.0.1), (5.0.2) can be used to simplify the verification

of complicated programs.

MIT Press Math7X9/2010/08/25:15:15 Page 163



164 Chapter 5

As a final example, consider the assertion

[α]p ↔ [β]p (5.0.3)

where p is a primitive proposition symbol and α and β are programs. If this formula

is true under all interpretations, then α and β are equivalent in the sense that they

behave identically with respect to any property expressible in PDL or any formal

system containing PDL as a subsystem. This is because the assertion will hold for

any substitution instance of (5.0.3). For example, the two programs

α = if ϕ then γ else δ

β = if ¬ϕ then δ else γ

are equivalent in the sense of (5.0.3).

5.1 Syntax

Syntactically, PDL is a blend of three classical ingredients: propositional logic, modal

logic, and the algebra of regular expressions. There are several versions of PDL,

depending on the choice of program operators allowed. In this chapter we will

introduce the basic version, called regular PDL. Variations of this basic version will

be considered in later chapters.

The language of regular PDL has expressions of two sorts: propositions or

formulas ϕ, ψ, . . . and programs α, β, γ, . . . . There are countably many atomic

symbols of each sort. Atomic programs are denoted a, b, c, . . . and the set of all

atomic programs is denoted Π0. Atomic propositions are denoted p, q, r, . . . and the

set of all atomic propositions is denoted Φ0. The set of all programs is denoted Π

and the set of all propositions is denoted Φ. Programs and propositions are built

inductively from the atomic ones using the following operators:

Propositional operators:

→ implication

0 falsity

Program operators:

; composition

∪ choice
∗ iteration

MIT Press Math7X9/2010/08/25:15:15 Page 164



Propositional Dynamic Logic 165

Mixed operators:

[ ] necessity

? test

The definition of programs and propositions is by mutual induction. All atomic

programs are programs and all atomic propositions are propositions. If ϕ, ψ are

propositions and α, β are programs, then

ϕ→ ψ propositional implication

0 propositional falsity

[α]ϕ program necessity

are propositions and

α ; β sequential composition

α ∪ β nondeterministic choice

α∗ iteration

ϕ? test

are programs. In more formal terms, we define the set Π of all programs and the

set Φ of all propositions to be the smallest sets such that

• Φ0 ⊆ Φ

• Π0 ⊆ Π

• if ϕ, ψ ∈ Φ, then ϕ→ ψ ∈ Φ and 0 ∈ Φ

• if α, β ∈ Π, then α;β, α ∪ β, and α∗ ∈ Π

• if α ∈ Π and ϕ ∈ Φ, then [α]ϕ ∈ Φ

• if ϕ ∈ Φ then ϕ? ∈ Π.

Note that the inductive definitions of programs Π and propositions Φ are inter-

twined and cannot be separated. The definition of propositions depends on the

definition of programs because of the construct [α]ϕ, and the definition of pro-

grams depends on the definition of propositions because of the construct ϕ?. Note

also that we have allowed all formulas as tests. This is the rich test version of PDL.

MIT Press Math7X9/2010/08/25:15:15 Page 165



166 Chapter 5

Compound programs and propositions have the following intuitive meanings:

[α]ϕ “It is necessary that after executing α, ϕ is true.”

α;β “Execute α, then execute β.”

α ∪ β “Choose either α or β nondeterministically and execute it.”

α∗ “Execute α a nondeterministically chosen finite number of times

(zero or more).”

ϕ? “Test ϕ; proceed if true, fail if false.”

We avoid parentheses by assigning precedence to the operators: unary operators,

including [α], bind tighter than binary ones, and ; binds tighter than ∪. Thus the
expression

[α;β∗ ∪ γ∗]ϕ ∨ ψ
should be read

([(α; (β∗)) ∪ (γ∗)]ϕ) ∨ ψ.
Of course, parentheses can always be used to enforce a particular parse of an

expression or to enhance readability. Also, under the semantics to be given in the

next section, the operators ; and ∪ will turn out to be associative, so we may write

α ; β ; γ and α ∪ β ∪ γ without ambiguity. We often omit the symbol ; and write

the composition α ; β as αβ.

The primitive operators may at first seem rather unconventional. They are

chosen for their mathematical simplicity. A number of more conventional constructs

can be defined from them. The propositional operators ∧, ∨, ¬,↔, and 1 are defined

from → and 0 as in propositional logic (see Section 3.2).

The possibility operator < > is the modal dual of the necessity operator [ ] as

described in Section 3.7. It is defined by

<α>ϕ
def
= ¬[α]¬ϕ.

The propositions [α]ϕ and <α>ϕ are read “box α ϕ” and “diamond α ϕ,” respec-

tively. The latter has the intuitive meaning, “There is a computation of α that

terminates in a state satisfying ϕ.”

One important difference between < > and [ ] is that <α>ϕ implies that α

terminates, whereas [α]ϕ does not. Indeed, the formula [α]0 asserts that no

computation of α terminates, and the formula [α]1 is always true, regardless of α.

MIT Press Math7X9/2010/08/25:15:15 Page 166



Propositional Dynamic Logic 167

In addition, we define

skip
def
= 1?

fail
def
= 0?

if ϕ1 → α1 | · · · | ϕn → αn fi
def
= ϕ1?;α1 ∪ · · · ∪ ϕn?;αn

do ϕ1 → α1 | · · · | ϕn → αn od
def
= (ϕ1?;α1 ∪ · · · ∪ ϕn?;αn)∗; (¬ϕ1 ∧ · · · ∧ ¬ϕn)?

if ϕ then α else β
def
= if ϕ→ α | ¬ϕ→ β fi

= ϕ?;α ∪ ¬ϕ?;β
while ϕ do α

def
= do ϕ→ α od

= (ϕ?;α)∗;¬ϕ?
repeat α until ϕ

def
= α;while ¬ϕ do α

= α; (¬ϕ?;α)∗;ϕ?
{ϕ} α {ψ} def

= ϕ→ [α]ψ.

The programs skip and fail are the program that does nothing (no-op) and the

failing program, respectively. The ternary if-then-else operator and the binary

while-do operator are the usual conditional and while loop constructs found in

conventional programming languages. The constructs if-|-fi and do-|-od are the

alternative guarded command and iterative guarded command constructs, respec-

tively. The construct {ϕ}α {ψ} is the Hoare partial correctness assertion described

in Section 4.4. We will argue later that the formal definitions of these operators

given above correctly model their intuitive behavior.

5.2 Semantics

The semantics of PDL comes from the semantics for modal logic (see Section 3.7).

The structures over which programs and propositions of PDL are interpreted are

called Kripke frames in honor of Saul Kripke, the inventor of the formal semantics

of modal logic. A Kripke frame is a pair

K = (K, mK),

where K is a set of elements u, v, w, . . . called states and mK is a meaning function

assigning a subset of K to each atomic proposition and a binary relation on K to

MIT Press Math7X9/2010/08/25:15:15 Page 167



168 Chapter 5

each atomic program. That is,

mK(p) ⊆ K, p ∈ Φ0

mK(a) ⊆ K ×K, a ∈ Π0.

We will extend the definition of the function mK by induction below to give a

meaning to all elements of Π and Φ such that

mK(ϕ) ⊆ K, ϕ ∈ Φ

mK(α) ⊆ K ×K, α ∈ Π.

Intuitively, we can think of the set mK(ϕ) as the set of states satisfying the

proposition ϕ in the model K, and we can think of the binary relation mK(α)

as the set of input/output pairs of states of the program α.

Formally, the meanings mK(ϕ) of ϕ ∈ Φ and mK(α) of α ∈ Π are defined by

mutual induction on the structure of ϕ and α. The basis of the induction, which

specifies the meanings of the atomic symbols p ∈ Φ0 and a ∈ Π0, is already given in

the specification of K. The meanings of compound propositions and programs are

defined as follows.

mK(ϕ→ ψ)
def
= (K −mK(ϕ)) ∪mK(ψ)

mK(0)
def
= ∅

mK([α]ϕ)
def
= K − (mK(α) ◦ (K −mK(ϕ)))

= {u | ∀v ∈ K if (u, v) ∈ mK(α) then v ∈ mK(ϕ)}
mK(α;β)

def
= mK(α) ◦mK(β) (5.2.1)

= {(u, v) | ∃w ∈ K (u,w) ∈ mK(α) and (w, v) ∈ mK(β)}
mK(α ∪ β) def

= mK(α) ∪mK(β)

mK(α
∗) def

= mK(α)
∗ =

⋃
n≥0

mK(α)
n (5.2.2)

mK(ϕ?)
def
= {(u, u) | u ∈ mK(ϕ)}.

The operator ◦ in (5.2.1) is relational composition (Section 1.3). In (5.2.2), the

first occurrence of ∗ is the iteration symbol of PDL, and the second is the reflexive

transitive closure operator on binary relations (Section 1.3). Thus (5.2.2) says that

the program α∗ is interpreted as the reflexive transitive closure of mK(α).

We write K, u � ϕ and u ∈ mK(ϕ) interchangeably, and say that u satisfies ϕ in

K, or that ϕ is true at state u in K. We may omit the K and write u � ϕ when K is

understood. The notation u � ϕ means that u does not satisfy ϕ, or in other words

MIT Press Math7X9/2010/08/25:15:15 Page 168



Propositional Dynamic Logic 169

that u 
∈ mK(ϕ). In this notation, we can restate the definition above equivalently

as follows:

u � ϕ→ ψ
def⇐⇒ u � ϕ implies u � ψ

u � 0

u � [α]ϕ
def⇐⇒ ∀v if (u, v) ∈ mK(α) then v � ϕ

(u, v) ∈ mK(αβ)
def⇐⇒ ∃w (u,w) ∈ mK(α) and (w, v) ∈ mK(β)

(u, v) ∈ mK(α ∪ β) def⇐⇒ (u, v) ∈ mK(α) or (u, v) ∈ mK(β)

(u, v) ∈ mK(α
∗) def⇐⇒ ∃n ≥ 0 ∃u0, . . . , un u = u0, v = un,

and (ui, ui+1) ∈ mK(α), 0 ≤ i ≤ n− 1

(u, v) ∈ mK(ϕ?)
def⇐⇒ u = v and u � ϕ.

The defined operators inherit their meanings from these definitions:

mK(ϕ ∨ ψ) def
= mK(ϕ) ∪mK(ψ)

mK(ϕ ∧ ψ) def
= mK(ϕ) ∩mK(ψ)

mK(¬ϕ) def
= K −mK(ϕ)

mK(<α>ϕ)
def
= {u | ∃v ∈ K (u, v) ∈ mK(α) and v ∈ mK(ϕ)}
= mK(α) ◦mK(ϕ)

mK(1)
def
= K

mK(skip)
def
= mK(1?) = ι, the identity relation

mK(fail)
def
= mK(0?) = ∅.

In addition, the if-then-else, while-do, and guarded commands inherit their

semantics from the above definitions, and the input/output relations given by the

formal semantics capture their intuitive operational meanings. For example, the

relation associated with the program while ϕ do α is the set of pairs (u, v) for

which there exist states u0, u1, . . . , un, n ≥ 0, such that u = u0, v = un, ui ∈ mK(ϕ)

and (ui, ui+1) ∈ mK(α) for 0 ≤ i < n, and un 
∈ mK(ϕ). A thorough analysis will

require more careful attention, so we defer further discussion until later.

This version of PDL is usually called regular PDL and the elements of Π are

called regular programs because of the primitive operators ∪, ;, and ∗, which are

familiar from regular expressions. Programs can be viewed as regular expressions

over the atomic programs and tests. In fact, it can be shown that if p is an atomic

proposition symbol, then any two test-free programs α, β are equivalent as regular

MIT Press Math7X9/2010/08/25:15:15 Page 169



170 Chapter 5

expressions—that is, they represent the same regular set—if and only if the formula

<α>p↔ <β>p is valid (Exercise 5.13).

Example 5.1: Let p be an atomic proposition, let a be an atomic program, and

let K = (K, mK) be a Kripke frame with

K = {u, v, w}
mK(p) = {u, v}
mK(a) = {(u, v), (u,w), (v, w), (w, v)}.

The following diagram illustrates K.

� �
�

u v

w

�
�

	

p	

	
	
	


��
�

�
��



a

a a

In this structure, u � <a>¬p ∧ <a>p, but v � [a]¬p and w � [a]p. Moreover, every

state of K satisfies the formula

<a∗>[(aa)∗]p ∧ <a∗>[(aa)∗]¬p.

5.3 Computation Sequences

Let α be a program. Recall from Section 4.3 that a finite computation sequence

of α is a finite-length string of atomic programs and tests representing a possible

sequence of atomic steps that can occur in a halting execution of α. These strings are

called seqs and are denoted σ, τ, . . . . The set of all such sequences is denoted CS (α).

We use the word “possible” here loosely—CS(α) is determined by the syntax of α

alone, and may contain strings that are never executed in any interpretation.

MIT Press Math7X9/2010/08/25:15:15 Page 170



Propositional Dynamic Logic 171

Formally, the set CS (α) is defined by induction on the structure of α:

CS (a)
def
= {a}, a an atomic program

CS (ϕ?)
def
= {ϕ?}

CS (α;β)
def
= {γδ | γ ∈ CS (α), δ ∈ CS (β)}

CS (α ∪ β) def
= CS (α) ∪ CS (β)

CS (α∗) def
=

⋃
n≥0

CS (αn)

where α0 = skip and αn+1 = ααn. For example, if a is an atomic program and p

is an atomic formula, then the program

while p do a = (p?; a)∗;¬p?
has as computation sequences all strings of the form

p? a p? a · · · p? a skip ¬p?.
Note that each finite computation sequence β of a program α is itself a program,

and CS (β) = {β}. Moreover, the following proposition is not difficult to prove by

induction on the structure of α:

Proposition 5.2:

mK(α) =
⋃

σ∈CS(α)

mK(σ).

Proof Exercise 5.1.

5.4 Satisfiability and Validity

The definitions of satisfiability and validity of propositions are identical to those of

modal logic (see Section 3.7). Let K = (K, mK) be a Kripke frame and let ϕ be a

proposition. We have defined in Section 5.2 what it means for K, u � ϕ. If K, u � ϕ
for some u ∈ K, we say that ϕ is satisfiable in K. If ϕ is satisfiable in some K, we

say that ϕ is satisfiable.

If K, u � ϕ for all u ∈ K, we write K � ϕ and say that ϕ is valid in K. If K � ϕ
for all Kripke frames K, we write � ϕ and say that ϕ is valid.

If Σ is a set of propositions, we write K � Σ if K � ϕ for all ϕ ∈ Σ. A proposition

MIT Press Math7X9/2010/08/25:15:15 Page 171



172 Chapter 5

ψ is said to be a logical consequence of Σ if K � ψ whenever K � Σ, in which case

we write Σ � ψ. (Note that this is not the same as saying that K, u � ψ whenever

K, u � Σ.) We say that an inference rule

ϕ1, . . . , ϕn
ϕ

is sound if ϕ is a logical consequence of {ϕ1, . . . , ϕn}.
Satisfiability and validity are dual in the same sense that ∃ and ∀ are dual and

< > and [ ] are dual: a proposition is valid (in K) if and only if its negation is not

satisfiable (in K).

Example 5.3: Let p, q be atomic propositions, let a, b be atomic programs, and

let K = (K,mK) be a Kripke frame with

K = {s, t, u, v}
mK(p) = {u, v}
mK(q) = {t, v}
mK(a) = {(t, v), (v, t), (s, u), (u, s)}
mK(b) = {(u, v), (v, u), (s, t), (t, s)}.
The following figure illustrates K.

�
�

�
�

u

s

v

t
�

�

	



�
�

	



q

p �

�

�

� �

�

�

�
b

b

a a

The following formulas are valid in K.

p ↔ [(ab∗a)∗]p
q ↔ [(ba∗b)∗]q.
Also, let α be the program

α = (aa ∪ bb ∪ (ab ∪ ba)(aa ∪ bb)∗(ab ∪ ba))∗. (5.4.1)

Thinking of α as a regular expression, α generates all words over the alphabet {a, b}
with an even number of occurrences of each of a and b. It can be shown that for

MIT Press Math7X9/2010/08/25:15:15 Page 172



Propositional Dynamic Logic 173

any proposition ϕ, the proposition ϕ↔ [α]ϕ is valid in K (Exercise 5.5).

Example 5.4: The formula

p ∧ [a∗]((p→ [a]¬p) ∧ (¬p→ [a]p)) ↔ [(aa)∗]p ∧ [a(aa)∗]¬p (5.4.2)

is valid. Both sides assert in different ways that p is alternately true and false along

paths of execution of the atomic program a. See Exercise 5.6.

5.5 A Deductive System

The following list of axioms and rules constitutes a sound and complete Hilbert-style

deductive system for PDL.

Axiom System 5.5:

(i) Axioms for propositional logic

(ii) [α](ϕ→ ψ) → ([α]ϕ→ [α]ψ)

(iii) [α](ϕ ∧ ψ) ↔ [α]ϕ ∧ [α]ψ

(iv) [α ∪ β]ϕ ↔ [α]ϕ ∧ [β]ϕ

(v) [α ; β]ϕ ↔ [α][β]ϕ

(vi) [ψ?]ϕ ↔ (ψ → ϕ)

(vii) ϕ ∧ [α][α∗]ϕ ↔ [α∗]ϕ
(viii) ϕ ∧ [α∗](ϕ→ [α]ϕ) → [α∗]ϕ (induction axiom)

(MP)
ϕ, ϕ→ ψ

ψ

(GEN)
ϕ

[α]ϕ

The axioms (ii) and (iii) and the two rules of inference are not particular to PDL,

but come from modal logic (see Section 3.7). The rules (MP) and (GEN) are called

modus ponens and (modal) generalization, respectively.

Axiom (viii) is called the PDL induction axiom. Intuitively, (viii) says: “Suppose

ϕ is true in the current state, and suppose that after any number of iterations of

α, if ϕ is still true, then it will be true after one more iteration of α. Then ϕ will

be true after any number of iterations of α.” In other words, if ϕ is true initially,

and if the truth of ϕ is preserved by the program α, then ϕ will be true after any

number of iterations of α.

MIT Press Math7X9/2010/08/25:15:15 Page 173



174 Chapter 5

Notice the similarity of the formula (viii) to the usual induction axiom of Peano

arithmetic:

ϕ(0) ∧ ∀n (ϕ(n)→ ϕ(n+ 1)) → ∀n ϕ(n).
Here ϕ(0) is the basis of the induction and ∀n (ϕ(n)→ ϕ(n+ 1)) is the induction

step, from which the conclusion ∀n ϕ(n) can be drawn. In the PDL axiom (viii), the

basis is ϕ and the induction step is [α∗](ϕ → [α]ϕ), from which the conclusion

[α∗]ϕ can be drawn.

We write � ϕ if the proposition ϕ is a theorem of this system, and say that ϕ is

consistent if � ¬ϕ; that is, if it is not the case that � ¬ϕ. A set Σ of propositions

is consistent if all finite conjunctions of elements of Σ are consistent.

The soundness of these axioms and rules over Kripke frames can be established

by elementary arguments in relational algebra using the semantics of Section 5.2.

We will do this in Section 5.6. We will prove the completeness of this system in

Chapter 7.

5.6 Basic Properties

We establish some basic facts that follow from the definitions of Sections 5.1–5.5.

Most of these results are in the form of valid formulas and rules of inference of

PDL. In the course of proving these results, we will establish the soundness of the

deductive system for PDL given in Section 5.5.

Properties Inherited from Modal Logic

We start with some properties that are not particular to PDL, but are valid in

all modal systems. They are valid in PDL by virtue of the fact that PDL includes

propositional modal logic. Theorems 5.6 and 5.7 were essentially proved in Section

3.7 (Theorems 3.70 and 3.71, respectively); these in turn were proved using the

basic properties of relational composition given in Section 1.3. We restate them

here in the framework of PDL.

Theorem 5.6: The following are valid formulas of PDL:

(i) <α>(ϕ ∨ ψ) ↔ <α>ϕ ∨ <α>ψ

(ii) [α](ϕ ∧ ψ) ↔ [α]ϕ ∧ [α]ψ

(iii) <α>ϕ ∧ [α]ψ → <α>(ϕ ∧ ψ)
(iv) [α](ϕ→ ψ) → ([α]ϕ→ [α]ψ)

MIT Press Math7X9/2010/08/25:15:15 Page 174



Propositional Dynamic Logic 175

(v) <α>(ϕ ∧ ψ) → <α>ϕ ∧ <α>ψ

(vi) [α]ϕ ∨ [α]ψ → [α](ϕ ∨ ψ)
(vii) <α>0 ↔ 0

(viii) [α]ϕ ↔ ¬<α>¬ϕ.

Proof See Theorem 3.70.

The converses of Theorem 5.6(iii)–(vi) are not valid. For example, (iii) is violated

in state u of the following Kripke frame:

�u �����

�����

�
�
ϕ ∧ ¬ψ

ψ ∧ ¬ϕ
One can construct similar counterexamples for the others (Exercise 5.10).

Theorem 5.7: The following are sound rules of inference of PDL:

(i) Modal generalization (GEN):

ϕ

[α]ϕ

(ii) Monotonicity of <α>:

ϕ→ ψ

<α>ϕ→ <α>ψ

(iii) Monotonicity of [α]:

ϕ→ ψ

[α]ϕ→ [α]ψ

Proof See Theorem 3.71.

The properties expressed in Theorem 5.7(ii) and (iii) are quite useful. They

say that the constructs < > and [ ] are monotone in their second argument with

respect to the ordering of logical implication. Corollary 5.9 below asserts that these

constructs are also monotone and antitone, respectively, in their first argument.

Properties of ∪, ;, and ?

In this section we develop the basic properties of the choice operator ∪, the

composition operator ;, and the test operator ?.

MIT Press Math7X9/2010/08/25:15:15 Page 175



176 Chapter 5

Theorem 5.8: The following are valid formulas of PDL:

(i) <α ∪ β>ϕ ↔ <α>ϕ ∨ <β>ϕ

(ii) [α ∪ β]ϕ ↔ [α]ϕ ∧ [β]ϕ.

Proof For (i), we need to show that for any Kripke frame K,

mK(<α ∪ β>ϕ) = mK(<α>ϕ ∨ <β>ϕ).

By the semantics of PDL (Section 5.2), the left-hand side is equivalent to

(mK(α) ∪mK(β)) ◦mK(ϕ)

and the right-hand side is equivalent to

(mK(α) ◦mK(ϕ)) ∪ (mK(β) ◦mK(ϕ)).

The equivalence of these two expressions follows from the fact that relational

composition ◦ distributes over union ∪ (Lemma 1.1).

Statement (ii) follows from (i) by duality (Exercise 3.4).

Intuitively, Theorem 5.8(i) says that the program α ∪ β can halt in a state

satisfying ϕ iff either α or β can. Theorem 5.8(ii) says that any halting state of the

program α ∪ β must satisfy ϕ iff this is true for both α and β.

It follows that the box and diamond operators are monotone and antitone,

respectively, in their first argument α:

Corollary 5.9: If mK(α) ⊆ mK(β), then for all ϕ,

(i) K |= <α>ϕ → <β>ϕ

(ii) K |= [β]ϕ → [α]ϕ.

Proof Equivalently, if mK(α) ⊆ mK(β), then for all ϕ,

(i) mK(<α>ϕ) ⊆ mK(<β>ϕ)

(ii) mK([β]ϕ) ⊆ mK([α]ϕ).

These statements follow from Theorem 5.8 by virtue of the fact that mK(α) ⊆
mK(β) iff mK(α) ∪ mM(β) = mK(β). We leave the details as an exercise (Exercise

5.11).

Theorem 5.10: The following are valid formulas of PDL:

MIT Press Math7X9/2010/08/25:15:15 Page 176



Propositional Dynamic Logic 177

(i) <α ; β>ϕ ↔ <α><β>ϕ

(ii) [α ; β]ϕ ↔ [α][β]ϕ.

Proof We need to show that in all models K,

(i) mK(<α ; β>ϕ) = mK(<α><β>ϕ)

(ii) mK([α ; β]ϕ) = mK([α][β]ϕ).

According to the semantics of PDL, statement (i) says

(mK(α) ◦mK(β)) ◦mK(ϕ) = mK(α) ◦ (mK(β) ◦mK(ϕ)).

This follows from the associativity of relational composition (Exercise 1.1). State-

ment (ii) follows from (i) by duality (Exercise 3.4).

Theorem 5.11: The following are valid formulas of PDL:

(i) <ϕ?>ψ ↔ (ϕ ∧ ψ)
(ii) [ϕ?]ψ ↔ (ϕ→ ψ).

Proof We need to show that in all models K,

(i) mK(<ϕ?>ψ) = mK(ϕ ∧ ψ)
(ii) mK([ϕ?]ψ) = mK(ϕ→ ψ).

To show (i),

mK(<ϕ?>ψ) = {(u, u) | u ∈ mK(ϕ)} ◦mK(ψ)

= {u | u ∈ mK(ϕ)} ∩mK(ψ)

= mK(ϕ) ∩mK(ψ)

= mK(ϕ ∧ ψ).
Then (ii) follows from (i) by duality (Exercise 3.4).

The Converse Operator −

The following properties deal with the converse operator − with semantics

mK(α
−) = mK(α)

− = {(v, u) | (u, v) ∈ mK(α)}.
Intuitively, the converse operator allows us to “run a program backwards;”

semantically, the input/output relation of the program α− is the output/input

MIT Press Math7X9/2010/08/25:15:15 Page 177



178 Chapter 5

relation of α. Although this is not always possible to realize in practice, it is

nevertheless a useful expressive tool. For example, it gives us a convenient way

to talk about backtracking, or rolling back a computation to a previous state.

Theorem 5.12: For any programs α and β,

(i) mK((α ∪ β)−) = mK(α
− ∪ β−)

(ii) mK((α ; β)−) = mK(β
− ; α−)

(iii) mK(ϕ?
−) = mK(ϕ?)

(iv) mK(α
∗−) = mK(α

−∗)
(v) mK(α

−−) = mK(α).

Proof All of these follow directly from the properties of binary relations (Section

1.3). For example, (i) follows from the fact that the converse operation − on binary

relations commutes with set union ∪ (Exercise 1.5):

mK((α ∪ β)−) = mK(α ∪ β)−
= (mK(α) ∪mK(β))

−

= mK(α)
− ∪mK(β)

−

= mK(α
−) ∪mK(β

−)

= mK(α
− ∪ β−).

Similarly, (ii) uses Exercise 1.6, (iii) follows from the fact that mK(ϕ?) is a subset

of the identity relation ι and is therefore symmetric, (iv) uses Exercise 1.5, and (v)

uses Exercise 1.7.

Theorem 5.12 can be used to transform any program containing occurrences of

the operator − into an equivalent program in which all occurrences of − are applied

to atomic programs only. The equivalent program is obtained by replacing any

subprogram which looks like the left-hand side of one of Theorem 5.12(i)–(v) with

the corresponding right-hand side. These rules are applied, moving occurrences of
− inward, until they cannot be applied any more; that is, until all − are applied to

primitive programs only. The resulting program is equivalent to the original.

Theorem 5.12 discusses the interaction of − with the other program operators.

The interaction of − with the modal operations <α> and [α] is described in the

following theorem.

Theorem 5.13: The following are valid formulas of PDL:

MIT Press Math7X9/2010/08/25:15:15 Page 178



Propositional Dynamic Logic 179

(i) ϕ → [α]<α−>ϕ

(ii) ϕ → [α−]<α>ϕ

(iii) <α>[α−]ϕ → ϕ

(iv) <α−>[α]ϕ → ϕ.

Proof We need to show that in any model K,

(i) mK(ϕ) ⊆ mK([α]<α
−>ϕ)

(ii) mK(ϕ) ⊆ mK([α
−]<α>ϕ)

(iii) mK(<α>[α
−]ϕ) ⊆ mK(ϕ)

(iv) mK(<α
−>[α]ϕ) ⊆ mK(ϕ).

To show (i), suppose u ∈ mK(ϕ). For any state v such that (u, v) ∈ mK(α),

v ∈ mK(<α
−>ϕ), thus u ∈ mM([α]<α−>ϕ). Statement (ii) follows immediately

from (i) using Exercise 1.7, and (iii) and (iv) are dual to (i) and (ii).

Theorem 5.13 has a rather powerful consequence: in the presence of the converse

operator −, the operator <α> is continuous on any Kripke frame K (see Section 1.7)

with respect to the partial order of implication. In PDL without −, a Kripke frame

can be constructed such that <α> is not continuous (Exercise 5.12).

Let K be any Kripke frame for PDL. Let mK(Φ) be the set of interpretations of

PDL propositions:

mK(Φ)
def
= {mK(ϕ) | ϕ ∈ Φ}.

The set mK(Φ) is partially ordered by inclusion ⊆ . Under this order, the supremum

of any finite set {mK(ϕ1), . . . ,mK(ϕn)} always exists and is in mK(Φ); it is

mK(ϕ1) ∪ · · · ∪mK(ϕn) = mK(ϕ1 ∨ · · · ∨ ϕn).
Moreover, <α> always preserves suprema of finite sets:

n
sup
i=1

mK(<α>ϕi) = mK(
n∨
i=1

<α>ϕi)

= mK(<α>

n∨
i=1

ϕi).

This follows from n − 1 applications of Theorem 5.6(i). However, if A ⊆ Φ is

infinite, then supϕ∈AmK(ϕ) may not exist. Note that in general
⋃
ϕ∈AmK(ϕ) is not

the supremum, since it may not even be in mK(Φ). Even if supϕ∈AmK(ϕ) does exist

MIT Press Math7X9/2010/08/25:15:15 Page 179



180 Chapter 5

(that is, if it is mK(ψ) for some ψ ∈ Φ), it is not necessarily equal to
⋃
ϕ∈AmK(ϕ).

The following theorem says that in the presence of −, all existing suprema are

preserved by the operator <α>.

Theorem 5.14: In PDL with −, the map ϕ �→ <α>ϕ is continuous with respect

to the order of logical implication. That is, if K is a Kripke frame, A a (finite or

infinite) set of formulas, and ϕ a formula such that

mK(ϕ) = sup
ψ∈A

mK(ψ),

then supψ∈AmK(<α>ψ) exists and is equal to mK(<α>ϕ).

Proof Since mK(ϕ) is an upper bound for {mK(ψ) | ψ ∈ A}, we have that

mK(<α>ψ) ⊆ mK(<α>ϕ)

for each ψ ∈ A by the monotonicity of <α> (Theorem 5.7(ii)), thus mK(<α>ϕ) is an

upper bound for {mK(<α>ψ) | ψ ∈ A}. To show it is the least upper bound, suppose

ρ is any other upper bound; that is,

mK(<α>ψ) ⊆ mK(ρ)

for all ψ ∈ A. By the monotonicity of [α−] (Theorem 5.7(iii)),

mK([α
−]<α>ψ) ⊆ mK([α

−]ρ)

for all ψ ∈ A, and by Theorem 5.13(ii),

mK(ψ) ⊆ mK([α
−]<α>ψ)

for all ψ ∈ A, thus mK([α
−]ρ) is an upper bound for {mK(ψ) | ψ ∈ A}. Since mK(ϕ)

is the least upper bound,

mK(ϕ) ⊆ mK([α
−]ρ).

By the monotonicity of <α> again,

mK(<α>ϕ) ⊆ mK(<α>[α
−
]ρ),

and by Theorem 5.13(iii),

mK(<α>[α
−]ρ) ⊆ mK(ρ),

MIT Press Math7X9/2010/08/25:15:15 Page 180



Propositional Dynamic Logic 181

therefore

mK(<α>ϕ) ⊆ mK(ρ).

Since mK(ρ) was an arbitrary upper bound for {mK(<p>ψ) | ψ ∈ A}, mK(<α>ϕ)

must be the least upper bound.

The Iteration Operator ∗

The iteration operator ∗ is interpreted as the reflexive transitive closure operator on

binary relations. It is the means by which iteration is coded in PDL. This operator

differs from the other operators in that it is infinitary in nature, as reflected by its

semantics:

mK(α
∗) = mK(α)

∗ =
⋃
n<ω

mK(α)
n

(see Section 5.2). This introduces a level of complexity to PDL beyond the other

operators. Because of it, PDL is not compact: the set

{<α∗>ϕ} ∪ {¬ϕ, ¬<α>ϕ, ¬<α2>ϕ, . . .} (5.6.1)

is finitely satisfiable but not satisfiable. Because of this infinitary behavior, it is

rather surprising that PDL should be decidable and that there should be a finitary

complete axiomatization.

The properties of the ∗ operator of PDL come directly from the properties of the

reflexive transitive closure operator ∗ on binary relations, as described in Section

1.3 and Exercises 1.12 and 1.13. In a nutshell, for any binary relation R, R∗ is the

⊆ -least reflexive and transitive relation containing R.

Theorem 5.15: The following are valid formulas of PDL:

(i) [α∗]ϕ → ϕ

(ii) ϕ → <α∗>ϕ
(iii) [α∗]ϕ → [α]ϕ

(iv) <α>ϕ → <α∗>ϕ
(v) [α∗]ϕ ↔ [α∗α∗]ϕ
(vi) <α∗>ϕ ↔ <α∗α∗>ϕ
(vii) [α∗]ϕ ↔ [α∗∗]ϕ
(viii) <α∗>ϕ ↔ <α∗∗>ϕ
(ix) [α∗]ϕ ↔ ϕ ∧ [α][α∗]ϕ.

MIT Press Math7X9/2010/08/25:15:15 Page 181



182 Chapter 5

(x) <α∗>ϕ ↔ ϕ ∨ <α><α∗>ϕ.
(xi) [α∗]ϕ ↔ ϕ ∧ [α∗](ϕ→ [α]ϕ).

(xii) <α∗>ϕ ↔ ϕ ∨ <α∗>(¬ϕ ∧ <α>ϕ).

Proof These properties follow immediately from the semantics of PDL (Section 5.2)

and the properties of reflexive transitive closure (Exercises 1.7, 1.12, and 1.13).

Semantically, α∗ is a reflexive and transitive relation containing α, and Theorem

5.15 captures this. That α∗ is reflexive is captured in (ii); that it is transitive is

captured in (vi); and that it contains α is captured in (iv). These three properties

are captured by the single property (x).

Reflexive Transitive Closure and Induction

To prove properties of iteration, it is not enough to know that α∗ is a reflexive and

transitive relation containing α. So is the universal relation K ×K, and that is not

very interesting. We also need some way of capturing the idea that α∗ is the least

reflexive and transitive relation containing α. There are several equivalent ways this

can be done:

(RTC) The reflexive transitive closure rule:

(ϕ ∨ <α>ψ)→ ψ

<α∗>ϕ→ ψ

(LI) The loop invariance rule:

ψ → [α]ψ

ψ → [α∗]ψ

(IND) The induction axiom (box form):

ϕ ∧ [α∗](ϕ→ [α]ϕ) → [α∗]ϕ

(IND) The induction axiom (diamond form):

<α∗>ϕ → ϕ ∨ <α∗>(¬ϕ ∧ <α>ϕ)

MIT Press Math7X9/2010/08/25:15:15 Page 182



Propositional Dynamic Logic 183

The rule (RTC) is called the reflexive transitive closure rule. Its importance is best

described in terms of its relationship to the valid PDL formula of Theorem 5.15(x).

Observe that the right-to-left implication of this formula is obtained by substituting

<α∗>ϕ for R in the expression

ϕ ∨ <α>R → R. (5.6.2)

Theorem 5.15(x) implies that <α∗>ϕ is a solution of (5.6.2); that is, (5.6.2) is valid

when <α∗>ϕ is substituted for R. The rule (RTC) says that <α∗>ϕ is the least such

solution with respect to logical implication. That is, it is the least PDL-definable

set of states that when substituted for R in (5.6.2) results in a valid formula.

The dual propositions labeled (IND) are jointly called the PDL induction axiom.

Intuitively, the box form of (IND) says, “If ϕ is true initially, and if, after any

number of iterations of the program α, the truth of ϕ is preserved by one more

iteration of α, then ϕ will be true after any number of iterations of α.” The diamond

form of (IND) says, “If it is possible to reach a state satisfying ϕ in some number of

iterations of α, then either ϕ is true now, or it is possible to reach a state in which

ϕ is false but becomes true after one more iteration of α.”

As mentioned in Section 5.5, the box form of (IND) bears a strong resemblance

to the induction axiom of Peano arithmetic:

ϕ(0) ∧ ∀n (ϕ(n)→ ϕ(n+ 1)) → ∀n ϕ(n).

In Theorem 5.18 below, we argue that in the presence of the other axioms and

rules of PDL, the rules (RTC), (LI), and (IND) are interderivable. First, however,

we argue that the rule (RTC) is sound. The soundness of (LI) and (IND) will follow

from Theorem 5.18.

Theorem 5.16: The reflexive transitive closure rule (RTC) is sound.

Proof We need to show that in any model K, if mK(ϕ) ⊆ mK(ψ) and mK(<α>ψ) ⊆
mK(ψ), then mK(<α

∗>ϕ) ⊆ mK(ψ). We show by induction on n that mK(<α
n>ϕ) ⊆

mK(ψ). Certainly mK(ϕ) = mK(<skip>ϕ), since mK(skip) = ι, and ι is an identity

for relational composition (Exercise 1.2). By definition, α0 = skip, so mK(<α
0>ϕ) ⊆

mK(ψ).

MIT Press Math7X9/2010/08/25:15:15 Page 183



184 Chapter 5

Now suppose mK(<α
n>ϕ) ⊆ mK(ψ). Then

mK(<α
n+1>ϕ) = mK(<α><α

n>ϕ)

⊆ mK(<α>ψ) by the monotonicity of <α>

⊆ mK(ψ) by assumption.

Thus for all n, mK(<α
n>ϕ) ⊆ mK(ψ). Since mK(<α

∗>ϕ) =
⋃
n<ω mK(<α

n>ϕ), we

have that mK(<α
∗>ϕ) ⊆ mK(ψ).

The deductive relationship between the induction axiom (IND), the reflexive

transitive closure rule (RTC), and the rule of loop invariance (LI) is summed up

in the following lemma and theorem. We emphasize that these results are purely

proof-theoretic and independent of the semantics of Section 5.2.

Lemma 5.17: The monotonicity rules of Theorem 5.7(ii) and (iii) are derivable

in PDL without the induction axiom.

Proof This is really a theorem of modal logic. First we show that the rule of

Theorem 5.7(iii) is derivable in PDL without induction. Assuming the premise

ϕ→ ψ and applying modal generalization, we obtain [α](ϕ→ ψ). The conclusion

[α]ϕ → [α]ψ then follows from Axiom 5.5(ii) and modus ponens. The dual

monotonicity rule, Theorem 5.7(ii), can be derived from (iii) by pure propositional

reasoning.

Theorem 5.18: In PDL without the induction axiom, the following axioms and

rules are interderivable:

• the induction axiom (IND);

• the loop invariance rule (LI);

• the reflexive transitive closure rule (RTC).

Proof (IND) → (LI) Assume the premise of (LI):

ϕ → [α]ϕ.

By modal generalization,

[α∗](ϕ→ [α]ϕ),

MIT Press Math7X9/2010/08/25:15:15 Page 184



Propositional Dynamic Logic 185

thus

ϕ → ϕ ∧ [α∗](ϕ→ [α]ϕ)

→ [α∗]ϕ.
The first implication is by propositional reasoning and the second is by (IND). By

transitivity of implication (Example 3.7), we obtain

ϕ → [α∗]ϕ,
which is the conclusion of (LI).

(LI) → (RTC) Dualizing (RTC) by purely propositional reasoning, we obtain

a rule

ψ → ϕ ∧ [α]ψ

ψ → [α∗]ϕ (5.6.3)

equivalent to (RTC). It thus suffices to derive (5.6.3) from (LI). From the premise

of (5.6.3), we obtain by propositional reasoning the two formulas

ψ → ϕ (5.6.4)

ψ → [α]ψ. (5.6.5)

Applying (LI) to (5.6.5), we obtain

ψ → [α∗]ψ,
which by (5.6.4) and monotonicity (Lemma 5.17) gives

ψ → [α∗]ϕ.
This is the conclusion of (5.6.3).

(RTC) → (IND) By Axiom 5.5(iii) and (vii) and propositional reasoning, we

have

ϕ ∧ [α∗](ϕ→ [α]ϕ)

→ ϕ ∧ (ϕ→ [α]ϕ) ∧ [α][α∗](ϕ→ [α]ϕ)

→ ϕ ∧ [α]ϕ ∧ [α][α∗](ϕ→ [α]ϕ)

→ ϕ ∧ [α](ϕ ∧ [α∗](ϕ→ [α]ϕ)).

By transitivity of implication (Example 3.7),

ϕ ∧ [α∗](ϕ→ [α]ϕ) → ϕ ∧ [α](ϕ ∧ [α∗](ϕ→ [α]ϕ)).

MIT Press Math7X9/2010/08/25:15:15 Page 185



186 Chapter 5

Applying (5.6.3), which we have argued is equivalent to (RTC), we obtain (IND):

ϕ ∧ [α∗](ϕ→ [α]ϕ) → [α∗]ϕ.

5.7 Encoding Hoare Logic

Recall that the Hoare partial correctness assertion {ϕ} α {ψ} is encoded as ϕ →
[α]ψ in PDL. The following theorem says that under this encoding, Dynamic Logic

subsumes Hoare Logic.

Theorem 5.19: The following rules of Hoare Logic are derivable in PDL:

(i) Composition rule:

{ϕ} α {σ}, {σ} β {ψ}
{ϕ} α ; β {ψ}

(ii) Conditional rule:

{ϕ ∧ σ} α {ψ}, {¬ϕ ∧ σ} β {ψ}
{σ} if ϕ then α else β {ψ}

(iii) While rule:

{ϕ ∧ ψ} α {ψ}
{ψ}while ϕ do α {¬ϕ ∧ ψ}
(iv) Weakening rule:

ϕ′ → ϕ, {ϕ} α {ψ}, ψ → ψ′

{ϕ′} α {ψ′}

Proof We derive the while rule (iii) in PDL. The other Hoare rules are also

derivable, and we leave them as exercises (Exercise 5.14).

Assuming the premise

{ϕ ∧ ψ} α {ψ} = (ϕ ∧ ψ)→ [α]ψ, (5.7.1)

we wish to derive the conclusion

{ψ}while ϕ do α {¬ϕ ∧ ψ} = ψ → [(ϕ?;α)∗;¬ϕ?](¬ϕ ∧ ψ). (5.7.2)

MIT Press Math7X9/2010/08/25:15:15 Page 186



Propositional Dynamic Logic 187

Using propositional reasoning, (5.7.1) is equivalent to

ψ → (ϕ→ [α]ψ),

which by Axioms 5.5(v) and (vi) is equivalent to

ψ → [ϕ?;α]ψ.

Applying the loop invariance rule (LI), we obtain

ψ → [(ϕ?;α)∗]ψ.
By the monotonicity of [(ϕ?;α)∗] (Lemma 5.17) and propositional reasoning,

ψ → [(ϕ?;α)∗](¬ϕ→ (¬ϕ ∧ ψ)),
and by Axiom 5.5(vi), we obtain

ψ → [(ϕ?;α)∗][¬ϕ?](¬ϕ ∧ ψ).
By Axiom 5.5(v), this is equivalent to the desired conclusion (5.7.2).

5.8 Bibliographical Notes

Burstall (1974) suggested using modal logic for reasoning about programs, but it

was not until the work of Pratt (1976), prompted by a suggestion of R. Moore, that

it was actually shown how to extend modal logic in a useful way by considering a

separate modality for every program. The first research devoted to propositional

reasoning about programs seems to be that of Fischer and Ladner (1977, 1979) on

PDL. As mentioned in the Preface, the general use of logical systems for reasoning

about programs was suggested by Engeler (1967).

Other semantics besides Kripke semantics have been studied; see Berman

(1979); Nishimura (1979); Kozen (1979b); Trnkova and Reiterman (1980); Kozen

(1980b); Pratt (1979b). Modal logic has many applications and a vast literature;

good introductions can be found in Hughes and Cresswell (1968); Chellas (1980).

Alternative and iterative guarded commands were studied in Gries (1981). Partial

correctness assertions and the Hoare rules given in Section 5.7 were first formulated

by Hoare (1969). Regular expressions, on which the regular program operators

are based, were introduced by Kleene (1956). Their algebraic theory was further

investigated by Conway (1971). They were first applied in the context of DL by

Fischer and Ladner (1977, 1979). The axiomatization of PDL given in Axioms 5.5

was formulated by Segerberg (1977). Tests and converse were investigated by various

MIT Press Math7X9/2010/08/25:15:15 Page 187



188 Chapter 5

authors; see Peterson (1978); Berman (1978); Berman and Paterson (1981); Streett

(1981, 1982); Vardi (1985b). Theorem 5.14 is due to Trnkova and Reiterman (1980).

Exercises

5.1. Prove Proposition 5.2.

5.2. A program α is said to be semantically deterministic in a Kripke frame K if

its traces are uniquely determined by their first states. Show that if α and β are

semantically deterministic in a structure K, then so are if ϕ then α else β and

while ϕ do α.

5.3. We say that two programs α and β are equivalent if they represent the same

binary relation in all Kripke frames; that is, if mK(α) = mK(β) for all K. Let p be

an atomic proposition not occurring in α or β. Prove that α and β are equivalent

iff the PDL formula <α>p↔ <β>p is valid.

5.4. Prove in PDL that the following pairs of programs are equivalent in the sense

of Exercise 5.3. For (c), use the encodings (4.3.1) and (4.3.2) of Section 4.3 and

reason in terms of the regular operators.

(a) a(ba)∗ (ab)∗a
(b) (a ∪ b)∗ (a∗b)∗a∗
(c) while b do begin

p ;

while c do q

end

if b then begin

p ;

while b ∨ c do
if c then q else p

end

5.5. Let α be the program (5.4.1) of Example 5.3. Show that for any proposition

ϕ, the proposition ϕ↔ [α]ϕ is valid in the model K of that example.

5.6. Prove that the formula (5.4.2) of Example 5.4 is valid. Give a semantic

MIT Press Math7X9/2010/08/25:15:15 Page 188



Propositional Dynamic Logic 189

argument using the semantics of PDL given in Section 5.2, not the deductive system

of Section 5.5.

5.7. Prove that the box and diamond forms of the PDL induction axiom are

equivalent. See Section 5.6.

5.8. Prove that the following statements are valid:

<α>ϕ → <αα−α>ϕ

<α∗α>ϕ ↔ <αα∗>ϕ
<α∗>ϕ ↔ ϕ ∨ <α>ϕ ∨ <αα>ϕ ∨ · · · ∨ <αn−1>ϕ ∨ <αnα∗>ϕ.

5.9. Prove that the following are theorems of PDL. Use Axiom System 5.5, do not

reason semantically.

(i) <α>ϕ ∧ [α]ψ → <α>(ϕ ∧ ψ)
(ii) <α>(ϕ ∨ ψ)↔ <α>ϕ ∨ <α>ψ

(iii) <α ∪ β>ϕ↔ <α>ϕ ∨ <β>ϕ

(iv) <αβ>ϕ↔ <α><β>ϕ

(v) <ψ?>ϕ ↔ ψ ∧ ϕ
(vi) <α∗>ϕ ↔ ϕ ∨ <αα∗>ϕ
(vii) <α∗>ϕ → ϕ ∨ <α∗>(¬ϕ ∧ <α>ϕ).

(viii) <α∗>ϕ ↔ ϕ ∨ <α∗>(¬ϕ ∧ <α>ϕ).

In the presence of the converse operator −,

(ix) <α>[α−]ϕ → ϕ

(x) <α−>[α]ϕ → ϕ.

5.10. Give counterexamples showing that the converses of Theorem 5.6(iv)–(vi) are

not valid.

5.11. Supply the missing details in the proof of Corollary 5.9.

5.12. Show that Theorem 5.14 fails in PDL without the converse operator −.
Construct a Kripke model such that the operator <a> is not continuous.

5.13. Let Σ be a set of atomic programs and let Σ∗ be the set of finite-length strings

MIT Press Math7X9/2010/08/25:15:15 Page 189



190 Chapter 5

over Σ. A regular expression over Σ is a PDL program over Σ with only operators

∪, ∗, and ;. A regular expression α denotes a set L(α) of strings in Σ∗ as follows:

L(a)
def
= {a}, a ∈ Σ

L(αβ)
def
= L(α) · L(β)
= {xy | x ∈ L(α), y ∈ L(β)}

L(α ∪ β) def
= L(α) ∪ L(β)

L(α∗) def
=

⋃
n<ω

L(α)n,

where L(α)0 = {ε}, L(αn+1) = L(αn) ·L(α), and ε is the empty string. Let p be an

atomic proposition. Prove that for any two regular expressions α, β, L(α) = L(β)

iff <α>p↔ <β>p is a theorem of PDL.

5.14. Prove that the composition, conditional, and weakening rules of Hoare Logic

(Theorem 5.19(i), (ii), and (iv), respectively) are derivable in PDL.

MIT Press Math7X9/2010/08/25:15:15 Page 190



6 Filtration and Decidability

In this chapter we will establish a small model property for PDL. This result and

the technique used to prove it, called filtration, come directly from modal logic.

The small model property says that if ϕ is satisfiable, then it is satisfied at a

state in a Kripke frame with no more than 2|ϕ| states, where |ϕ| is the number of

symbols of ϕ. This immediately gives a naive decision procedure for the satisfiability

problem for PDL: to determine whether ϕ is satisfiable, construct all Kripke frames

with at most 2|ϕ| states and check whether ϕ is satisfied at some state in one

of them. Considering only interpretations of the primitive formulas and primitive

programs appearing in ϕ, there are roughly 22
|ϕ|

such models, so this algorithm is

too inefficient to be practical. A more efficient algorithm will be given in Chapter

8.

6.1 The Fischer–Ladner Closure

Many proofs in simpler modal systems use induction on the well-founded subfor-

mula relation. In PDL, the situation is complicated by the simultaneous inductive

definitions of programs and propositions and by the behavior of the ∗ operator,

which make the induction proofs somewhat tricky. Nevertheless, we can still use

the well-founded subexpression relation in inductive proofs. Here an expression can

be either a program or a proposition. Either one can be a subexpression of the other

because of the mixed operators [ ] and ?.

We start by defining two functions

FL : Φ → 2Φ

FL� : {[α]ϕ | α ∈ Ψ, ϕ ∈ Φ} → 2Φ

by simultaneous induction. The set FL(ϕ) is called the Fischer–Ladner closure of

ϕ. The filtration construction of Lemma 6.3 uses the Fischer–Ladner closure of a

given formula where the corresponding proof for propositional modal logic would

use the set of subformulas.

The functions FL and FL� are defined inductively as follows:

(a) FL(p)
def
= {p}, p an atomic proposition

(b) FL(ϕ→ ψ)
def
= {ϕ→ ψ} ∪ FL(ϕ) ∪ FL(ψ)

(c) FL(0)
def
= {0}

MIT Press Math7X9/2010/08/25:15:15 Page 191



192 Chapter 6

(d) FL([α]ϕ)
def
= FL�([α]ϕ) ∪ FL(ϕ)

(e) FL�([a]ϕ)
def
= {[a]ϕ}, a an atomic program

(f) FL�([α ∪ β]ϕ) def
= {[α ∪ β]ϕ} ∪ FL�([α]ϕ) ∪ FL�([β]ϕ)

(g) FL�([α ; β]ϕ)
def
= {[α ; β]ϕ} ∪ FL�([α][β]ϕ) ∪ FL�([β]ϕ)

(h) FL�([α∗]ϕ) def
= {[α∗]ϕ} ∪ FL�([α][α∗]ϕ)

(i) FL�([ψ?]ϕ)
def
= {[ψ?]ϕ} ∪ FL(ψ).

This definition is apparently quite a bit more involved than for mere subexpressions.

In fact, at first glance it may appear circular because of the rule (h). The auxiliary

function FL� is introduced for the express purpose of avoiding any such circularity.

It is defined only for formulas of the form [α]ϕ and intuitively produces those

elements of FL([α]ϕ) obtained by breaking down α and ignoring ϕ.

Even after convincing ourselves that the definition is noncircular, it may not be

clear how the size of FL(ϕ) depends on the length of ϕ. Indeed, the right-hand side

of rule (h) involves a formula that is larger than the formula on the left-hand side.

We will be able to establish a linear relationship by induction on the well-founded

subexpression relation (Lemma 6.3).

First we show a kind of transitivity property of FL and FL� that will be useful

in later arguments.

Lemma 6.1:

(i) If σ ∈ FL(ϕ), then FL(σ) ⊆ FL(ϕ).

(ii) If σ ∈ FL�([α]ϕ), then FL(σ) ⊆ FL�([α]ϕ) ∪ FL(ϕ).

Proof We prove (i) and (ii) by simultaneous induction on the well-founded subex-

pression relation.

First we show (i), assuming by the induction hypothesis that (i) and (ii) hold

for proper subexpressions of ϕ. There are four cases, depending on the form of ϕ:

an atomic proposition p, ϕ→ ψ, 0, or [α]ϕ. We argue the second and fourth cases

explicitly and leave the first and third as exercises (Exercise 6.1).

If σ ∈ FL(ϕ→ ψ), then by clause (b) in the definition of FL, either σ = ϕ→ ψ,

σ ∈ FL(ϕ), or σ ∈ FL(ψ). In the first case, FL(σ) = FL(ϕ → ψ), and we are

done. In the second and third cases, we have FL(σ) ⊆ FL(ϕ) and FL(σ) ⊆ FL(ψ),

respectively, by the induction hypothesis (i). In either case, FL(σ) ⊆ FL(ϕ → ψ)

by clause (b) in the definition of FL.

If σ ∈ FL([α]ϕ), then by clause (d) in the definition of FL, either σ ∈

MIT Press Math7X9/2010/08/25:15:15 Page 192



Filtration and Decidability 193

FL�([α]ϕ) or σ ∈ FL(ϕ). In the former case, FL(σ) ⊆ FL�([α]ϕ) ∪ FL(ϕ)

by the induction hypothesis (ii). (The induction hypothesis holds here because

α is a proper subexpression of [α]ϕ.) In the latter case, FL(σ) ⊆ FL(ϕ) by the

induction hypothesis (i). Thus in either case, FL(σ) ⊆ FL([α]ϕ) by clause (d) in

the definition of FL.

Now we show (ii), again assuming that (i) and (ii) hold for proper subexpres-

sions. There are five cases, depending on the form of the program: an atomic pro-

gram a, α ∪ β, α ; β, α∗, or ψ?. We argue the third and fourth cases explicitly,

leaving the remaining three as exercises (Exercise 6.1).

If σ ∈ FL�([α ; β]ϕ), then by clause (g) in the definition of FL�, either

(A) σ = [α ; β]ϕ,

(B) σ ∈ FL�([α][β]ϕ), or

(C) σ ∈ FL�([β]ϕ).

In case (A), FL(σ) = FL�([α ; β]ϕ) ∪ FL(ϕ) by clause (d) in the definition of FL,

and we are done. In case (B), we have

FL(σ) ⊆ FL�([α][β]ϕ) ∪ FL([β]ϕ) by the induction hypothesis (ii)

= FL�([α][β]ϕ) ∪ FL�([β]ϕ) ∪ FL(ϕ)

by clause (d) in the definition of FL

⊆ FL�([α ; β]ϕ) ∪ FL(ϕ) by clause (g) in the definition of FL�.

In case (C),

FL(σ) ⊆ FL�([β]ϕ) ∪ FL(ϕ) by the induction hypothesis (ii)

⊆ FL�([α ; β]ϕ) ∪ FL(ϕ) by clause (g) in the definition of FL�.

If σ ∈ FL�([α∗]ϕ), then by clause (h) in the definition of FL�, either σ = [α∗]ϕ
or σ ∈ FL�([α][α∗]ϕ). In the former case, FL(σ) = FL�([α∗]ϕ)∪FL(ϕ) by clause

(d) in the definition of FL. In the latter case, we have

FL(σ) ⊆ FL�([α][α∗]ϕ) ∪ FL([α∗]ϕ)
= FL�([α][α∗]ϕ) ∪ FL�([α∗]ϕ) ∪ FL(ϕ)

⊆ FL�([α∗]ϕ) ∪ FL(ϕ)

by the induction hypothesis (ii) and clauses (d) and (h) in the definition of FL and

FL�.

The following closure properties of FL are straightforward consequences of

MIT Press Math7X9/2010/08/25:15:15 Page 193



194 Chapter 6

Lemma 6.1.

Lemma 6.2:

(i) If [α]ψ ∈ FL(ϕ), then ψ ∈ FL(ϕ).

(ii) If [ρ?]ψ ∈ FL(ϕ), then ρ ∈ FL(ϕ).

(iii) If [α ∪ β]ψ ∈ FL(ϕ), then [α]ψ ∈ FL(ϕ) and [β]ψ ∈ FL(ϕ).

(iv) If [α ; β]ψ ∈ FL(ϕ), then [α][β]ψ ∈ FL(ϕ) and [β]ψ ∈ FL(ϕ).

(v) If [α∗]ψ ∈ FL(ϕ), then [α][α∗]ψ ∈ FL(ϕ).

Proof Exercise 6.2.

The following lemma bounds the cardinality of FL(ϕ) as a function of the length

of ϕ. Recall that #A denotes the cardinality of a set A. Let |ϕ| and |α| denote the

length (number of symbols) of ϕ and α, respectively, excluding parentheses.

Lemma 6.3:

(i) For any formula ϕ, #FL(ϕ) ≤ |ϕ|.
(ii) For any formula [α]ϕ, #FL�([α]ϕ) ≤ |α|.

Proof The proof is by simultaneous induction on the well-founded subexpression

relation. First we show (i). If ϕ is an atomic formula p, then

#FL(p) = 1 = |p|.
If ϕ is of the form ψ → ρ, then

#FL(ψ → ρ) ≤ 1 + #FL(ψ) + #FL(ρ)

≤ 1 + |ψ|+ |ρ| by the induction hypothesis (i)

= |ψ → ρ|.
The argument for ϕ of the form 0 is easy. Finally, if ϕ is of the form [α]ψ, then

#FL([α]ψ) ≤ #FL�([α]ψ) + #FL(ψ)

≤ |α|+ |ψ| by the induction hypothesis (i) and (ii)

≤ |[α]ψ|.
Now we show (ii). If α is an atomic program a, then

#FL�([a]ϕ) = 1 = |a|.

MIT Press Math7X9/2010/08/25:15:15 Page 194



Filtration and Decidability 195

If α is of the form β ∪ γ, then

#FL�([β ∪ γ]ϕ) ≤ 1 + #FL�([β]ϕ) + #FL�([γ]ϕ)

≤ 1 + |β|+ |γ|
= |β ∪ γ|.

If α is of the form β ; γ, then

#FL�([β ; γ]ϕ) ≤ 1 + #FL�([β][γ]ϕ) + #FL�([γ]ϕ)

≤ 1 + |β|+ |γ|
= |β ; γ|.

If α is of the form β∗, then

#FL�([β∗]ϕ) ≤ 1 + #FL�([β][β∗]ϕ)
≤ 1 + |β|
= |β∗|.

Finally, if α is of the form ψ?, then

#FL�([ψ?]ϕ) ≤ 1 + #FL(ψ)

≤ 1 + |ψ| by the induction hypothesis (i)

= |ψ?|.

6.2 Filtration and the Small Model Theorem

Given a PDL proposition ϕ and a Kripke frame K = (K, mK), we define a new frame

K/FL(ϕ) = (K/FL(ϕ), mK/FL(ϕ)), called the filtration of K by FL(ϕ), as follows.

Define a binary relation ≡ on states of K by:

u ≡ v
def⇐⇒ ∀ψ ∈ FL(ϕ) (u ∈ mK(ψ)⇐⇒ v ∈ mK(ψ)).

MIT Press Math7X9/2010/08/25:15:15 Page 195



196 Chapter 6

In other words, we collapse states u and v if they are not distinguishable by any

formula of FL(ϕ). Let

[u]
def
= {v | v ≡ u}

K/FL(ϕ)
def
= {[u] | u ∈ K}

mK/FL(ϕ)(p)
def
= {[u] | u ∈ mK(p)}, p an atomic proposition

mK/FL(ϕ)(a)
def
= {([u], [v]) | (u, v) ∈ mK(a)}, a an atomic program.

The map mK/FL(ϕ) is extended inductively to compound propositions and programs

as described in Section 5.2.

The following key lemma relates K and K/FL(ϕ). Most of the difficulty in the

following lemma is in the correct formulation of the induction hypotheses in the

statement of the lemma. Once this is done, the proof is a fairly straightforward

induction on the well-founded subexpression relation.

Lemma 6.4 (Filtration Lemma): Let K be a Kripke frame and let u, v be

states of K.

(i) For all ψ ∈ FL(ϕ), u ∈ mK(ψ) iff [u] ∈ mK/FL(ϕ)(ψ).

(ii) For all [α]ψ ∈ FL(ϕ),

(a)if (u, v) ∈ mK(α) then ([u], [v]) ∈ mK/FL(ϕ)(α);

(b)if ([u], [v]) ∈ mK/FL(ϕ)(α) and u ∈ mK([α]ψ), then v ∈ mK(ψ).

Proof The proof is by simultaneous induction on the well-founded subexpression

relation. We start with (i). There are four cases, depending on the form of ψ.

Case 1 For atomic propositions p ∈ FL(ϕ), if u ∈ mK(p), then by definition of

K/FL(ϕ), [u] ∈ mK/FL(ϕ)(p). Conversely, if [u] ∈ mK/FL(ϕ)(p), then there exists a

u′ such that u′ ≡ u and u′ ∈ mK(p). But then u ∈ mK(p) as well.

Case 2 If ψ → ρ ∈ FL(ϕ), then by Lemma 6.1, both ψ ∈ FL(ϕ) and ρ ∈ FL(ϕ).

By the induction hypothesis, (i) holds for ψ and ρ, therefore

s ∈ mK(ψ → ρ) ⇐⇒ s ∈ mK(ψ) =⇒ s ∈ mK(ρ)

⇐⇒ [s] ∈ mK/FL(ϕ)(ψ) =⇒ [s] ∈ mK/FL(ϕ)(ρ)

⇐⇒ [s] ∈ mK/FL(ϕ)(ψ → ρ).

MIT Press Math7X9/2010/08/25:15:15 Page 196



Filtration and Decidability 197

Case 3 The case of 0 is easy. We leave the details as an exercise (Exercise 6.3).

Case 4 If [α]ψ ∈ FL(ϕ), we use the induction hypothesis for α and ψ. By Lemma

6.2(i), ψ ∈ FL(ϕ). By the induction hypothesis, (i) holds for ψ and (ii) holds for

[α]ψ. Using the latter fact, we have

s ∈ mK([α]ψ) =⇒ ∀t (([s], [t]) ∈ mK/FL(ϕ)(α) =⇒ t ∈ mK(ψ)) (6.2.1)

by clause (b) of (ii). Conversely,

∀t (([s], [t]) ∈ mK/FL(ϕ)(α) =⇒ t ∈ mK(ψ))

=⇒ ∀t ((s, t) ∈ mK(α) =⇒ t ∈ mK(ψ)) (6.2.2)

=⇒ s ∈ mK([α]ψ)

by clause (a) of (ii). Then

s ∈ mK([α]ψ)

⇐⇒ ∀t (([s], [t]) ∈ mK/FL(ϕ)(α) =⇒ t ∈ mK(ψ)) by (6.2.1) and (6.2.2)

⇐⇒ ∀t (([s], [t]) ∈ mK/FL(ϕ)(α) =⇒ [t] ∈ mK/FL(ϕ)(ψ)) by (i) for ψ

⇐⇒ [s] ∈ mK/FL(ϕ)([α]ψ).

This completes the proof of (i).

For (ii), there are five cases, depending on the form of α.

Case 1 For an atomic program a, part (a) of (ii) is immediate from the definition

of mK/FL(ϕ)(a). For part (b), if ([s], [t]) ∈ mK/FL(ϕ)(a), then by the definition

of mK/FL(ϕ)(a), there exist s′ ≡ s and t′ ≡ t such that (s′, t′) ∈ mK(a). If

s ∈ mK([a]ψ), then since s′ ≡ s and [a]ψ ∈ FL(ϕ), we have s′ ∈ mK([a]ψ)

as well, thus t′ ∈ mK(ψ) by the semantics of [a]. But ψ ∈ FL(ϕ) by Lemma 6.2(i),

and since t ≡ t′, we have t ∈ mK(ψ).

Case 2 For a test ρ?, by Lemma 6.2(ii) we have ρ ∈ FL(ϕ), thus (i) holds for ρ

by the induction hypothesis. Part (a) of (ii) is immediate from this. For (b),

([s], [s]) ∈ mK/FL(ϕ)(ρ?) and s ∈ mK([ρ?]ψ)

=⇒ [s] ∈ mK/FL(ϕ)(ρ) and s ∈ mK(ρ→ ψ)

=⇒ s ∈ mK(ρ) and s ∈ mK(ρ→ ψ)

=⇒ s ∈ mK(ψ).

MIT Press Math7X9/2010/08/25:15:15 Page 197



198 Chapter 6

Case 3 The case α = β ∪ γ is left as an exercise (Exercise 6.3).

Case 4 For the case α = β ; γ, to show (a), we have by Lemma 6.2(iv) that

[β][γ]ψ ∈ FL(ϕ) and [γ]ψ ∈ FL(ϕ), so (a) holds for β and γ; then

(s, t) ∈ mK(β ; γ)

=⇒ ∃u (s, u) ∈ mK(β) and (u, t) ∈ mK(γ)

=⇒ ∃u ([s], [u]) ∈ mK/FL(ϕ)(β) and ([u], [t]) ∈ mK/FL(ϕ)(γ)

=⇒ ([s], [t]) ∈ mK/FL(ϕ)(β ; γ).

To show (b), we have by the induction hypothesis that (b) holds for [β][γ]ψ and

[γ]ψ. Then

([s], [t]) ∈ mK/FL(ϕ)(β ; γ) and s ∈ mK([β ; γ]ψ)

=⇒ ∃u ([s], [u]) ∈ mK/FL(ϕ)(β), ([u], [t]) ∈ mK/FL(ϕ)(γ), and s ∈ mK([β][γ]ψ)

=⇒ ∃u ([u], [t]) ∈ mK/FL(ϕ)(γ) and u ∈ mK([γ]ψ) by (b) for [β][γ]ψ

=⇒ t ∈ mK(ψ) by (b) for [γ]ψ.

Case 5 Finally, consider the case α = β∗. By Lemma 6.2(v), [β][β∗]ψ ∈ FL(ϕ),

so we can assume that (ii) holds for [β][β∗]ψ. (The induction hypothesis holds

because β is a proper subexpression of β∗.) By part (a) of (ii), if (u, v) ∈ mK(β),

then ([u], [v]) ∈ mK/FL(ϕ)(β). Therefore if (s, t) ∈ mK(β
∗), then there exist n ≥ 0

and t0, . . . , tn such that s = t0, (ti, ti+1) ∈ mK(β) for 0 ≤ i < n, and tn = t.

This implies that ([ti], [ti+1]) ∈ mK/FL(ϕ)(β) for 0 ≤ i < n, therefore ([s], [t]) =

([t0], [tn]) ∈ mK/FL(ϕ)(β
∗). This establishes (a).

To show (b), suppose ([s], [t]) ∈ mK/FL(ϕ)(β
∗) and s ∈ mK([β

∗]ψ). Then

there exist t0, . . . , tn such that s = t0, t = tn, and ([ti], [ti+1]) ∈ mK/FL(ϕ)(β)

for 0 ≤ i < n. We have that t0 = s ∈ mK([β
∗]ψ) by assumption. Now suppose

ti ∈ mK([β
∗]ψ), i < n. Then ti ∈ mK([β][β

∗]ψ). By the induction hypothesis for

[β][β∗]ψ ∈ FL(ϕ), ti+1 ∈ mK([β
∗]ψ). Continuing for n steps, we get t = tn ∈

mK([β
∗]ψ), therefore t ∈ mK(ψ), as desired.

Using the filtration lemma, we can prove the small model theorem easily.

Theorem 6.5 (Small Model Theorem): Let ϕ be a satisfiable formula of

PDL. Then ϕ is satisfied in a Kripke frame with no more than 2|ϕ| states.

Proof If ϕ is satisfiable, then there is a Kripke frame K and state u ∈ K with

MIT Press Math7X9/2010/08/25:15:15 Page 198



Filtration and Decidability 199

u ∈ mK(ϕ). Let FL(ϕ) be the Fischer-Ladner closure of ϕ. By the filtration lemma

(Lemma 6.4), [u] ∈ mK/FL(ϕ)(ϕ). Moreover, K/FL(ϕ) has no more states than the

number of truth assignments to formulas in FL(ϕ), which by Lemma 6.3(i) is at

most 2|ϕ|.

It follows immediately that the satisfiability problem for PDL is decidable, since

there are only finitely many possible Kripke frames of size at most 2|ϕ| to check, and

there is a polynomial-time algorithm to check whether a given formula is satisfied

at a given state in a given Kripke frame (Exercise 6.4). We will give a more efficient

algorithm in Section 8.1.

6.3 Filtration over Nonstandard Models

In Chapter 7 we will prove the completeness of a deductive system for PDL. The

proof will also make use of the filtration lemma (Lemma 6.4), but in a somewhat

stronger form. We will show that it also holds for nonstandard Kripke frames (to

be defined directly) as well as the standard Kripke frames defined in Section 5.2.

The completeness theorem will be obtained by constructing a nonstandard Kripke

frame from terms, as we did for propositional and first-order logic in Sections 3.2

and 3.4, and then applying the filtration technique to get a finite standard Kripke

frame.

A nonstandard Kripke frame is any structure N = (N,mN) that is a Kripke

frame in the sense of Section 5.2 in every respect, except that mN(α∗) need not

be the reflexive transitive closure of mN(α), but only a reflexive, transitive binary

relation containing mN(α) satisfying the PDL axioms for ∗ (Axioms 5.5(vii) and

(viii)). In other words, we rescind the definition

mN(α
∗) def

=
⋃
n≥0

mN(α)n, (6.3.1)

and replace it with the weaker requirement that mN(α∗) be a reflexive, transitive

binary relation containing mN(α) such that

mN([α
∗]ϕ) = mN(ϕ ∧ [α ; α∗]ϕ) (6.3.2)

mN([α
∗]ϕ) = mN(ϕ ∧ [α∗](ϕ→ [α]ϕ)). (6.3.3)

Otherwise, N must satisfy all other requirements as given in Section 5.2. For

MIT Press Math7X9/2010/08/25:15:15 Page 199



200 Chapter 6

example, it must still satisfy the properties

mN(α ; β) = mN(α) ◦mN(β)

mN(α∗) ⊇
⋃
n≥0

mN(α)
n.

A nonstandard Kripke frame standard if it satisfies (6.3.1). According to our defi-

nition, all standard Kripke frames are nonstandard Kripke frames, since standard

Kripke frames satisfy (6.3.2) and (6.3.3), but not necessarily vice-versa (Exercise

7.3).

It is easily checked that all the axioms and rules of PDL (Axiom System 5.5)

are still sound over nonstandard Kripke frames. One consequence of this is that all

theorems and rules derived in this system are valid for nonstandard frames as well

as standard ones. In particular, we will use the results of Theorem 5.18 in the proof

of Lemma 6.6 below.

Let N be a nonstandard Kripke frame and let ϕ be a proposition. We can con-

struct the finite standard Kripke frame N/FL(ϕ) exactly as before, and N/FL(ϕ)

will have at most 2|ϕ| states. Note that in N/FL(ϕ), the semantics of α∗ is defined

in the standard way using (6.3.1).

The filtration lemma (Lemma 6.4) holds for nonstandard Kripke frames as well

as standard ones:

Lemma 6.6 (Filtration for Nonstandard Models): Let N be a nonstan-

dard Kripke frame and let u, v be states of N.

(i) For all ψ ∈ FL(ϕ), u ∈ mN(ψ) iff [u] ∈ mN/FL(ϕ)(ψ).

(ii) For all [α]ψ ∈ FL(ϕ),

(a)if (u, v) ∈ mN(α) then ([u], [v]) ∈ mN/FL(ϕ)(α);

(b)if ([u], [v]) ∈ mN/FL(ϕ)(α) and u ∈ mN([α]ψ), then v ∈ mN(ψ).

Proof The argument is exactly the same as in the previous version for standard

frames (Lemma 6.4) except for the cases involving ∗. Also, part (b) of (ii) for the

case α = β∗ uses only the fact that N/FL(ϕ) is standard, not that N is standard, so

this argument will hold for the nonstandard case as well. Thus the only extra work

we need to do for the nonstandard version is part (a) of (ii) for the case α = β∗.
The proof for standard Kripke frames K given in Lemma 6.4 depended on the

fact that mK(α
∗) was the reflexive transitive closure of mK(α). This does not hold in

nonstandard Kripke frames in general, so we must depend on the weaker induction

axiom.

MIT Press Math7X9/2010/08/25:15:15 Page 200



Filtration and Decidability 201

For the nonstandard Kripke frame N, suppose (u, v) ∈ mN(α
∗). We wish to

show that ([u], [v]) ∈ mN/FL(ϕ)(α
∗), or equivalently that v ∈ E, where

E
def
= {t ∈ N | ([u], [t]) ∈ mN/FL(ϕ)(α

∗)}.
There is a PDL formula ψE defining E in N; that is, E = mN(ψE). This is because

E is a union of equivalence classes defined by truth assignments to the elements of

FL(ϕ). The formula ψE is a disjunction of conjunctive formulas ψ[t], one for each

equivalence class [t] contained in E. The conjunction ψ[t] includes either ρ or ¬ρ for

all ρ ∈ FL(ϕ), depending on whether the truth assignment defining [t] takes value

1 or 0 on ρ, respectively.

Now u ∈ E since ([u], [u]) ∈ mN/FL(ϕ)(α
∗). Also, E is closed under the action

of mN(α); that is,

s ∈ E and (s, t) ∈ mN(α) =⇒ t ∈ E. (6.3.4)

To see this, observe that if s ∈ E and (s, t) ∈ mN(α), then ([s], [t]) ∈ mN/FL(ϕ)(α)

by the induction hypothesis (ii), and ([u], [s]) ∈ mN/FL(ϕ)(α
∗) by the definition of

E, therefore ([u], [t]) ∈ mN/FL(ϕ)(α
∗). By the definition of E, t ∈ E.

These facts do not immediately imply that v ∈ E, since mN(α∗) is not

necessarily the reflexive transitive closure of mN(α). However, since E = mN(ψE),

(6.3.4) is equivalent to

N � ψE → [α]ψE .

Using the loop invariance rule (LI) of Section 5.6, we get

N � ψE → [α∗]ψE .
By Theorem 5.18, (LI) is equivalent to the induction axiom (IND). (The proof

of equivalence was obtained deductively, not semantically, therefore is valid for

nonstandard models.) Now (u, v) ∈ mN(α∗) by assumption, and u ∈ E, therefore

v ∈ E. By definition of E, ([u], [v]) ∈ mN/FL(ϕ)(α
∗).

6.4 Bibliographical Notes

The filtration argument and the small model property for PDL are due to Fischer

and Ladner (1977, 1979). Nonstandard Kripke frames for PDL were studied by

Berman (1979, 1982), Parikh (1978a), Pratt (1979a, 1980a), and Kozen (1979c,b,

1980a,b, 1981b).

MIT Press Math7X9/2010/08/25:15:15 Page 201



202 Chapter 6

Exercises

6.1. Complete the proof of Lemma 6.1. For part (i), fill in the argument for the

cases of an atomic proposition p and the constant proposition 0. For (ii), fill in

the argument for the cases of an atomic program a and compound programs of the

form β ∪ γ and ϕ?.

6.2. Prove Lemma 6.2.

6.3. Complete the proof of Lemma 6.4 by filling in the arguments for part (i), case

3 and part (ii), case 3.

6.4. Give a polynomial time algorithm to check whether a given PDL formula

is satisfied at a given state in a given Kripke frame. Describe briefly the data

structures you would use to represent the formula and the Kripke frame. Specify

your algorithm at a high level and give a brief complexity analysis.

6.5. Prove that all finite nonstandard Kripke frames are standard.

MIT Press Math7X9/2010/08/25:15:15 Page 202



7 Deductive Completeness

In Section 5.5 we gave a formal deductive system (Axiom System 5.5) for deducing

properties of Kripke frames expressible in the language of PDL. For convenience,

we collect the axioms and rules of inference here. To the right of each axiom or rule

appears a reference to the proof of its soundness.

Axioms of PDL

(i) Axioms for propositional logic Section 3.2

(ii) [α](ϕ→ ψ) → ([α]ϕ→ [α]ψ) Theorem 5.6(iv)

(iii) [α](ϕ ∧ ψ) ↔ [α]ϕ ∧ [α]ψ Theorem 5.6(ii)

(iv) [α ∪ β]ϕ ↔ [α]ϕ ∧ [β]ϕ Theorem 5.8(ii)

(v) [α ; β]ϕ ↔ [α][β]ϕ Theorem 5.10(ii)

(vi) [ψ?]ϕ ↔ (ψ → ϕ) Theorem 5.11(ii)

(vii) ϕ ∧ [α][α∗]ϕ ↔ [α∗]ϕ Theorem 5.15(ix)

(viii) ϕ ∧ [α∗](ϕ→ [α]ϕ) → [α∗]ϕ Theorem 5.15(xi)

In PDL with converse −, we also include

(ix) ϕ → [α]<α−>ϕ Theorem 5.13(i)

(x) ϕ → [α−]<α>ϕ Theorem 5.13(ii)

Rules of Inference

(MP)
ϕ, ϕ→ ψ

ψ
Section 3.2

(GEN)
ϕ

[α]ϕ
Theorem 5.7(i).

We write � ϕ if the formula ϕ is provable in this deductive system. Recall from

Section 3.1 that a formula ϕ is consistent if � ¬ϕ, that is, if it is not the case

that � ¬ϕ; that a finite set Σ of formulas is consistent if its conjunction
∧
Σ is

consistent; and that an infinite set of formulas is consistent if every finite subset is

consistent.

7.1 Deductive Completeness

This deductive system is complete: all valid formulas are theorems. To prove this

fact, we will use techniques from Section 3.2 to construct a nonstandard Kripke

MIT Press Math7X9/2010/08/25:15:15 Page 203



204 Chapter 7

frame from maximal consistent sets of formulas. Then we will use the filtration

lemma for nonstandard models (Lemma 6.6) to collapse this nonstandard model to

a finite standard model.

Since our deductive system contains propositional logic as a subsystem, the

following lemma holds. The proof is similar to the proof of Lemma 3.10 for

propositional logic.

Lemma 7.1: Let Σ be a set of formulas of PDL. Then

(i) Σ is consistent iff either Σ ∪ {ϕ} is consistent or Σ ∪ {¬ϕ} is consistent;

(ii) if Σ is consistent, then Σ is contained in a maximal consistent set.

In addition, if Σ is a maximal consistent set of formulas, then

(iii) Σ contains all theorems of PDL;

(iv) if ϕ ∈ Σ and ϕ→ ψ ∈ Σ, then ψ ∈ Σ;

(v) ϕ ∨ ψ ∈ Σ iff ϕ ∈ Σ or ψ ∈ Σ;

(vi) ϕ ∧ ψ ∈ Σ iff ϕ ∈ Σ and ψ ∈ Σ;

(vii) ϕ ∈ Σ iff ¬ϕ 
∈ Σ;

(viii) 0 
∈ Σ.

Proof Exercise 7.1.

We also have an interesting lemma peculiar to PDL.

Lemma 7.2: Let Σ and Γ be maximal consistent sets of formulas and let α be a

program. The following two statements are equivalent:

(a) For all formulas ψ, if ψ ∈ Γ, then <α>ψ ∈ Σ.

(b) For all formulas ψ, if [α]ψ ∈ Σ, then ψ ∈ Γ.

Proof (a) =⇒ (b):

[α]ψ ∈ Σ =⇒ <α>¬ψ 
∈ Σ by Lemma 7.1(vii)

=⇒ ¬ψ 
∈ Γ by (a)

=⇒ ψ ∈ Γ by Lemma 7.1(vii).

MIT Press Math7X9/2010/08/25:15:15 Page 204



Deductive Completeness 205

(b) =⇒ (a):

ψ ∈ Γ =⇒ ¬ψ 
∈ Γ by Lemma 7.1(vii)

=⇒ [α]¬ψ 
∈ Σ by (b)

=⇒ <α>ψ ∈ Σ by Lemma 7.1(vii).

Now we construct a nonstandard Kripke frame N = (N, mN) as defined in

Section 6.3. The states N will be the maximal consistent sets of formulas. We will

write s, t, u, . . . for elements of N and call them states, but bear in mind that every

s ∈ N is a maximal consistent set of formulas, therefore it makes sense to write

ϕ ∈ s.
Formally, let N = (N, mN) be defined by:

N
def
= {maximal consistent sets of formulas of PDL}

mN(ϕ)
def
= {s | ϕ ∈ s}

mN(α)
def
= {(s, t) | for all ϕ, if ϕ ∈ t, then <α>ϕ ∈ s}
= {(s, t) | for all ϕ, if [α]ϕ ∈ s, then ϕ ∈ t}.

The two definitions of mN(α) are equivalent by Lemma 7.2. Note that the definitions

of mN(ϕ) and mN(α) apply to all propositions ϕ and programs α, not just the

atomic ones; thus the meaning of compound propositions and programs is not

defined inductively from the meaning of the atomic ones as usual. However,mN(α∗)
will satisfy the axioms of ∗, and all the other operators will behave in N as they

do in standard models; that is, as if they were defined inductively. We will have to

prove this in order to establish that N is a nonstandard Kripke frame according to

the definition of Section 6.3. We undertake that task now.

Lemma 7.3:

(i) mN(ϕ→ ψ) = (N −mN(ϕ)) ∪mN(ψ)

(ii) mN(0) = ∅

(iii) mN([α]ϕ) = N −mN(α) ◦ (N −mN(ϕ)).

Proof The equations (i) and (ii) follow from Lemma 7.1(iv) and (viii), respectively.

It follows that mN(¬ϕ) = N −mN(ϕ); this is also a consequence of Lemma 7.1(vii).

MIT Press Math7X9/2010/08/25:15:15 Page 205



206 Chapter 7

For (iii), it suffices to show that

mN(<α>ϕ) = mN(α) ◦mN(ϕ).

We prove both inclusions separately.

s ∈ mN(α) ◦mN(ϕ) ⇐⇒ ∃t (s, t) ∈ mN(α) and t ∈ mN(ϕ)

⇐⇒ ∃t (∀ψ ∈ t <α>ψ ∈ s) and ϕ ∈ t
=⇒ <α>ϕ ∈ s
⇐⇒ s ∈ mN(<α>ϕ).

Conversely, suppose s ∈ mN(<α>ϕ); that is, <α>ϕ ∈ s. We would like to

construct t such that (s, t) ∈ mN(α) and t ∈ mN(ϕ). We first show that the set

{ϕ} ∪ {ψ | [α]ψ ∈ s} (7.1.1)

is consistent. Let {ψ1, . . . , ψk} be an arbitrary finite subset of {ψ | [α]ψ ∈ s}. Then
<α>ϕ ∧ [α]ψ1 ∧ · · · ∧ [α]ψk ∈ s

by Lemma 7.1(vi), therefore

<α>(ϕ ∧ ψ1 ∧ · · · ∧ ψk) ∈ s

by Exercise 5.9(i) and Lemma 7.1(iii) and (iv). Since s is consistent, the formula

<α>(ϕ ∧ ψ1 ∧ · · · ∧ ψk)
is consistent, therefore so is the formula

ϕ ∧ ψ1 ∧ · · · ∧ ψk
by the rule (GEN). This says that the finite set {ϕ, ψ1, . . . , ψk} is consistent. Since
these elements were chosen arbitrarily from the set (7.1.1), that set is consistent.

As in the proof of Lemma 3.10, (7.1.1) extends to a maximal consistent set t,

which is a state of N. Then (s, t) ∈ mN(α) and t ∈ mN(ϕ) by the definition of

mN(α) and mN(ϕ), therefore s ∈ mN(α) ◦mN(ϕ).

Lemma 7.4:

(i) mN(α ∪ β) = mN(α) ∪mN(β)

(ii) mN(α ; β) = mN(α) ◦mN(β)

(iii) mN(ψ?) = {(s, s) | s ∈ mN(ψ)}.

MIT Press Math7X9/2010/08/25:15:15 Page 206



Deductive Completeness 207

In PDL with converse −,

(iv) mN(α
−) = mN(α)

−.

Proof We argue (ii) and (iii) explicitly and leave the others as exercises (Exercise

7.2).

For the reverse inclusion ⊇ of (ii),

(u, v) ∈ mN(α) ◦mN(β) ⇐⇒ ∃w (u,w) ∈ mN(α) and (w, v) ∈ mN(β)

⇐⇒ ∃w ∀ϕ ∈ v <β>ϕ ∈ w and ∀ψ ∈ w <α>ψ ∈ u
=⇒ ∀ϕ ∈ v <α><β>ϕ ∈ u
⇐⇒ ∀ϕ ∈ v <α ; β>ϕ ∈ u
⇐⇒ (u, v) ∈ mN(α ; β).

For the forward inclusion, suppose (u, v) ∈ mN(α ; β). We claim that the set

{ϕ | [α]ϕ ∈ u} ∪ {<β>ψ | ψ ∈ v} (7.1.2)

is consistent. Let

{ϕ1, . . . , ϕk} ⊆ {ϕ | [α]ϕ ∈ u}
{<β>ψ1, . . . , <β>ψm} ⊆ {<β>ψ | ψ ∈ v}
be arbitrarily chosen finite subsets, and let

ϕ = ϕ1 ∧ · · · ∧ ϕk,
ψ = ψ1 ∧ · · · ∧ ψm.
Then ψ ∈ v by Lemma 7.1(vi), and since (u, v) ∈ mN(α ; β), we have by the

definition of mN(α ; β) that <α ; β>ψ ∈ u. Also [α]ϕ ∈ u, since
[α]ϕ ↔ [α]ϕ1 ∧ · · · ∧ [α]ϕk

is a theorem of PDL, and the right-hand side is in u by Lemma 7.1(vi). It follows

that [α]ϕ ∧ <α><β>ψ ∈ u. By Exercise 5.9(i), <α>(ϕ ∧ <β>ψ) ∈ u, thus by (GEN),

ϕ ∧ <β>ψ is consistent. But

� ϕ ∧ <β>ψ → ϕ1 ∧ · · · ∧ ϕk ∧ <β>ψ1 ∧ · · · ∧ <β>ψm,

so the right-hand side of the implication is consistent. As this was the conjunction of

an arbitrary finite subset of (7.1.2), (7.1.2) is consistent, thus extends to a maximal

consistent set w. By the definition of mN(α) and mN(β), (u,w) ∈ mN(α) and

MIT Press Math7X9/2010/08/25:15:15 Page 207



208 Chapter 7

(w, v) ∈ mN(β), therefore (u, v) ∈ mN(α) ◦mN(β).

For (iii),

(s, t) ∈ mN(ψ?) ⇐⇒ ∀ϕ ∈ t <ψ?>ϕ ∈ s definition of mN(ψ?)

⇐⇒ ∀ϕ ∈ t ψ ∧ ϕ ∈ s Exercise 5.9(v)

⇐⇒ ∀ϕ ∈ t ψ ∈ s and ϕ ∈ s Lemma 7.1(vi)

⇐⇒ t ⊆ s and ψ ∈ s
⇐⇒ t = s and ψ ∈ s since t is maximal

⇐⇒ t = s and s ∈ mN(ψ).

Theorem 7.5: The structure N is a nonstandard Kripke frame according to the

definition of Section 6.3.

Proof By Lemmas 7.3 and 7.4, the operators →, 0, [ ], ;, ∪, −, and ? behave in

N as in standard models. It remains to argue that the properties

[α∗]ϕ ↔ ϕ ∧ [α ; α∗]ϕ
[α∗]ϕ ↔ ϕ ∧ [α∗](ϕ→ [α]ϕ)

of the ∗ operator hold at all states. But this is immediate, since both these properties

are theorems of PDL (Exercise 5.9), thus by Lemma 7.1(iii) they must be in every

maximal consistent set. This guarantees that N satisfies conditions (6.3.2) and

(6.3.3) in the definition of nonstandard Kripke frames.

The definition of the nonstandard Kripke frame N is independent of any

particular ϕ. It is a universal model in the sense that every consistent formula

is satisfied at some state of N.

Theorem 7.6 (Completeness of PDL): If � ϕ then � ϕ.

Proof Equivalently, we need to show that if ϕ is consistent, then it is satisfied in

a standard Kripke frame. If ϕ is consistent, then by Lemma 7.1(ii), it is contained

in a maximal consistent set u, which is a state of the nonstandard Kripke frame N

constructed above. By the filtration lemma for nonstandard models (Lemma 6.6), ϕ

is satisfied at the state [u] in the finite Kripke frame N/FL(ϕ), which is a standard

Kripke frame by definition.

MIT Press Math7X9/2010/08/25:15:15 Page 208



Deductive Completeness 209

7.2 Logical Consequences

In classical logics, a completeness theorem of the form of Theorem 7.6 can be

adapted to handle the relation of logical consequence ϕ |= ψ between formulas

because of the deduction theorem, which says

ϕ � ψ ⇐⇒ � ϕ→ ψ.

Unfortunately, the deduction theorem fails in PDL, as can be seen by taking

ψ = [a]p and ϕ = p. However, the following result allows Theorem 7.6, as well as

Algorithm 8.2 of the next section, to be extended to handle the logical consequence

relation:

Theorem 7.7: Let ϕ and ψ be any PDL formulas. Then

ϕ |= ψ ⇐⇒ |= [(a1 ∪ · · · ∪ an)∗]ϕ→ ψ,

where a1, . . . , an are all atomic programs appearing in ϕ or ψ. Allowing infinitary

conjunctions, if Σ is a set of formulas in which only finitely many atomic programs

appear, then

Σ |= ψ ⇐⇒ |=
∧
{[(a1 ∪ · · · ∪ an)∗]ϕ | ϕ ∈ Σ} → ψ,

where a1, . . . , an are all atomic programs appearing in Σ or ψ.

We leave the proof of Theorem 7.7 as an exercise (Exercise 7.4).

7.3 Bibliographical Notes

The axiomatization of PDL used here (Axiom System 5.5) was introduced by

Segerberg (1977). Completeness was shown independently by Gabbay (1977) and

Parikh (1978a). A short and easy-to-follow proof is given in Kozen and Parikh

(1981). Completeness is also treated in Pratt (1978, 1980a); Berman (1979);

Nishimura (1979). The completeness proof given here is from Kozen (1981a) and is

based on the approach of Berman (1979); Pratt (1980a).

Exercises

7.1. Prove Lemma 7.1. (Hint. Study the proof of Lemma 3.10.)

MIT Press Math7X9/2010/08/25:15:15 Page 209



210 Chapter 7

7.2. Supply the missing proofs of parts (i) and (iv) of Lemma 7.4.

7.3. Prove that PDL is compact over nonstandard models; that is, every finitely

satisfiable set of propositions is satisfiable in a nonstandard Kripke frame. Conclude

that there exists a nonstandard Kripke frame that is not standard.

7.4. Prove Theorem 7.7.

MIT Press Math7X9/2010/08/25:15:15 Page 210



8 Complexity of PDL

In this chapter we ask the question: how difficult is it to determine whether a given

formula ϕ of PDL is satisfiable? This is known as the satisfiability problem for PDL.

8.1 A Deterministic Exponential-Time Algorithm

The small model theorem (Theorem 6.5) gives a naive deterministic algorithm for

the satisfiability problem: construct all Kripke frames of at most 2|ϕ| states and

check whether ϕ is satisfied at any state in any of them. Although checking whether

a given formula is satisfied in a given state of a given Kripke frame can be done

quite efficiently (Exercise 6.4), the naive satisfiability algorithm is highly inefficient.

For one thing, the models constructed are of exponential size in the length of the

given formula; for another, there are 22
O(|ϕ|)

of them. Thus the naive satisfiability

algorithm takes double exponential time in the worst case.

Here we develop an algorithm that runs in deterministic single-exponential time.

One cannot expect to get a much more efficient algorithm than this due to a

corresponding lower bound (Corollary 8.6). In fact, the problem is deterministic

exponential-time complete (Theorem 8.5).

The algorithm attempts to construct the small model

M = (M,mM) = N/FL(ϕ)

described in the proof of Theorem 7.6 explicitly. HereN is the universal nonstandard

Kripke frame constructed in Section 7.1 and M is the small model obtained by

filtration with respect to ϕ. If ϕ is satisfiable, then it is consistent, by the soundness

of Axiom System 5.5; then ϕ will be satisfied at some state u of N, hence also at

the state [u] of M. If ϕ is not satisfiable, then the attempt to construct a model

will fail; in this case the algorithm will halt and report failure.

Our approach will be to start with a superset of the set of states of M, then

repeatedly delete states when we discover some inconsistency. This will give a

sequence of approximations

M0 ⊇ M1 ⊇ M2 ⊇ · · ·
converging to M.

We start with the set M0 of all subsets

u ⊆ FL(ϕ) ∪ {¬ψ | ψ ∈ FL(ϕ)}

MIT Press Math7X9/2010/08/25:15:15 Page 211



212 Chapter 8

such that for each ψ ∈ FL(ϕ), exactly one of ψ or ¬ψ is in u. (Alternatively, we

could take M0 to be the set of truth assignments to FL(ϕ).) By Lemma 7.1(vii),

each state s of N determines a unique element of M0, namely

us
def
= s ∩ (FL(ϕ) ∪ {¬ψ | ψ ∈ FL(ϕ)}).

Moreover, by the definition of the equivalence relation ≡ of Section 6.2,

[s] = [t] ⇐⇒ s ≡ t ⇐⇒ us = ut,

thus the map s �→ us is well-defined on ≡-equivalence classes and gives a one-to-one

embedding [s] �→ us : M → M0. We henceforth identify the state [s] of M with its

image us in M0 under this embedding. This allows us to regard M as a subset of

M0. However, there are some elements of M0 that do not correspond to any state

of M, and these are the ones to be deleted.

Now we are left with the question: how do we distinguish the sets us from those

not corresponding to any state of M? This question is answered in the following

lemma.

Lemma 8.1: Let u ∈M0. Then u ∈M if and only if u is consistent.

Proof By Lemma 6.6(i), every us is consistent, because it has a model: it is satisfied

at the state [s] of M.

Conversely, if u ∈ M0 is consistent, then by Lemma 7.1(ii) it extends to a

maximal consistent set û, which is a state of the nonstandard Kripke frame N; and

by Lemma 6.6(i), [û] is a state of M satisfying u.

We now construct a sequence of structures Mi = (Mi,mMi), i ≥ 0, approx-

imating M. The domains Mi of these structures will be defined below and will

satisfy

M0 ⊇ M1 ⊇ M2 ⊇ · · ·
The interpretations of the atomic formulas and programs in Mi will be defined in

the same way for all i:

mMi(p)
def
= {u ∈Mi | p ∈ u} (8.1.1)

mMi(a)
def
= {(u, v) ∈M2

i | for all [a]ψ ∈ FL(ϕ), if [a]ψ ∈ u, then ψ ∈ v}.(8.1.2)
The map mMi extends inductively in the usual way to compound programs and

propositions to determine the frame Mi.

MIT Press Math7X9/2010/08/25:15:15 Page 212



Complexity of PDL 213

Here is the algorithm for constructing the domains Mi of the frames Mi.

Algorithm 8.2:

Step 1 Construct M0.

Step 2 For each u ∈ M0, check whether u respects Axioms 5.5(i) and (iv)–(vii),

all of which can be checked locally. For example, to check Axiom 5.5(iv), which says

[α ∪ β]ψ ↔ [α]ψ ∧ [β]ψ,

check for any formula of the form [α ∪ β]ψ ∈ FL(ϕ) that [α ∪ β]ψ ∈ u if and only

if both [α]ψ ∈ u and [β]ψ ∈ u. Let M1 be the set of all u ∈M0 passing this test.

The model M1 is defined by (8.1.1) and (8.1.2) above.

Step 3 Repeat the following for i = 1, 2, . . . until no more states are deleted. Find

a formula [α]ψ ∈ FL(ϕ) and a state u ∈Mi violating the property

(∀v ((u, v) ∈ mMi(α) =⇒ ψ ∈ v)) =⇒ [α]ψ ∈ u; (8.1.3)

that is, such that ¬[α]ψ ∈ u, but for no v such that (u, v) ∈ mMi(α) is it the case

that ¬ψ ∈ v. Pick such an [α]ψ and u for which |α| is minimum. Delete u fromMi

to get Mi+1.

Step 3 can be justified intuitively as follows. To say that u violates the condition

(8.1.3) says that u would like to go under α to some state satisfying ¬ψ, since u
contains the formula ¬[α]ψ, which is equivalent to <α>¬ψ; but the left-hand side

of (8.1.3) says that none of the states it currently goes to under α want to satisfy

¬ψ. This is evidence that u might not be in M, since in M every state w satisfies

every ψ ∈ w by Lemma 6.6(i). But u may violate (8.1.3) not because u 
∈ M, but

because there is some other state v 
∈M whose presence affects the truth of some

subformula of [α]ψ. This situation can be avoided by choosing |α| minimum.

The algorithm must terminate, since there are only finitely many states initially,

and at least one state must be deleted in each iteration of step 3 in order to continue.

The correctness of this algorithm will follow from the following lemma. Note

the similarity of this lemma to Lemmas 6.4 and 6.6.

Lemma 8.3: Let i ≥ 0, and assume that M ⊆ Mi. Let ρ ∈ FL(ϕ) be such that

every [α]ψ ∈ FL(ρ) and u ∈Mi satisfy (8.1.3).

(i) For all ψ ∈ FL(ρ) and u ∈Mi, ψ ∈ u iff u ∈ mMi(ψ).

(ii) For all [α]ψ ∈ FL(ρ) and u, v ∈Mi,

MIT Press Math7X9/2010/08/25:15:15 Page 213



214 Chapter 8

(a)if (u, v) ∈ mM(α), then (u, v) ∈ mMi(α);

(b)if (u, v) ∈ mMi(α) and [α]ψ ∈ u, then ψ ∈ v.

Proof The proof is by simultaneous induction on the subterm relation.

(i) The basis for atomic p is by definition as given in (8.1.1). The induction

steps for → and 0 are easy and are left as exercises (Exercise 8.1). For the case

[α]ψ,

[α]ψ ∈ u
=⇒ ∀v (u, v) ∈ mMi(α) =⇒ ψ ∈ v induction hypothesis (ii)(b)

=⇒ ∀v (u, v) ∈ mMi(α) =⇒ v ∈ mMi(ψ) induction hypothesis (i)

=⇒ u ∈ mMi([α]ψ).

Conversely,

u ∈ mMi([α]ψ)

=⇒ ∀v (u, v) ∈ mMi(α) =⇒ v ∈ mMi(ψ)

=⇒ ∀v (u, v) ∈ mMi(α) =⇒ ψ ∈ v induction hypothesis (i)

=⇒ [α]ψ ∈ u by (8.1.3).

(ii)(a) For the basis, let a be an atomic program.

(u, v) ∈ mM(a) =⇒ ∀ψ ([a]ψ ∈ FL(ϕ) and [a]ψ ∈ u) =⇒ ψ ∈ v
=⇒ (u, v) ∈ mMi(a) by (8.1.2).

The case α ∪ β is left as an exercise (Exercise 8.1).

For the case α ; β,

(u, v) ∈ mM(α ; β) ⇐⇒ ∃w ∈M (u,w) ∈ mM(α) and (w, v) ∈ mM(β)

=⇒ ∃w ∈Mi (u,w) ∈ mMi(α) and (w, v) ∈ mMi(β)

⇐⇒ (u, v) ∈ mMi(α ; β).

The second step uses the induction hypothesis and the fact that M ⊆ Mi. The

induction hypothesis holds for α and β because [α][β]ψ ∈ FL(ρ) and [β]ψ ∈ FL(ρ)

by Lemma 6.2(iv).

The case α∗ follows from this case by iteration, and is left as an exercise

(Exercise 8.1).

MIT Press Math7X9/2010/08/25:15:15 Page 214



Complexity of PDL 215

For the case ψ?,

(u, v) ∈ mM(ψ?) ⇐⇒ u = v and u ∈ mM(ψ)

=⇒ u = v and ψ ∈ u Lemma 6.6(i)

⇐⇒ u = v and u ∈ mMi(ψ) induction hypothesis (i)

⇐⇒ (u, v) ∈ mMi(ψ?).

(ii)(b) For the basis, let a be an atomic program. Then

(u, v) ∈ mMi(a) and [a]ψ ∈ u =⇒ ψ ∈ v by (8.1.2).

The cases α ∪ β and α ; β are left as exercises (Exercise 8.1).

For the case α∗, suppose (u, v) ∈ mMi(α
∗) and [α∗]ψ ∈ u. Then there

exist u0, . . . , un, n ≥ 0, such that u = u0, v = un, and (ui, ui+1) ∈ mMi(α),

0 ≤ i ≤ n− 1. Also [α][α∗]ψ ∈ u0, otherwise u0 would have been deleted in step

2. By the induction hypothesis (ii)(b), [α∗]ψ ∈ u1. Continuing in this fashion, we

can conclude after n steps of this argument that [α∗]ψ ∈ un = v. Then ψ ∈ v,

otherwise v would have been deleted in step 2.

Finally, for the case ψ?, if (u, v) ∈ mMi(ψ?) and [ψ?]σ ∈ u, then u = v and

u ∈ mMi(ψ). By the induction hypothesis (i), ψ ∈ u. Thus σ ∈ u, otherwise u would

have been deleted in step 2.

Note that Lemma 8.3(ii)(a) actually holds of [α]ψ ∈ FL(ϕ) even if there exists

u ∈ Mi violating (8.1.3), provided |α| is minimum. This is because the condition

regarding (8.1.3) in the statement of the lemma holds on strict subformulas of α,

and that is all that is needed in the inductive proof of (ii)(a) for α. This says that

no u ∈M is ever deleted in step 3, since for u ∈M ,

∀v ∈Mi ((u, v) ∈ mMi(α) =⇒ ψ ∈ v)
=⇒ ∀v ∈M ((u, v) ∈ mM(α) =⇒ ψ ∈ v) Lemma 8.3(ii)(a)

⇐⇒ ∀v ∈M ((u, v) ∈ mM(α) =⇒ v ∈ mM(ψ)) Lemma 6.6(i)

⇐⇒ u ∈ mM([α]ψ) definition of mM

=⇒ [α]ψ ∈ u Lemma 6.6(i).

Since every u ∈ M passes the test of step 2 of the algorithm, and since no u ∈ M
is ever deleted in step 3, we have M ⊆ Mi for all i ≥ 0. Moreover, when the

algorithm terminates with some model Mn, by Lemma 8.3(i), every u ∈ Mn is

satisfiable, since it is satisfied by the state u in the model Mn; thus Mn = M. We

can now test the satisfiability of ϕ by checking whether ϕ ∈ u for some u ∈Mn.

MIT Press Math7X9/2010/08/25:15:15 Page 215



216 Chapter 8

Algorithm 8.2 can be programmed to run in exponential time without much

difficulty. The efficiency can be further improved by observing that the minimal α

in the [α]ψ violating (8.1.3) in step 3 must be either atomic or of the form β∗
because of the preprocessing in step 2. This follows easily from Lemma 8.3. We

have shown:

Theorem 8.4: There is an exponential-time algorithm for deciding whether a

given formula of PDL is satisfiable.

As previously noted, Theorem 7.7 allows this algorithm to be adapted to test

whether one formula is a logical consequence of another.

8.2 A Lower Bound

In the previous section we gave an exponential-time algorithm for deciding satisfi-

ability in PDL. Here we establish the corresponding lower bound.

Theorem 8.5: The satisfiability problem for PDL is EXPTIME -complete.

Proof In light of Theorem 8.4, we need only show that PDL is EXPTIME -hard (see

Section 2.3). We do this by constructing a formula of PDL whose models encode the

computation of a given linear-space-bounded one-tape alternating Turing machine

M on a given input x of length n over M ’s input alphabet. We show how to

define a formula AcceptsM,x involving the single atomic program Next, atomic

propositions Symbol
a
i and State

q
i for each symbol a in M ’s tape alphabet, q a

state of M ’s finite control, and 0 ≤ i ≤ n, and an atomic proposition Accept.

The formula AcceptsM,x will have the property that any satisfying Kripke frame

encodes an accepting computation of M on x. In any such Kripke frame, states

u will represent configurations of M occurring in the computation tree of M on

input x; the truth values of Symbolai and State
q
i at state u will give the tape

contents, current state, and tape head position in the configuration corresponding

to u. The truth value of the atomic proposition Accept will be 1 at u iff the

computation beginning in state u is an accepting computation according to the

rules of alternating Turing machine acceptance (Section 2.1).

Let Γ be M ’s tape alphabet and Q the set of states. We assume without loss

of generality that the machine is 2O(n)-time bounded. This can be enforced by

requiring M to count each step it takes on a separate track and to shut off after

MIT Press Math7X9/2010/08/25:15:15 Page 216



Complexity of PDL 217

cn steps, where cn bounds the number of possible configurations of M on inputs

of length n. There are at most Γn+2 ·Q · (n+ 2) such configurations, and c can be

chosen large enough that cn bounds this number.

We also assume without loss of generality that the input is enclosed in left and

right endmarkers � and �, respectively, that these symbols are never overwritten,

and that M is constrained never to move to the left of � nor to the right of �.
Now we encode configurations as follows. The atomic proposition Symbol

a
i

says, “Tape cell i currently has symbol a written on it.” The atomic proposition

State
q
i says, “The tape head is currently scanning tape cell i in state q.” We also

allow State
�
i and State

r
i , where �, r 
∈ Q are special annotations used to indicate

that the tape head is currently scanning a cell somewhere to the left or right,

respectively, of cell i.

• “Exactly one symbol occupies every tape cell.”∧
0≤i≤n+1

∨
a∈Γ

(Symbolai ∧
∧
b∈Γ
b
=a

¬Symbolbi )

• “The symbols occupying the first and last tape cells are the endmarkers � and

�, respectively.”
Symbol



0 ∧ Symbol

�
n+1

• “The machine is in exactly one state scanning exactly one tape cell.”∨
0≤i≤n+1

∨
q∈Q

State
q
i

∧
∧

0≤i≤n+1

∨
q∈Q∪{�,r}

(Stateqi ∧
∧

p∈Q∪{�,r}
p
=q

¬Statepi )

∧
∧

0≤i≤n

∧
q∈Q∪{�}

(Stateqi → State
�
i+1)

∧
∧

1≤i≤n+1

∧
q∈Q∪{r}

(Stateqi → State
r
i−1).

Let Config be the conjunction of these three formulas. Then u � Config iff u

represents a configuration of M on an input of length n.

Now we can write down formulas that say that M moves correctly. Here we use

the atomic program Next to represent the binary next-configuration relation. For

each (state, tape symbol) pair (q, a), let Δ(q, a) be the set of all (state, tape symbol,

direction) triples describing a possible action M can take when scanning symbol

MIT Press Math7X9/2010/08/25:15:15 Page 217



218 Chapter 8

a in state q. For example, if (p, b,−1) ∈ Δ(q, a), this means that when scanning a

tape cell containing a in state q, M can print b on that tape cell, move its head one

cell to the left, and enter state p.

• “If the tape head is not currently scanning cell i, then the symbol written on cell

i does not change.”∧
0≤i≤n+1

((State�i ∨ State
r
i )→

∧
a∈Γ

(Symbolai → [Next]Symbol
a
i ))

• “The machine moves according to its transition relation.”∧
0≤i≤n+1

∧
a∈Γ
q∈Q

((Symbolai ∧ State
q
i )→

(
∧

(p,b,d)∈Δ(q,a)

<Next>(Symbolbi ∧ State
p
i+d)) (8.2.1)

∧ [Next](
∨

(p,b,d)∈Δ(q,a)

(Symbolbi ∧ State
p
i+d))) (8.2.2)

Note that when Δ(q, a) = ∅, clause (8.2.1) reduces to 1 and clause (8.2.2) reduces

to [Next]0. This figures into the definition of acceptance below.

Let Move be the conjunction of these two formulas. Then u � Move if the

configurations represented by states v such that (u, v) is in the relation denoted by

Next are exactly the configurations that follow from the configuration represented

by u in one step according to the transition relation of M .

We can describe the start configuration of the machine M on input x:

• “The machine is in its start state s with its tape head scanning the left endmarker,

and x = x1 · · ·xn is written on the tape.”

State
s
0 ∧

∧
1≤i≤n

Symbol
xi

i

Let this formula be called Start.

Finally, we can describe the condition of acceptance for alternating Turing

machines. Let U ⊆ Q be the set of universal states of M and let E ⊆ Q be

the set of existential states of M . Then Q = U ∪ E and U ∩ E = ∅.

• “If q is an existential state, then q leads to acceptance if at least one of its

MIT Press Math7X9/2010/08/25:15:15 Page 218



Complexity of PDL 219

successor configurations leads to acceptance.”∧
0≤i≤n+1

∧
q∈E

(Stateqi → (Accept↔ <Next>Accept)) (8.2.3)

• “If q is a universal state, then q leads to acceptance if all its successor configura-

tions lead to acceptance.”∧
0≤i≤n+1

∧
q∈U

(Stateqi → (Accept↔ [Next]Accept)) (8.2.4)

Let Acceptance denote the conjunction of these two formulas.

Recall from Section 2.1 that an accept configuration of M is a universal con-

figuration with no next configuration and a reject configuration is an existential

configuration with no next configuration. As observed above, when this occurs,

clauses (8.2.1) and (8.2.2) reduce to 1 and [Next]0, respectively. In conjunction

with Acceptance, this implies that Accept is always true at accept configura-

tions and always false at reject configurations.

Now let AcceptsM,x be the formula

Start ∧ [Next
∗
](Config ∧Move ∧Acceptance) ∧Accept.

Then M accepts x if and only if AcceptsM,x is satisfiable.

We have given an efficient reduction from the membership problem for linear-

space alternating Turing machines to the problem of PDL satisfiability. For EX-

PTIME -hardness, we need to give a reduction from the membership problem for

polynomial-space alternating Turing machines, but essentially the same construc-

tion works. The only differences are that instead of the bound n we use the bound

nk for some fixed constant k in the definition of the formulas, and the formula

Start is modified to pad the input out to length nk with blanks:

State
s
0 ∧

∧
1≤i≤n

Symbol
xi

i ∧
∧

n+1≤i≤nk

Symbol
��
i .

Since the membership problem for alternating polynomial-space machines is EXP-

TIME -hard (Chandra et al. (1981)), so is the satisfiability problem for PDL.

Corollary 8.6: There is a constant c > 1 such that the satisfiability problem

for PDL is not solvable in deterministic time cn/ log n, where n is the size of the

input formula.

Proof An analysis of the construction of AcceptsM,x in the proof of Theorem

MIT Press Math7X9/2010/08/25:15:15 Page 219



220 Chapter 8

8.5 reveals that its length is bounded above by an logn for some constant a, where

n = |x|, and the time to construct AcceptsM,x from x is at most polynomial in n.

The number of symbols in Γ and states in Q are constants and contribute at most

a constant factor to the length of the formula.

Now we can use the fact that the complexity class DTIME (2n) contains a set

A not contained in any complexity class DTIME (dn) for any d < 2 (see Hopcroft

and Ullman (1979)). Since A ∈ DTIME (2n), it is accepted by an alternating linear-

space Turing machine M (Chandra et al. (1981); see Section 2.1). We can decide

membership in A by converting a given input x to the formula AcceptsM,x using

the reduction of Theorem 8.5, then deciding whether AcceptsM,x is satisfiable.

Since |AcceptsM,x| ≤ an logn, if the satisfiability problem is in DTIME (cn/ logn)

for some constant c, then we can decide membership in A in time

nk + can logn/ log(an logn);

the term nk is the time required to convert x to AcceptsM,x, and the remaining

term is the time required to decide the satisfiability of AcceptsM,x. But, assuming

a ≥ 1,

nk + can logn/ log(an logn) ≤ nk + can logn/ logn

≤ nk + can,

which for c < 21/a is asymptotically less than 2n. This contradicts the choice of

A.

It is interesting to compare the complexity of satisfiability in PDL with the

complexity of satisfiability in propositional logic. In the latter, satisfiability is

NP -complete; but at present it is not known whether the two complexity classes

EXPTIME and NP differ. Thus, as far as current knowledge goes, the satisfiability

problem is no easier in the worst case for propositional logic than for its far richer

superset PDL.

8.3 Compactness and Logical Consequences

As we have seen, current knowledge does not permit a significant difference to

be observed between the complexity of satisfiability in propositional logic and in

PDL. However, there is one easily verified and important behavioral difference:

propositional logic is compact , whereas PDL is not.

Compactness has significant implications regarding the relation of logical con-

MIT Press Math7X9/2010/08/25:15:15 Page 220



Complexity of PDL 221

sequence. If a propositional formula ϕ is a consequence of a set Γ of propositional

formulas, then it is already a consequence of some finite subset of Γ; but this is not

true in PDL.

Recall that we write Γ � ϕ and say that ϕ is a logical consequence of Γ if

ϕ satisfied in any state of any Kripke frame K all of whose states satisfy all the

formulas of Γ. That is, if K � Γ, then K � ϕ.
An alternative intepretation of logical consequence, not equivalent to the above,

is that in any Kripke frame, the formula ϕ holds in any state satisfying all formulas

in Γ. Allowing infinite conjunctions, we might write this as �
∧
Γ→ ϕ. This is not

the same as Γ � ϕ, since �
∧
Γ→ ϕ implies Γ � ϕ, but not necessarily vice versa. A

counterexample is provided by Γ = {p} and ϕ = [a]p. However, if Γ contains only

finitely many atomic programs, we can reduce the problem Γ � ϕ to the problem

�
∧
Γ′ → ϕ for a related Γ′, as shown in Theorem 7.7.

Under either interpretation, compactness fails:

Theorem 8.7: There is an infinite set of formulas Γ and a formula ϕ such that

�
∧
Γ → ϕ (hence Γ � ϕ), but for no proper subset Γ′ ⊆ Γ is it the case that

Γ′ � ϕ (hence neither is it the case that �
∧
Γ′ → ϕ).

Proof Take

ϕ
def
= p→ [a∗]q

Γ
def
= {p→ q, p→ [a]q, p→ [aa]q, . . . , p→ [ai]q, . . .}.

Then �
∧
Γ→ ϕ. But for Γ′ � Γ, say with p→ [ai]q ∈ Γ−Γ′, consider a structure

with states ω, atomic program a interpreted as the successor relation, p true only

at 0, and q false only at i.

� � � � � � � �� � � � � � � � · · ·
0 1 2 · · · i · · ·
p ¬p ¬p ¬p ¬p ¬p ¬p ¬p
q q q q q ¬q q q

Then all formulas of Γ′ are true in all states of this model, but ϕ is false in state

0.

As shown in Theorem 7.7, logical consequences Γ � ϕ for finite Γ are no more

difficult to decide than validity of single formulas. But what if Γ is infinite? Here

compactness is the key factor. If Γ is an r.e. set and the logic is compact, then the

consequence problem is r.e.: to check whether Γ � ϕ, the finite subsets of Γ can be

MIT Press Math7X9/2010/08/25:15:15 Page 221



222 Chapter 8

effectively enumerated, and checking Γ � ϕ for finite Γ is a decidable problem.

Since compactness fails in PDL, this observation does us no good, even when

Γ is known to be recursively enumerable. However, the following result shows that

the situation is much worse than we might expect: even if Γ is taken to be the

set of substitution instances of a single formula of PDL, the consequence problem

becomes very highly undecidable. This is a rather striking manifestation of PDL’s

lack of compactness.

Let ϕ be a given formula. The set Sϕ of substitution instances of ϕ is the set of all

formulas obtained by substituting a formula for each atomic proposition appearing

in ϕ.

Theorem 8.8: The problem of deciding whether Sϕ � ψ is Π1
1-complete. The

problem is Π1
1-hard even for a particular fixed ϕ.

Proof For the upper bound, it suffices to consider only countable models. The

problem is to decide whether for all countable Kripke frames M, if M � Sϕ,

then M � ψ. The Kripke frame M is first selected with universal second-order

quantification, which determines the interpretation of the atomic program and

proposition symbols. Once M is selected, the check that M � Sϕ =⇒ M � ψ

is first-order: either M, u � ψ at all states u of M, or there exists a substitution

instance ϕ′ of ϕ and a state u of M such that M, u � ¬ϕ′.
For the lower bound, we encode (the complement of) the tiling problem of

Proposition 2.22. The fixed scheme ϕ is used to ensure that any model consists

essentially of an ω × ω grid. Let North and East be atomic programs and p an

atomic proposition. Take ϕ to be the scheme

[(North ∪ East)∗](<North>1 ∧ <East>1

∧ (<North>p→ [North]p) ∧ (<East>p→ [East]p) (8.3.1)

∧ (<North;East>p→ [East;North]p)).

The first line of (8.3.1) says that from any reachable point, one can always continue

the grid in either direction. The second line says that any two states reachable

from any state under North are indistinguishable by any PDL formula (note that

any formula can be substituted for p), and similary for East. The third line is a

commutativity condition; it says that any state reachable by going North and then

East is indistinguishable from any state reachable by going East and then North.

It follows by induction that if σ and τ are any seqs over atomic programs North,

East such that σ and τ contain the same number of occurrences of each atomic

MIT Press Math7X9/2010/08/25:15:15 Page 222



Complexity of PDL 223

program—that is, if σ and τ are permutations of each other—then any model of all

substitution instances of (8.3.1) must also satisfy all substitution instances of the

formula

[(North ∪East)∗](<σ>p→ <τ>p)

(Exercise 8.3).

Now we will construct the formula ψ, which will be used in two ways:

(i) to describe the legal tilings of the grid with some given set T of tile types, and

(ii) to say that red occurs only finitely often.

For (i), we mimic the construction of Theorem 3.60. We use atomic propositions

Northc,Southc,Eastc,Westc for each color c. For example, the proposition

Northblue says that the north edge of the tile is colored blue, and similarly for

the other colors and directions. As in Theorem 3.60, for each tile type A ∈ T , one
can construct a formula TileA from these propositions that is true at a state iff

the truth values of Northc,Southc,Eastc,Westc at that state describe a tile of

type A. For example, the formula corresponding to the example given in Theorem

3.60 would be

TileA
def⇐⇒ Northblue ∧

∧
c∈C
c 
=blue

¬Northc

∧ Southblack ∧
∧
c∈C

c 
=black

¬Southc

∧ Eastred ∧
∧
c∈C
c 
=red

¬Eastc

∧ Westgreen ∧
∧
c∈C

c 
=green

¬Westc.

MIT Press Math7X9/2010/08/25:15:15 Page 223



224 Chapter 8

Let ψT be the conjunction

[(North ∪ East)∗]
∨
A∈T

TileA

∧ [East
∗
]Southblue

∧ [North
∗
]Westblue

∧ [(North ∪ East)∗]
∧
c∈C

(Eastc → <East>Westc)

∧ [(North ∪ East)∗]
∧
c∈C

(Northc → <North>Southc).

These correspond to the sentences (3.4.3)–(3.4.7) of Theorem 3.60. As in that

theorem, any model of ψT must be a legal tiling.

Finally, we give a formula that says that red occurs only finitely often in the

tiling:

red
def⇐⇒ Northred ∨ Southred ∨Eastred ∨Westred

ψred
def⇐⇒ <North

∗
>[(North ∪ East)∗]¬red

∧ <East
∗
>[(North ∪East)∗]¬red.

Then all valid tilings use only finitely many tiles with a red edge iff

Sϕ � ψT → ψred.

The proof of Theorem 8.8 can be refined so as to yield similar results for more

restricted versions of PDL discussed in Chapter 10. Specifically, the result holds for

SDPDL of Section 10.1 and PDL(0) of Section 10.2. Of course, since the result is

negative in nature, it holds for any extensions of these logics.

8.4 Bibliographical Notes

The exponential-time lower bound for PDL was established by Fischer and Ladner

(1977, 1979) by showing how PDL formulas can encode computations of linear-

space-bounded alternating Turing machines.

Deterministic exponential-time algorithms were first given in Pratt (1978,

1979b, 1980b). The algorithm given here is essentially from Pratt (1979b). The

algorithm has been implemented by Pratt and reportedly works well on small for-

mulas.

MIT Press Math7X9/2010/08/25:15:15 Page 224



Complexity of PDL 225

Theorem 8.8 showing that the problem of deciding whether Γ |= ψ, where Γ is

a fixed r.e. set of PDL formulas, is Π1
1-complete is due to Meyer et al. (1981).

Exercises

8.1. Supply the missing arguments in the proof of Lemma 8.3: part (i) for the cases

→ and 0, part (ii)(a) for the cases ∪ and ∗, and part (ii)(b) for the cases ∪ and ;.

8.2. Show how to encode the acceptance problem for linear-space alternating Turing

machines in the validity problem for PDL. In other words, given such a machine

M and an input x, show how to construct a PDL formula that is valid (true at all

states in all Kripke frames) iff M accepts x. (Hint. Use the machinery constructed

in Section 8.2.)

8.3. In the proof of Theorem 8.8, argue that if σ and τ are any seqs over atomic

programs North, East such that σ and τ contain the same number of occurrences

of each atomic program—that is, if σ and τ are permutations of each other—then

any model of all substitution instances of (8.3.1) must also satisfy all substitution

instances of the formula

[(North ∪East)∗](<σ>p→ <τ>p).

MIT Press Math7X9/2010/08/25:15:15 Page 225



226 Chapter 8

MIT Press Math7X9/2010/08/25:15:15 Page 226



9 Nonregular PDL

In this chapter we enrich the class of regular programs in PDL by introducing

programs whose control structure requires more than a finite automaton. For

example, the class of context-free programs requires a pushdown automaton (PDA),

and moving up from regular to context-free programs is really going from iterative

programs to ones with parameterless recursive procedures. Several questions arise

when enriching the class of programs of PDL, such as whether the expressive power

of the logic grows, and if so whether the resulting logics are still decidable. We

first show that any nonregular program increases PDL’s expressive power and that

the validity problem for PDL with context-free programs is undecidable. The bulk

of the chapter is then devoted to the difficult problem of trying to characterize

the borderline between decidable and undecidable extensions. On the one hand,

validity for PDL with the addition of even a single extremely simple nonregular

program is shown to be already Π1
1-complete; but on the other hand, when we

add another equally simple program, the problem remains decidable. Besides these

results, which pertain to very specific extensions, we discuss some broad decidability

results that cover many languages, including some that are not even context-free.

Since no similarly general undecidability results are known, we also address the

weaker issue of whether nonregular extensions admit the finite model property and

present a negative result that covers many cases.

9.1 Context-Free Programs

Consider the following self-explanatory program:

while p do a ; now do b the same number of times (9.1.1)

This program is meant to represent the following set of computation sequences:

{(p? ; a)i ; ¬p? ; bi | i ≥ 0}.
Viewed as a language over the alphabet {a, b, p,¬p}, this set is not regular, thus

cannot be programmed in PDL. However, it can be represented by the following

parameterless recursive procedure:

MIT Press Math7X9/2010/08/25:15:15 Page 227



228 Chapter 9

proc V {
if p then { a ; call V ; b }
else return

}
The set of computation sequences of this program is captured by the context-free

grammar

V → ¬p? | p?aV b.
We are thus led to the idea of allowing context-free programs inside the boxes

and diamonds of PDL. From a pragmatic point of view, this amounts to extending

the logic with the ability to reason about parameterless recursive procedures. The

particular representation of the context-free programs is unimportant; we can use

pushdown automata, context-free grammars, recursive procedures, or any other

formalism that can be effectively translated into these.

In the rest of the chapter, a number of specific programs will be of interest, and

we employ special abbreviations for them. For example, we define:

aΔbaΔ
def
= {aibai | i ≥ 0}

aΔbΔ
def
= {aibi | i ≥ 0}

bΔaΔ
def
= {biai | i ≥ 0}.

Note that aΔbΔ is really just a nondeterministic version of the program (9.1.1) in

which there is simply no p to control the iteration. In fact, (9.1.1) could have been

written in this notation as (p?a)Δ¬p?bΔ.1 In programming terms, we can compare

the regular program (ab)∗ with the nonregular one aΔbΔ by observing that if a is

“purchase a loaf of bread” and b is “pay $1.00,” then the former program captures

the process of paying for each loaf when purchased, while the latter one captures

the process of paying for them all at the end of the month.

9.2 Basic Results

We first show that enriching PDL with even a single arbitrary nonregular program

increases expressive power.

1 It is noteworthy that the results of this chapter do not depend on nondeterminism. For example,
the negative Theorem 9.6 holds for the deterministic version (9.1.1) too. Also, most of the results
in the chapter involve nonregular programs over atomic programs only, but can be generalized to
allow tests as well.

MIT Press Math7X9/2010/08/25:15:15 Page 228



Nonregular PDL 229

Definition 9.1: If L is any language over atomic programs and tests, then

PDL + L is defined exactly as PDL, but with the additional syntax rule stating

that for any formula ϕ, the expression <L>ϕ is a new formula. The semantics of

PDL+ L is like that of PDL with the addition of the clause

mK(L)
def
=

⋃
β∈L

mK(β).

Note that PDL + L does not allow L to be used as a formation rule for new

programs or to be combined with other programs. It is added to the programming

language as a single new stand-alone program only.

Definition 9.2: If PDL1 and PDL2 are two extensions of PDL, we say that PDL1
is as expressive as PDL2 if for each formula ϕ of PDL2 there is a formula ψ of PDL1
such that � ϕ↔ ψ. If PDL1 is as expressive as PDL2 but PDL2 is not as expressive

as PDL1, we say that PDL1 is strictly more expressive than PDL2.

Thus, one version of PDL is strictly more expressive than another if anything

the latter can express the former can too, but there is something the former can

express that the latter cannot.

A language is test-free if it is a subset of Π∗0 ; that is, if its seqs contain no tests.

Theorem 9.3: If L is any nonregular test-free language, then PDL+L is strictly

more expressive than PDL.

Proof The result can be proved by embedding PDL into SkS, the monadic second-

order theory of k successors (Rabin (1969)). It is possible to show that any set of

nodes definable in SkS is regular, so that the addition of a nonregular predicate

increases its expressive power.

A more direct proof can be obtained as follows. Fix a subset {a0, . . . , ak−1} ⊆
Π0. Define the Kripke frame K = (K, mK) in which

K
def
= {a0, . . . , ak−1}∗

mK(ai)
def
= {(aix, x) | x ∈ {a0, . . . , ak−1}∗}

mK(p)
def
= {ε}.

The frame K can be viewed as a complete k-ary tree in which p holds at the root

only and each node has k offspring, one for each atomic program ai, but with all

MIT Press Math7X9/2010/08/25:15:15 Page 229



230 Chapter 9

edges pointing upward. Thus, the only seq from the node x ∈ {a0, . . . , ak−1}∗ that

leads to a state satisfying p is x itself.

Now for any formula ϕ of PDL, the set mK(ϕ) is the set of words over

{a0, . . . , ak−1} describing paths in K leading from states that satisfy ϕ to the root.

It is easy to show by induction on the structure of ϕ that mK(ϕ) is a regular set

over the alphabet {a0, . . . , ak−1} (Exercise 9.1). Since mK(<L>p) = L is nonregular,

<L>p cannot be equivalent to any PDL formula.

We can view the decidability of regular PDL as showing that propositional-level

reasoning about iterative programs is computable. We now wish to know if the same

is true for recursive procedures. We define context-free PDL to be PDL extended

with context-free programs, where a context-free program is one whose seqs form a

context-free language. The precise syntax is unimportant, but for definiteness we

might take as programs the set of context-free grammars G over atomic programs

and tests and define

mK(G)
def
=

⋃
β∈CS(G)

mK(β),

where CS (G) is the set of computation sequences generated by G as described in

Section 4.3.

Theorem 9.4: The validity problem for context-free PDL is undecidable.

Proof Consider the formula <G>p ↔ <G′>p for context-free grammars G and G′

and atomic p. It can be shown that if CS (G) and CS (G′) are test-free, then this

formula is valid iff CS (G) = CS (G′) (Exercise 9.2). This reduces the equivalence

problem for context-free languages to the validity problem for context-free PDL. The

equivalence problem for context-free languages is well known to be undecidable; see

Hopcroft and Ullman (1979) or Kozen (1997a).

Theorem 9.4 leaves several interesting questions unanswered. What is the level

of undecidability of context-free PDL? What happens if we want to add only a

small number of specific nonregular programs? The first of these questions arises

from the fact that the equivalence problem for context-free languages is co-r.e.,

or in the notation of the arithmetic hierarchy (Section 2.2), it is complete for Π0
1.

Hence, all Theorem 9.4 shows is that the validity problem for context-free PDL is

Π0
1-hard, while it might in fact be worse. The second question is far more general.

We might be interested in reasoning only about deterministic or linear context-free

MIT Press Math7X9/2010/08/25:15:15 Page 230



Nonregular PDL 231

programs,2 or we might be interested only in a few special context-free programs

such as aΔbaΔ or aΔbΔ. Perhaps PDL remains decidable when these programs are

added. The general question is to determine the borderline between the decidable

and the undecidable when it comes to enriching the class of programs allowed in

PDL.

Interestingly, if we wish to consider such simple nonregular extensions as

PDL + aΔbaΔ or PDL + aΔbΔ, we will not be able to prove undecidability by the

technique used for context-free PDL in Theorem 9.4, since standard problems that

are undecidable for context-free languages, such as equivalence and inclusion, are

decidable for classes containing the regular languages and the likes of aΔbaΔ and

aΔbΔ. Moreover, we cannot prove decidability by the technique used for PDL in

Section 6.2, since logics like PDL+ aΔbaΔ and PDL+ aΔbΔ do not enjoy the finite

model property, as we now show. Thus, if we want to determine the decidability

status of such extensions, we will have to work harder.

Theorem 9.5: There is a satisfiable formula in PDL+ aΔbΔ that is not satisfied

in any finite structure.

Proof Let ϕ be the formula

p ∧ [a∗]<ab∗>p ∧ [(a ∪ b)∗ba]0 ∧ [a∗a][aΔbΔ]¬p ∧ [aΔbΔ][b]0.

Let K0 be the infinite structure illustrated in Fig. 9.1 in which the only states

satisfying p are the dark ones. It is easy to see that K0, u � ϕ. Now let K be a

finite structure with a state u such that K, u � ϕ. Viewing K as a finite graph, we

associate paths with the sequences of atomic programs along them. Consider the

set U of paths in K leading from u to states satisfying p. The fact that K is finite

implies that U is a regular set of words. However, the third conjunct of ϕ eliminates

from U paths that contain b followed by a, forcing U to be contained in a∗b∗; the
fourth and fifth conjuncts force U to be a subset of {aibi | i ≥ 0}; and the first two

conjuncts force U to contain a word in aib∗ for each i ≥ 0. Consequently, U must

be exactly {aibi | i ≥ 0}, contradicting regularity.

2 A linear program is one whose seqs are generated by a context-free grammar in which there is
at most one nonterminal symbol on the right-hand side of each rule. This corresponds to a family
of recursive procedures in which there is at most one recursive call in each procedure.

MIT Press Math7X9/2010/08/25:15:15 Page 231



232 Chapter 9

a a a aa

b b b b

b

b

b

b

bb

u

Figure 9.1

9.3 Undecidable Extensions

Two-Letter Programs

The proof of Theorem 9.5 can be modified easily to work for PDL+aΔbaΔ (Exercise

9.3). However, for this extension the news is worse than mere undecidability:

Theorem 9.6: The validity problem for PDL+ aΔbaΔ is Π1
1-complete.

Proof To show that the problem is in Π1
1, we use the Löwenheim–Skolem Theorem

(Section 3.4) to write the notion of validity in the general form “For every countable

structure. . . ,” then observe that the question of whether a given formula is satisfied

in a given countable structure is arithmetical.

To show that the problem is Π1
1-hard, we reduce the tiling problem of Proposi-

tion 2.22 to it. Recall that in this tiling problem, we are given a set T of tile types,

and we wish to know whether the ω × ω grid can be tiled so that the color red

appears infinitely often.

We proceed as in the proof of the lower bound of Theorem 8.8. We use the same

atomic propositions Northc,Southc,Eastc,Westc for each color c. For example,

Northc says that the north edge of the current tile is colored c. As in Theorem

8.8, for each tile type A ∈ T , we construct a formula TileA from these propositions

MIT Press Math7X9/2010/08/25:15:15 Page 232



Nonregular PDL 233

b

a

Figure 9.2

that is true at a state if the truth values of Northc,Southc,Eastc,Westc at that

state describe a tile of type A.

The construction of the grid must be different here, since the extension of PDL

with the new program aΔbaΔ does not offer a direct way of setting up two atomic

programs, such as North and East, to correspond to the two directions on a grid,

as was done in Theorems 3.60 and 8.8. The imaginary grid that we want to tile

must be set up in a subtler manner.

Denoting aΔbaΔ by α and a∗ab by β, let ϕsnake be the formula

<ab>1 ∧ [β∗](<β>1 ∧ [a∗a][α][ab]0 ∧ [α][aa]0).

This formula forces the existence of an infinite path of the form σ = aba2ba3ba4b · · · .
Fig. 9.2 shows how this path is to be imagined as snaking through ω × ω, and the

details of the proof are based on this correspondence.

MIT Press Math7X9/2010/08/25:15:15 Page 233



234 Chapter 9

We now have to state that the grid implicit in the path σ is tiled legally with

tiles from T and that red occurs infinitely often. For this we use the formula red

from Theorem 8.8:

red
def⇐⇒ Northred ∨ Southred ∨ Eastred ∨Westred.

We then construct the general formula ϕT as the conjunction of ϕsnake and the

following formulas:

[(a ∪ b)∗a]
∨
A∈T

TileA (9.3.1)

[(ββ)∗a∗a]
∧
c∈C

((Eastc → [αa]Westc) ∧ (Northc → [αaa]Southc)) (9.3.2)

[(ββ)∗βa∗a]
∧
c∈C

((Eastc → [αaa]Westc) ∧ (Northc → [αa]Southc)) (9.3.3)

[β∗]<β∗a∗a>red. (9.3.4)

Clause (9.3.1) associates tiles from T with those points of σ that follow a’s, which

are exactly the points of ω × ω. Clauses (9.3.2) and (9.3.3) force the matching

of colors by using aΔbaΔ to reach the correct neighbor, coming from above or

below depending on the parity of β’s. Finally, clause (9.3.4) can be shown to force

the recurrence of red. This is not straightforward. In the case of the consequence

problem of Theorem 8.8, the ability to substitute arbitrary formulas for the atomic

proposition p made it easy to enforce the uniformity of properties in the grid. In

contrast, here the <β∗> portion of the formula could be satisfied along different

paths that branch off the main path σ. Nevertheless, a König-like argument can be

used to show that indeed there is an infinite recurrence of red in the tiling along

the chosen path σ (Exercise 9.4).

It follows that ϕT is satisfiable if and only if T can tile ω×ω with red recurring

infinitely often.

The Π1
1 result holds also for PDL extended with the two programs aΔbΔ and

bΔaΔ (Exercise 9.5).

It is easy to show that the validity problem for context-free PDL in its entirety

remains in Π1
1. Together with the fact that aΔbaΔ is a context-free language,

this yields an answer to the first question mentioned earlier: context-free PDL

is Π1
1-complete. As to the second question, Theorem 9.6 shows that the high

undecidability phenomenon starts occurring even with the addition of one very

simple nonregular program.

MIT Press Math7X9/2010/08/25:15:15 Page 234



Nonregular PDL 235

One-Letter Programs

We now turn to nonregular programs over a single letter. Consider the language of

powers of 2:

a2
∗ def

= {a2i | i ≥ 0}.

Here we have:

Theorem 9.7: The validity problem for PDL+ a2
∗
is undecidable.

Proof sketch. This proof is also carried out by a reduction from a tiling problem,

but this time on a subset of the ω×ω grid. It makes essential use of simple properties

of powers of 2.

The idea is to arrange the elements of the set S = {2i+2j | i, j ≥ 0} in a grid as

shown in Fig. 9.3. Elements of this set are reached by executing the new program

a2
∗
twice from the start state. The key observation in the proof has to do with the

points that are reached when a2
∗
is executed once more from a point u already

in S. If u is not a power of two (that is, if u = 2i + 2j for i 
= j), then the only

points in S that can be reached by adding a third power of 2 to u are u’s upper and

right-hand neighbors in Fig. 9.3. If u is a power of 2 (that is, if u = 2i + 2i), then

the points in S reached in this manner form an infinite set consisting of one row

(finite) and one column (infinite) in the figure. A particularly delicate part of the

proof involves setting things up so that the upper neighbor can be distinguished

from the right-hand one. This is done by forcing a periodic marking of the grid with

three diagonal stripes encoded by three new atomic programs. In this way, the two

neighbors will always be associated with different detectable stripes. Exercise 9.6

asks for the details.

It is actually possible to prove this result for powers of any fixed k ≥ 2. Thus

PDL with the addition of any language of the form {aki | i ≥ 0} for fixed k ≥ 2

is undecidable. Another class of one-letter extensions that has been proven to be

undecidable consists of Fibonacci-like sequences:

Theorem 9.8: Let f0, f1 be arbitrary elements of N with f0 < f1, and let F be

the sequence f0, f1, f2, . . . generated by the recurrence fi = fi−1 + fi−2 for i ≥ 2.

Let aF
def
= {afi | i ≥ 0}. Then the validity problem for PDL+ aF is undecidable.

MIT Press Math7X9/2010/08/25:15:15 Page 235



236 Chapter 9

2

5

9

17

33

4

6

10

18

34

8

64

0

1

2

3

4

5

0 1 2 3 4 5

3

12

20

36

24

40

16

32

48

. . . . .

Figure 9.3

The proof of this result follows the general lines of the proof of Theorem 9.7,

but is more complicated. It is based on a careful analysis of the properties of sums

of elements of F .

In both these theorems, the fact that the sequences of a’s in the programs

grow exponentially is crucial to the proofs. Indeed, we know of no undecidability

results for any one-letter extension in which the lengths of the sequences of a’s grow

MIT Press Math7X9/2010/08/25:15:15 Page 236



Nonregular PDL 237

subexponentially. Particularly intriguing are the cases of squares and cubes:

a∗2 def
= {ai2 | i ≥ 0},

a∗3 def
= {ai3 | i ≥ 0}.

Are PDL+ a∗2 and PDL+ a∗3 undecidable?

In Section 9.5 we shall describe a decidability result for a slightly restricted

version of the squares extension, which seems to indicate that the full unrestricted

version PDL + a∗2 is decidable too. However, we conjecture that for cubes the

problem is undecidable. Interestingly, several classical open problems in number

theory reduce to instances of the validity problem for PDL + a∗3 . For example,

while no one knows whether every integer greater than 10000 is the sum of five

cubes, the following formula is valid if and only if the answer is yes:

[(a∗3)5]p → [a10001a∗]p.
(The 5-fold and 10001-fold iterations have to be written out in full, of course.) If

PDL+ a∗3 were decidable, then we could compute the answer in a simple manner,

at least in principle.

9.4 Decidable Extensions

We now turn to positive results. In Theorem 9.5 we showed that PDL+ aΔbΔ does

not have the finite model property. Nevertheless, we have the following:

Theorem 9.9: The validity problem for PDL+ aΔbΔ is decidable.

When contrasted with Theorem 9.6, the decidability of PDL + aΔbΔ is very

surprising. We have two of the simplest nonregular languages—aΔbaΔ and aΔbΔ—

which are extremely similar, yet the addition of one to PDL yields high undecid-

ability while the other leaves the logic decidable.

Theorem 9.9 was proved originally by showing that, although PDL+aΔbΔ does

not always admit finite models, it does admit finite pushdown models, in which

transitions are labeled not only with atomic programs but also with push and pop

instructions for a particular kind of stack. A close study of the proof (which relies

heavily on the idiosyncrasies of the language aΔbΔ) suggests that the decidability

or undecidability has to do with the manner in which an automaton accepts the

languages involved. For example, in the usual way of accepting aΔbaΔ, a pushdown

automaton (PDA) reading an a will carry out a push or a pop, depending upon its

MIT Press Math7X9/2010/08/25:15:15 Page 237



238 Chapter 9

location in the input word. However, in the standard way of accepting aΔbΔ, the

a’s are always pushed and the b’s are always popped, regardless of the location; the

input symbol alone determines what the automaton does. More recent work, which

we now set out to describe, has yielded a general decidability result that confirms

this intuition. It is of special interest due to its generality, since it does not depend

on specific programs.

Definition 9.10: Let M = (Q, Σ, Γ, q0, z0, δ) be a PDA that accepts by empty

stack. We say that M is simple-minded if, whenever δ(q, σ, γ) = (p, b), then for

each q′ and γ′, either δ(q′, σ, γ′) = (p, b) or δ(q′, σ, γ′) is undefined. A context-

free language is said to be simple-minded (a simple-minded CFL) if there exists a

simple-minded PDA that accepts it.

In other words, the action of a simple-minded automaton is determined uniquely

by the input symbol; the state and stack symbol are only used to help determine

whether the machine halts (rejecting the input) or continues. Note that such an

automaton is necessarily deterministic.

It is noteworthy that simple-minded PDAs accept a large fragment of the

context-free languages, including aΔbΔ and bΔaΔ, as well as all balanced parenthesis

languages (Dyck sets) and many of their intersections with regular languages.

Example 9.11: Let M = ({q0, q}, Σ, Γ, q0, z0, δ) be a PDA, where Σ = {a, b},
Γ = {z, z0}, and the transition function δ is given by:

δ(q0, a, z0) = (q0,pop;push(z))

δ(q0, a, z) = (q0,push(z))

δ(q0, b, z) = (q,pop)

δ(q, b, z) = (q,pop).

The function δ is undefined for all other possibilities. Since M accepts by empty

stack, the language accepted is precisely {aibi | i ≥ 1}. The automatonM is simple-

minded, since it always performs push(z) when the input is a and pop when the

input is b.

Example 9.12: Let M = ({q}, Σ ∪Σ′, Γ, q, z0, δ) be a PDA, where Σ = {[, ]},
Σ′ is some finite alphabet of interest disjoint from Σ, Γ = {[, z0}, and the transition

MIT Press Math7X9/2010/08/25:15:15 Page 238



Nonregular PDL 239

function δ is given by:

δ(q, [, z0) = (q,pop;push( [ ))

δ(q, a, [ ) = (q, sp) for a ∈ Σ′

δ(q, ], [ ) = (q,pop).

Here sp stands for “stay put,” and can be considered an abbreviation for push(ε).

The function δ is undefined for all other possibilities. Since the automaton only

accepts by empty stack, the language accepted by M is precisely the set of

expressions over Σ∪Σ′ beginning with [ and ending with ] in which the parentheses

are balances. The automatonM is simple-minded, since it always performs push( [ )

when the input is [, pop when the input is ], and sp when the input is a letter from

Σ′.

The main purpose of this entire section is to prove the following:

Theorem 9.13: If L is accepted by a simple-minded PDA, then PDL + L is

decidable.

First, however, we must discuss a certain class of models of PDL.

Tree Models

We first prove that PDL + L has the tree model property. Let ψ be a formula of

PDL+ L containing n distinct atomic programs, including those used in L. A tree

structure for ψ in PDL+ L is a Kripke frame K = (K, mK) such that

• K is a nonempty prefix-closed subset of [k]∗, where [k] = {0, . . . , k− 1} for some

k ≥ 0 a multiple of n;

• for all atomic programs a, mK(a) ⊆ {(x, xi) | x ∈ [k]∗, i ∈ [k]};
• if a, b are atomic programs and a 
= b, then mK(a) ∩mK(b) = ∅.

A tree structure K = (K, mK) is a tree model for ψ if K, ε � ψ, where ε is the null

string, the root of the tree.

We now show that for any L, if a PDL+ L formula ψ is satisfiable, then it has

a tree model. To do this we first unwind any model of ψ into a tree as in Theorem

3.74, then use a construction similar to Exercise 3.42 to create a substructure in

which every state has a finite number of successors. In order to proceed, we want to

be able to refer to the Fischer–Ladner closure FL(ψ) of a formula ψ in PDL+L. The

definition of Section 6.1 can be adopted as is, except that we take FL�([L]σ) = ∅

MIT Press Math7X9/2010/08/25:15:15 Page 239



240 Chapter 9

(we will not need it). Note however that if [L]σ ∈ FL(ψ), then σ ∈ FL(ψ) as well.

Now for the tree result:

Proposition 9.14: A formula ψ in PDL+L is satisfiable iff it has a tree model.

Proof Suppose that K, u � ψ for some Kripke frame K = (K, mK) and u ∈ K. Let

Ci for 0 ≤ i < 2|FL(ψ)| be an enumeration of the subsets of FL(ψ), let k = n2|FL(ψ)|,
and let

Thψ(t)
def
= {ξ ∈ FL(ψ) | K, t � ξ}.

To show that ψ has a tree model, we first define a partial mapping ρ : [k]∗ → 2K

by induction on the length of words in [k]∗:

ρ(ε)
def
= {u}

ρ(x(i + nj))
def
= {t ∈ K | ∃s ∈ ρ(x) (s, t) ∈ mK(ai) and Cj = Thψ(t)}

for all 0 ≤ i < n and 0 ≤ j < 2|FL(ψ)|. Note that if ρ(x) is the empty set, then so

is ρ(xi).

We now define a Kripke frame K′ = (K ′, mK′) as follows:

K ′ def
= {x | ρ(x) 
= ∅},

mK′(ai)
def
= {(x, x(i + nj)) | 0 ≤ j < 2|FL(ψ)|, x(i+ nj) ∈ K ′},

mK′(p)
def
= {x | ∃t ∈ ρ(x) t ∈ mK(p)}.

Note that mK′ is well defined by the definitions of ρ and mK. It is not difficult to

show that K′ is a tree structure and that if x ∈ K ′ and ξ ∈ FL(ψ), then K′, x � ξ

iff K, t � ξ for some t ∈ ρ(x). In particular, K′, ε � ψ.
The converse is immediate.

Let CL(ψ) be the set of all formulas in FL(ψ) and their negations. Applying

the De Morgan laws and the PDL identities

¬[α]ϕ ↔ <α>¬ϕ
¬<α>ϕ ↔ [α]¬ϕ
¬¬ϕ ↔ ϕ

from left to right, we can assume without loss of generality that negations in

formulas of CL(ψ) are applied to atomic formulas only.

MIT Press Math7X9/2010/08/25:15:15 Page 240



Nonregular PDL 241

Let

CL⊥(ψ) def
= CL(ψ) ∪ {⊥}.

We would now like to embed the tree model K′ = (K ′, mK′) constructed above

into a certain labeled complete k-ary tree. Every node in K ′ will be labeled by the

formulas in CL(ψ) that it satisfies, and all the nodes not in K ′ are labeled by the

special symbol ⊥. These trees satisfy some special properties, as we shall now see.

Definition 9.15: A unique diamond path Hintikka tree (or UDH tree for short)

for a PDL+L formula ψ with atomic programs a0, . . . , an−1 consists of a k-ary tree

[k]∗ for some k a multiple of n and two labeling functions

T : [k]∗ → 2CL⊥(ψ)

Φ : [k]∗ → CL⊥(ψ)

such that ψ ∈ T (ε); for all x ∈ [k]∗, Φ(x) is either a single diamond formula or the

special symbol ⊥; and
1. either T (x) = {⊥} or ⊥
∈ T (x), and in the latter case, ξ ∈ T (x) iff ¬ξ 
∈ T (x)

for all ξ ∈ FL(ψ);

2. if ξ → σ ∈ T (x) and ξ ∈ T (x), then σ ∈ T (x), and ξ∧σ ∈ T (x) iff both ξ ∈ T (x)
and σ ∈ T (x);
3. if <γ>ξ ∈ T (x), and

(a)if γ is an atomic program ai, then there exists j such that i + nj < k and

ξ ∈ T (x(i + nj));

(b)if γ = α ; β, then <α><β>ξ ∈ T (x);
(c)if γ = α ∪ β, then either <α>ξ ∈ T (x) or <β>ξ ∈ T (x);
(d)if γ = ϕ?, then both ϕ ∈ T (x) and ξ ∈ T (x);
(e)if γ = α∗, then there exists a word w = w1 · · ·wm ∈ CS (α∗) and

u0, . . . , um ∈ [k]∗ such that u0 = x, ξ ∈ T (um), and for all 1 ≤ i ≤ m,

Φ(ui) = <α∗>ξ; moreover, if wi is ϕ?, then ϕ ∈ T (ui−1) and ui = ui−1, and if

wi is aj ∈ Π0, then ui = ui−1r, where r = j + n� < k for some �;

(f)if γ = L, then there exists a word w = w1 · · ·wm ∈ L and u0, . . . , um ∈ [k]∗
such that u0 = x, ξ ∈ T (um), and for all 1 ≤ i ≤ m, Φ(ui) = <L>ξ; moreover,

if wi = aj ∈ Π0, then ui = ui−1r, where r = j + n� < k for some �;

4. if [γ]ξ ∈ T (x), and

MIT Press Math7X9/2010/08/25:15:15 Page 241



242 Chapter 9

(a)if γ is an atomic program aj , then for all r = j + n� < k, if T (xr) 
= {⊥}
then ξ ∈ T (xr);
(b)if γ = α ; β, then [α][β]ξ ∈ T (x);
(c)if γ = α ∪ β, then both [α]ξ ∈ T (x) and [β]ξ ∈ T (x);
(d)if γ = ϕ? and if ϕ ∈ T (x), then ξ ∈ T (x);
(e)if γ = α∗, then ξ ∈ T (x) and [α][α∗]ξ ∈ T (x);
(f)if γ = L, then for all words w = w1 · · ·wm ∈ L and u0, . . . , um ∈ [k]∗ such

that u0 = x and for all 1 ≤ i ≤ m, if wi = aj ∈ Π0, then ui = ui−1r, where

r = j + n� < k for some �, we have that either T (um) = {⊥} or ξ ∈ T (um).

Proposition 9.16: A formula ψ in PDL + L has a UDH if and only if it has a

model.

Proof Exercise 9.9.

Pushdown Automata on Infinite Trees

We now discuss pushdown automata on infinite trees. We show later that such an

automaton accepts precisely the UDH’s of some formula.

A pushdown k-ary ω-tree automaton (PTA) is a machine

M = (Q, Σ, Γ, q0, z0, δ, F ),

where Q is a finite set of states, Σ is a finite input alphabet, Γ is a finite stack

alphabet, q0 ∈ Q is the initial state, z0 ∈ Γ is the initial stack symbol, and F ⊆ Q

is the set of accepting states.

The transition function δ is of type

δ : Q× Σ× Γ → (2(Q×B)k ∪ 2Q×B),

where B = {pop} ∪ {push(w) | w ∈ Γ∗}. The transition function reflects the fact

thatM works on trees with outdegree k that are labeled by Σ. The number of rules

in δ is denoted by |δ|.
A good informal way of viewing PTA’s is as a pushdown machine that operates

on an infinite tree of outdegree k. At each node u of the tree, the machine can

read the input symbol T (u) there. It can either stay at that node, performing some

action on the stack and entering a new state as determined by an element of Q×B;

or it can split into k copies, each copy moving down to one of the k children of u,

as determined by an element of (Q×B)k.

MIT Press Math7X9/2010/08/25:15:15 Page 242



Nonregular PDL 243

The set of stack configurations is S = {γz0 | γ ∈ Γ∗}. The top of the stack is to

the left. The initial stack configuration is z0. A configuration is a pair (q, γ) ∈ Q×S.
The initial configuration is (q0, z0). Let head : S → Γ be a function given by

head(zγ) = z. This describes the letter on top of the stack. If the stack is empty,

then head is undefined.

In order to capture the effect of δ on stack configurations, we define the partial

function apply : B × S → S that provides the new contents of the stack:

apply(pop, zγ)
def
= γ;

apply(push(w), γ)
def
= wγ.

The latter includes the case w = ε, in which case the stack is unchanged; we

abbreviate push(ε) by sp.

The automaton M runs on complete labeled k-ary trees over Σ. That is, the

input consists of the complete k-ary tree [k]∗ with labeling function

T : [k]∗ → Σ.

We denote the labeled tree by T . A computation of M on input T is a labeling

C : [k]∗ → (Q× S)+

of the nodes of T with sequences of configurations satisfying the following condi-

tions. If u ∈ [k]∗, T (u) = a ∈ Σ, and C(u) = ((p0, γ0), . . . , (pm, γm)), then

• (pi+1, bi+1) ∈ δ(pi, a, head(γi)) and apply(bi+1, γi) = γi+1 for 0 ≤ i < m; and

• there exists ((r0, b0), . . . , (rk−1, bk−1)) ∈ δ(pm, a, head(γm)) such that for all

0 ≤ j < k, the first element of C(uj) is (rj , apply(bj , γm)).

Intuitively, a computation is an inductive labeling of the nodes of the tree

[k]∗ with configurations of the machine. The label of a node is the sequence of

configurations that the machine goes through while visiting that node.

A computation C is said to be Büchi accepting, or just accepting for short, if

the first configuration of C(ε) is the start configuration (q0, z0) and every path in

the tree contains infinitely many nodes u such that q ∈ F for some (q, γ) ∈ C(u).
A tree T is accepted by M if there exists an accepting computation of M on T .

The emptiness problem is the problem of determining whether a given automa-

ton M accepts some tree.

A PTA that uses only the symbol sp from B (that is, never pushes nor pops)

is simply a Büchi k-ary ω-tree automaton as defined in Vardi and Wolper (1986a).

Our definition is a simplified version of the more general definition of stack tree

MIT Press Math7X9/2010/08/25:15:15 Page 243



244 Chapter 9

automata from Harel and Raz (1994) and is similar to that appearing in Saudi

(1989). If k = 1, the infinite trees become infinite sequences.

Our main result is the following.

Theorem 9.17: The emptiness problem for PTA’s is decidable.

The proof in Harel and Raz (1994) establishes decidability in 4-fold exponential

time for STA’s and in triple-exponential time for PTA’s. A single-exponential-time

algorithm for PTA’s is given by Peng and Iyer (1995).

Decidability for Simple-Minded Languages

Given a simple-minded CFL L, we now describe the construction of a PTA Aψ for

each ψ in PDL + L. This PTA will be shown to accept precisely the UDH trees

of the formula ψ. The PTA Aψ is a parallel composition of three machines. The

first, called A�, is a tree automaton with no stack that tests the input tree for local

consistency properties. The second component of Aψ, called A�, is a tree PDA that

deals with box formulas that contain L. The third component, called A�, is a tree

PDA that deals with the diamond formulas of CL(ψ).

LetML = (Q,Σ, Γ, q0, z0, ρ) be a simple-minded PDA that accepts the language

L, and let ψ be a formula in PDL + L. Define the function Ω : Σ × Γ → Γ∗ by:

Ω(a, z) = w if there exist p, q ∈ Q such that δ(p, a, z) = (q, w). Note that for a

simple-minded PDA, Ω is a partial function.

The local automaton for ψ is

A�
def
= (2CL⊥(ψ), 2CL⊥(ψ), Nψ, δ, 2

CL⊥(ψ)),

where:

• CL⊥(ψ) = CL(ψ) ∪ {⊥};
• the starting set Nψ consists of all sets s such that ψ ∈ s;
• (s0, . . . , sk−1) ∈ δ(s, a) iff s = a, and

–either s = {⊥} or ⊥
∈ s, and in the latter case, ξ ∈ s iff ¬ξ 
∈ s;
–if ξ → σ ∈ s and ξ ∈ s, then σ ∈ s, and ξ ∧ σ ∈ s iff both ξ ∈ s and σ ∈ s;
–if <γ>ξ ∈ s, then:
∗if γ is an atomic program aj , then there exists r = j + n� < k for some �

such that ξ ∈ sr;
∗if γ = α ; β, then <α><β>ξ ∈ s;
∗if γ = α ∪ β, then either <α>ξ ∈ s or <β>ξ ∈ s;

MIT Press Math7X9/2010/08/25:15:15 Page 244



Nonregular PDL 245

∗if γ = ϕ? then both ϕ ∈ s and ξ ∈ s;
–if [γ]ξ ∈ s, then:
∗if γ is an atomic program aj , then for all r = j +n� < k, if sr 
= {⊥} then
ξ ∈ s;
∗if γ = α ; β, then [α][β]ξ ∈ s;
∗if γ = α ∪ β, then both [α]ξ ∈ s and [β]ξ ∈ s;
∗if γ = ϕ? and ϕ ∈ s, then ξ ∈ s;
∗if γ = α∗, then both ξ ∈ s and [α][α∗]ξ ∈ s.

Proposition 9.18: The automaton A� accepts precisely the trees that satisfy

conditions 1, 2, 3(a)–(d), and 4(a)–(e) of Definition 9.15.

Proof A computation of an automaton M on an infinite tree T : [k]∗ → Σ is an

infinite tree C : [k]∗ → Q′, where Q′ is the set of states of M . Clearly, if T satisfies

conditions 1, 2, 3(a)–(d) and 4(a)–(e) of Definition 9.15, then T is also an accepting

computation of A� on T .

Conversely, if C is an accepting computation of A� on some tree T , then C is

itself an infinite tree over 2CL⊥(ψ) that satisfies the desired conditions. By the first

rule of A�, for every node a we have a = s, hence T = C, and T satisfies conditions

1, 2, 3(a)–(d), and 4(a)–(e) of Definition 9.15.

The aim of the the next component of Aψ is to check satisfaction of condition

4(f) of Definition 9.15, the condition that deals with box formulas containing the

symbol L.

The box automaton for ψ is

A�
def
= (Q�, 2

CL⊥(ψ), Γ× 2CL⊥(ψ), q0, (z0,∅), δ, Q�),

where Q� = Q and δ is given by: ((p0, w0), . . . , (pk−1, wk−1)) ∈ δ(q, a, (z, s)) iff
1. either a =⊥ or s ⊆ a, and

2. for all 0 ≤ j < n and for all i = j + n� < k we have:

(a)if ρ(q, aj , z) = (q′, ε), then pi = q′ and wi = ε,

(b)if ρ(q, aj , z) = (q′, z), then pi = q′ and wi = (z, s ∪ s′),

(c)if ρ(q, aj , z) = (q′, zz′), then pi = q′ and wi = (z, s ∪ s′), (z′,∅), and

(d)if ρ(q, aj , z) is undefined, then

i.if ρ(q0, aj, z0) is undefined, then pi = q0 and wi = (z0,∅);

MIT Press Math7X9/2010/08/25:15:15 Page 245



246 Chapter 9

ii.if ρ(q0, aj , z0) = (q′, z0), then pi = q′ and wi = (z0, s
′); and

iii.if ρ(q0, aj , z0) = (q′, z0z), then pi = q′ and wi = (z0, s
′), (z′,∅).

Here, if ρ(q0, aj , z0) is defined and [L]ξ ∈ a, then ξ ∈ s′, otherwise s′ = ∅.

In clause 1 we check whether old box promises that involve the language L are

kept, while in clause 2 we put new such box promises on the stack to be checked

later on. Note that the stack behavior of A� depends only on the path in the tree

and not on the values of the tree nodes.

Lemma 9.19: Let x ∈ [k]∗ and T : [k]∗ → 2CL⊥(ψ), and let

C�(x)
def
= (q, (z0, s0), . . . , (zm, sm)),

where C� is a computation of A� over T . Then for each w = aj1 · · ·aj� ∈ L and

rm = jm + n�m < k, the following two conditions hold:

• C�(xr1 · · · r�) = (q′, (z0, s0), . . . , (zm−1, sm−1), (zm, s
′
m));

• s′m contains all formulas ξ for which [L]ξ ∈ T (x).

Proof Define ψm : Q× (Γ× 2CL⊥(ψ))+ → Q� × Γ+ by

ψ(q, (z0, s0) · · · (zm, sm) · · · (zr, sr)) def
= (q, zm, . . . , zr).

Let (q0, γ0) · · · (q�, γ�) be a computation of M that accepts w. Since w is in L, for

all r1 = j1 +n�1 < k we have that δ(q0, aj , z0) is defined; hence by the definition of

s′ in A� we have that

C�(xr1) = (q′, (z0, s0), . . . , (zm, s′m), γ′),

where γ′ may be empty and s′m contains all formulas ξ such that [L]ξ ∈ T (x).
We proceed by induction on i to prove that ψm(C�(xr1 · · · ri)) = (qi, γi) for all

1 ≤ i ≤ �. The base case has just been established, and the general case follows

immediately from the definition of A�. For i = �, this proves the lemma.

Proposition 9.20: The box automaton A� accepts precisely the trees that

satisfy condition 4(f) of Definition 9.15.

Proof We must show that A� has an accepting computation over some tree T iff

for all x ∈ [k]∗ the following holds: if [L]ξ ∈ T (x), then for all rm = jm+n�m < k,

we have ξ ∈ T (xr1 · · · r�) or T (xr1 · · · r�) = {⊥}.

MIT Press Math7X9/2010/08/25:15:15 Page 246



Nonregular PDL 247

(=⇒) Suppose for a contradiction that there exist x0 ∈ [k]∗, [L]ξ ∈ T (x0),

and w = aj1 , . . . , aj� ∈ L such that T (xr1 · · · r�) 
= {⊥} and ξ 
∈ T (xr1 · · · r�) for

some rm = jm + n�m < k. Let C be any computation of A�. By Lemma 9.19,

we know that C(xr1 · · · r�) = (q′, (z0, s′0) · · · (zm, s′m)), and ξ ∈ s′m. This yields a

contradiction to our assumption, since clause 1 in the definition of A� requires that

s ⊆ a, which implies ξ ∈ T (xr1 · · · r�).
(⇐=) If T satisfies the above condition and at each stage of the computation

we add to s′ exactly all ξ for which [L]ξ ∈ T (x) when δ(q0, aj , z0) is defined and

add ∅ otherwise, we obtain an infinite computation of A� over T . This computation

is accepting because F� = Q�.

The third component of Aψ deals with diamond formulas. Note that unlike the

box case, some diamond formulas are non-local in nature, thus cannot be handled

by the local automaton. The special nature of UDH’s is the key for the following

construction, since it ensures that each diamond formula is satisfied along a unique

path. All A� must do is guess nondeterministically which successor lies on the

appropriate path and check that there is indeed a finite path through that successor

satisfying the diamond formula.

For technical reasons, we must define a finite automaton for each α such that

<α∗>ξ ∈ CL(ψ) for some ξ. Define Σψ = Π ∪ {ϕ? | ϕ? ∈ CL(ψ)}, and let

Mα = (Qα, Σψ, q0α, δα, Fα) be an automaton for CS (α).

The diamond automaton for ψ is

A�
def
= (Q�, 2

CL⊥(ψ), Γ× {0, 1}, (1,⊥,⊥), (z0, 0), δ, F�),

where

• Q�
def
= {0, 1} × CL⊥(ψ) × (Q ∪ ⋃{Qα | <α∗>ξ ∈ CL(ψ) for some ξ}). The first

component is used to indicate acceptance, the second points to the diamond formula

that is being verified or to ⊥ if no such formula exists, and the third is used to

simulate the computation of either ML or Mα.

• F� is the set of all triples in Q� containing 1 in the first component or ⊥ in the

second.

• Define

ψM (aj , z)
def
=

⎧⎨⎩
ε if Ω(aj , z) = ε

(z, 0) if Ω(aj , z) = z

(z, 0)(z′, 1) if Ω(aj , z) = zz′

MIT Press Math7X9/2010/08/25:15:15 Page 247



248 Chapter 9

and

ψN (aj , z)
def
=

⎧⎨⎩
ε if Ω(aj , z) = ε

(z, 1) if Ω(aj , z) = z

(z, 1)(z′, 1) if Ω(aj , z) = zz′.

Then ((p0, w0), . . . , (pk−1, wk−1)) ∈ δ((c, g, q), a, (z, b)) iff the following three con-

ditions hold:

1. (a)for each <α>∗χ ∈ a, either χ ∈ a or there exists i = j + n� < k and a

word v = ϕ1? · · ·ϕm? such that {ϕ1, . . . , ϕm} ⊆ a and pi = (ci, <α>χ, p),

p ∈ δα(q0α, vaj), and wi = ψM (aj , z);

(b)if <L>χ ∈ a, then there exists i = j + n� < k such that pi = (ci, <L>χ, p),

p = ρ(q0α, aj , z0), and wi = ψN (aj , z);

2. (a)if ξ = <L>χ, then either we are in an accepting state (that is, c = 1,

b = 0, and χ ∈ a) or c = 0 and there exists i = j + n� < k such that

pi = (ci, <L>χ, p), p = ρ(q, aj , z), wi = ψN (aj , z), and if wi = ε then b = 1;

(b)if ξ = <α>χ, then there exists a word v = ϕ1? · · ·ϕm? such that

{ϕ1, . . . , ϕm} ⊆ a and either we are in an accepting state (that is, c = 1,

δα(q, v) ∈ Fα, and χ ∈ a) or c = 0 and there exists i = j + n� < k such

that pi = (ci, <α>χ, p), p ∈ δα(q0α, vaj), and wi = ψN (aj , z);

3. for all 0 ≤ j < n and i = j + n� < k, we have wi = ψN (aj , z) or

wi = ψM (aj , z).

The idea here is much simpler than it might appear from the detailed construc-

tion. Condition 1 takes care of new diamond formulas. Each such formula is either

satisfied in a or is written in the machine to be satisfied later. Condition 2 takes

care of old promises which are either fulfilled or remain as promises in the machine.

Condition 3 deals with the stack. We make sure that all stack operations coincide

with those of ML and use the extra bit on the stack to indicate the beginning of

new simulations of ML.

Proposition 9.21: The automaton A� accepts precisely the trees that satisfy

both conditions 3(e) and 3(f) of Definition 9.15.

Proof Exercise 9.10.

Lemma 9.22: There is a pushdown k-ary tree automaton Aψ such that L(Aψ) =

L(A�) ∩ L(A�) ∩ L(A�) and the size of Aψ is at most |A�| · |A�| · |A�|.

MIT Press Math7X9/2010/08/25:15:15 Page 248



Nonregular PDL 249

Proof Define

Aψ
def
= (Qψ, 2

CL⊥(ψ), Γψ, q0ψ, z0ψ, δψ, Fψ)

as follows:

Qψ
def
= Q� ×Q� ×Q�

q0ψ
def
= Nψ × q0� × q0�

Fψ
def
= Q� ×Q� × F�

Γψ
def
= Γ� × Γ�

z0ψ
def
= z0� × z0�

and the transition function δψ is the Cartesian product of the appropriate δ

functions of the component automata.

Since all the states of both the local automaton and the box automaton are

accepting states, and since we have taken the third component of Aψ to be F�,

the accepted language is as required. Also, the size bound is immediate. We have

only to show that this definition indeed describes a tree PDA; in other words, we

have to show that the transition function δψ is well defined. This is due to the

simple-mindedness of the language L. More formally, for each x ∈ [k]∗ and each

im = jm+n�m < k, the stack operations of A� are the same as the stack operations

of A�, since they both depend only on the letter ajm .

Lemma 9.22, together with the preceding results, yields:

Proposition 9.23: Given a formula ψ in PDL+ L, where L is a simple-minded

CFL, one can construct a PTA Aψ such that ψ has a model iff there is some tree

T accepted by Aψ .

Theorem 9.13 now follows.

Other Decidable Classes

Using techniques very similar to those of the previous proof, we can obtain another

general decidability result involving languages accepted by deterministic stack

automata. A stack automaton is a one-way PDA whose head can travel up and

down the stack reading its contents, but can make changes only at the top of the

stack. Stack automata can accept non-context-free languages such as aΔbΔcΔ and

its generalizations aΔ1 a
Δ
2 . . . a

Δ
n for any n, as well as many variants thereof. It would

MIT Press Math7X9/2010/08/25:15:15 Page 249



250 Chapter 9

be nice to be able to prove decidability of PDL when augmented by any language

accepted by such a machine, but this is not known. What has been proven, however,

is that if each word in such a language is preceded by a new symbol to mark its

beginning, then the enriched PDL is decidable:

Theorem 9.24: Let e 
∈ Π0, and let L be a language over Π0 that is accepted

by a deterministic stack automaton. If we let eL denote the language {eu | u ∈ L},
then PDL+ eL is decidable.

While Theorems 9.13 and 9.24 are general and cover many languages, they do

not prove decidability of PDL+aΔbΔcΔ, which may be considered the simplest non-

context-free extension of PDL. Nevertheless, the constructions used in the proofs of

the two general results have been combined to yield:

Theorem 9.25: PDL+ aΔbΔcΔ is decidable.

9.5 More on One-Letter Programs

A Decidable Case

The results of the previous section provide sufficient conditions for an extension

of PDL with a nonregular language to remain decidable.3 If we consider one-

letter languages, none of these results apply. Theorem 9.13 involves context-free

languages, and by Parikh’s theorem (see Kozen (1997a)) nonregular one-letter

languages cannot be context-free; Theorem 9.24 involves adding a new letter to

each word, and therefore does not apply to one-letter languages; and Theorem

9.25 talks about a specific three-letter language. The only negative results on one-

letter extensions are those of Theorems 9.7 and Theorem 9.8, in which the words

grow exponentially. We have no negative results for languages with subexponential

growth. However, we do have a recent positive result, which we now describe.

The aim was to prove that the squares extension, PDL+ a∗2 , is decidable. The
basic idea is to take advantage of the fact that the difference sequence of the squares

language is linear and is in fact very simple: (n+1)2−n2 = 2n+1. We exploit this

in a construction similar in ways to that of Section 9.4, but using stack automata

instead of pushdown automata. For technical reasons, the proof as it stands at the

time of writing falls short of being applicable to the full PDL+a∗2 . Accordingly, we
3 There are other decidable extensions that do not satisfy these conditions, so we do not have a
tight characterization.

MIT Press Math7X9/2010/08/25:15:15 Page 250



Nonregular PDL 251

have had to restrict somewhat the context in which the squares language appears

in formulas. Here is a definition of a restricted version of PDL+ a∗2 , which we call

Restricted-PDL+ a∗2 .
Denote by L the squares language a∗2 . It is easy to see that L∗ = a∗. Also,

for any infinite regular language α over the alphabet {a}, the concatenation Lα is

regular (Exercise 9.14).

Now, given a formula ϕ, we say that ϕ is clean if L does not appear in ϕ. We

say that L appears simply in ϕ (or in a program α) if all its appearances are either

alone (that is, as the sole program within a box or diamond) or concatenated with a

finite language over {a} and then combined as a union with some regular language

over {a}, as for example Laa ∪ (aa)∗. A nice box formula is a formula of the form

[α]ϕ, where ϕ is clean and L appears simply in α. A regular expression α is said

to be unrestricted if α ⊆ {a, L}∗.
We now define inductively the set of formulas Φ in our PDL extension Restricted-

PDL+ a∗2 :
• p,¬p ∈ Φ for all atomic propositions p;

• [α]ϕ ∈ Φ whenever ϕ ∈ Φ and at least one of the following holds:

–both α and ϕ are clean,

–[α]ϕ is a nice box-formula,

–α is clean and ϕ is a nice box-formula;

• <α>ϕ ∈ Φ whenever ϕ ∈ Φ and α is unrestricted;

• ϕ ∨ ψ ∈ Φ whenever ϕ, ψ ∈ Φ;

• ϕ ∧ ψ ∈ Φ whenever ϕ, ψ ∈ Φ and at least one of the following holds:

–either ϕ or ψ is clean,

–ϕ and ψ are nice box-formulas.

We now have:

Theorem 9.26: Restricted-PDL+ a∗2 is decidable.

Cases with no Finite Model Property

As explained, we know of no undecidabile extension of PDL with a polynomially

growing language, although we conjecture that the cubes extension is undecidable.

Since the decidability status of such extensions seems hard to determine, we now

address a weaker notion: the presence or absence of a finite model property. The

MIT Press Math7X9/2010/08/25:15:15 Page 251



252 Chapter 9

technique used in Theorem 9.5 to show that PDL+ aΔbΔ violates the finite model

property uses the two-letter comb-like model of Fig. 9.1, thus does not work for one-

letter alphabets. Nevertheless, we now prove a general result leading to many one-

letter extensions that violate the finite model property. In particular, the theorem

will yield the following:

Proposition 9.27 (squares and cubes): The logics PDL+a∗2 and PDL+a∗3
do not have the finite model property.

Let us now prepare for the theorem.

Definition 9.28: For a program β over Π0 with a ∈ Π0, we let n(β) denote the

set {i | ai ∈ CS (β)}. For S ⊆ N, we let aS denote the set {ai | i ∈ S}; hence
n(aS) = S.

Theorem 9.29: Let S ⊆ N. Suppose that for some program β in PDL+aS with

CS (β) ⊆ a∗, the following conditions are satisfied:

(i) there exists n0 such that for all x ≥ n0 and i ∈ n(β),

x ∈ S =⇒ x+ i 
∈ S;
(ii) for every �,m > 0, there exists x, y ∈ S with x > y ≥ � and d ∈ n(β) such that

(x − y) ≡ d (mod m).

Then PDL+ aS does not have the finite model property.

Proof Every infinite path in a finite model must “close up” in a circular fashion.

Thus, formulas satisfied along such a path must exhibit some kind of periodicity.

Let S and β satisfy the conditions of the theorem. We use the nonperiodic nature

of the set S given in property (i) in the statement of the theorem to construct a

satisfiable formula ϕ in PDL+ aS that has no finite model.

Let ϕ be the conjunction of the following three formulas:

ϕ1
def
= [a∗]<a>1

ϕ2
def
= [aS]p

ϕ3
def
= [an0][a∗](p→ [β]¬p).

Here n0 is the constant from (i) and an0 is written out in full.

To show that ϕ is satisfiable, take the infinite model consisting of a sequence of

MIT Press Math7X9/2010/08/25:15:15 Page 252



Nonregular PDL 253

. . .

tk-1 t
t

t

k
k+1

k+m-1

. . .. . .
t t t t0 1 2 3

a

a a a
a a

a

a

a

Figure 9.4

states t0, t1, . . . connected in order by the atomic program a. Assign p true in ti iff

i ∈ S. Then t0 � ϕ, since (i) guarantees that ϕ3 holds in t0.

We now show that ϕ does not have a finite model. Suppose K, u0 � ϕ for some

finite model K. By ϕ1 and the finiteness of K, there must be a path in K of the form

shown in Fig. 9.4, where m denotes the size of the cycle. For every z ∈ N, let z′ be
the remainder of (z − k) when divided by m. Note that for z ≥ k, the state tk+z′

can be reached from t0 by executing the program az.

By property (ii) in the statement of the theorem, we can find x, y ∈ S and

d ∈ n(β) such that

x > y > max(n0, k) and (x− y) ≡ d (mod m).

That ϕ2 holds at t0 implies that tk+y′ � p and tk+x′ � p. Since y > n0, it follows from

ϕ3 that tk+(y+d)′ � ¬p. However, (x − y) ≡ d (mod m) implies that (y + d)′ = x′,
so that tk+x′ � ¬p, which is a contradiction.

It is sometimes useful to replace condition (ii) of Theorem 9.29 with a weaker

condition, call it (ii′), in which the consequent does not have to hold for every

modulus m, but only for every m >= m0 for some fixed m0 (Exercise 9.12).

Now to some corollaries of the theorem. First, we prove the “squares” part of

Proposition 9.27.

Proof Let Ssqr = {i2 | i ∈ N}. To satisfy Theorem 9.29(i), take n0 = 1 and β = a;

MIT Press Math7X9/2010/08/25:15:15 Page 253



254 Chapter 9

thus n(β) = {1}. As for property (ii) of that theorem, given �,m > 0, let d = 1

and choose y = (qm)2 > � and x = (qm + 1)2. Then x, y ∈ Ssqr, x > y ≥ �, and

x− y = (qm+ 1)2 − (qm)2 ≡ d (mod m).

In fact, all polynomials of degree 2 or more exhibit the same property:

Proposition 9.30 (polynomials): For every polynomial of the form

p(n) = cin
i + ci−1n

i−1 + · · ·+ c0 ∈ Z[n]

with i ≥ 2 and positive leading coefficient ci > 0, let Sp = {p(m) | m ∈ N} ∩ N.
Then PDL+ aSp does not have the finite model property.

Proof To satisfy the conditions of Theorem 9.29, choose j0 such that p(j0)−c0 > 0.

Take β such that n(β) = {p(j0) − c0}. Find some n0 such that each x ≥ n0 will

satisfy p(x+ 1)− p(x) > p(j0)− c0. This takes care of property (i) of the theorem.

Now, given �,m > 0, for d = p(j0)−c0, y = p(qm) > �, and x = p(q′m+j0) > y,

we have x− y = p(q′m+ j0)− p(qm) ≡ p(j0)− c0 (mod m).

Proposition 9.31 (sums of primes): Let pi be the ith prime (with p1 = 2),

and define

Ssop
def
= {

n∑
i=1

pi | n ≥ 1}.

Then PDL+ aSsop does not have the finite model property.

Proof Clearly, property (i) of Theorem 9.29 holds with n0 = 3 and β = a. To see

that (ii) holds, we use a well known theorem of Dirichlet to the effect that there

are infinitely many primes in the arithmetic progression s + jt, j ≥ 0, if and only

if gcd(s, t) = 1. Given �,m > 0, find some i0 such that pi0−1 > � and pi0 ≡ 1

(mod m). The existence of such a pi0 follows from Dirichlet’s theorem applied to

the arithmetic progression 1 + jm, j ≥ 0.

Now let d = 1, y =
∑i0−1

i=1 pi, and x =
∑i0

i=1 pi. Then x, y ∈ Ssop, x > y ≥ �,

and x− y = pi0 ≡ d (mod m).

Proposition 9.32 (factorials): Let Sfac
def
= {n! | n ∈ N}. Then PDL + aSfac

does not have the finite model property.

Proof Exercise 9.11.

MIT Press Math7X9/2010/08/25:15:15 Page 254



Nonregular PDL 255

Since undecidable extensions of PDL cannot satisfy the finite model property,

there is no need to prove that the powers of a fixed k or the Fibonacci numbers

violate the finite model property.

The finite model property fails for any sufficiently fast-growing integer linear

recurrence, not just the Fibonacci sequence, although we do not know whether these

extensions also render PDL undecidable. A kth-order integer linear recurrence is an

inductively defined sequence

�n
def
= c1�n−1 + · · ·+ ck�n−k + c0, n ≥ k, (9.5.1)

where k ≥ 1, c0, . . . , ck ∈ N, ck 
= 0, and �0, . . . , �k−1 ∈ N are given.

Proposition 9.33 (linear recurrences): Let Slr = {�n | n ≥ 0} be the set

defined inductively by (9.5.1). The following conditions are equivalent:

(i) aSlr is nonregular;

(ii) PDL+ aSlr does not have the finite model property;

(iii) not all �0, . . . , �k−1 are zero and
∑k

i=1 ci > 1.

Proof Exercise 9.13.

9.6 Bibliographical Notes

The main issues discussed in this chapter—the computational difficulty of the

validity problem for nonregular PDL and the borderline between the decidable

and undecidable—were raised in Harel et al. (1983). The fact that any nonregular

program adds expressive power to PDL, Theorem 9.3, first appeared explicitly in

Harel and Singerman (1996). Theorem 9.4 on the undecidability of context-free PDL

was observed by Ladner (1977).

Theorems 9.5 and 9.6 are from Harel et al. (1983), but the proof of Theorem

9.6 using tiling is taken from Harel (1985). The existence of a primitive recursive

one-letter extension of PDL that is undecidable was shown already in Harel et al.

(1983), but undecidability for the particular case of a2
∗
, Theorem 9.7, is from Harel

and Paterson (1984). Theorem 9.8 is from Harel and Singerman (1996).

As to decidable extensions, Theorem 9.9 was proved in Koren and Pnueli (1983).

The more general results of Section 9.4, namely Theorems 9.13, 9.24, and 9.25,

are from Harel and Raz (1993), as is the notion of a simple-minded PDA. The

decidability of emptiness for pushdown and stack automata on trees that is needed

MIT Press Math7X9/2010/08/25:15:15 Page 255



256 Chapter 9

for the proofs of these (Section 9.4) is from Harel and Raz (1994). A better bound

on the complexity of the emptiness results can be found in Peng and Iyer (1995).

Theorem 9.29 is from Harel and Singerman (1996) and Theorem 9.26 is from

Ferman and Harel (2000).

Exercises

9.1. Complete the proof of Theorem 9.3.

9.2. Consider the formula <G>p ↔ <G′>p for context-free grammars G and G′

over atomic programs {a0, . . . , ak−1}. Show that this formula is valid iff CS (G) =

CS (G′), where CS (G) is the language over {a0, . . . , ak−1} generated by G.

9.3. Modify the proof of Theorem 9.5 to show that PDL+aΔbaΔ does not have the

finite model property.

9.4. Complete the proof of Theorem 9.6 by showing why (9.3.4) forces the recur-

rence of red.

9.5. Prove that PDL with the addition of both aΔbΔ and bΔaΔ is Π1
1-complete.

9.6. Complete the proof of Theorem 9.7.

9.7. Show that aib2i is a simple-minded CFL.

9.8. Extend Example 9.12 to show that the language of balanced strings of paren-

theses over an alphabet with k > 1 pairs of different parentheses is simple-minded.

9.9. Prove Proposition 9.16.

9.10. Prove Proposition 9.21.

9.11. Prove Proposition 9.32.

9.12. Show that Theorem 9.29 still holds when condition (ii) is replaced by the

weaker condition

(ii′) there exists an m0 such that for every m > m0 and � > 0, there exists x, y ∈ S

MIT Press Math7X9/2010/08/25:15:15 Page 256



Nonregular PDL 257

with x > y ≥ � and d ∈ n(β) such that (x− y) ≡ d (mod m).

9.13. Show that the terms �n of a kth-order integer linear recurrence of the form

(9.5.1) grow either linearly or exponentially, and that condition (iii) of Proposition

9.33 is necessary and sufficient for exponential growth. Use this fact to prove the

proposition. (Hint. Use Exercise 9.12.)

9.14. Prove that for any language L over the alphabet {a} and any infinite regular

language α over {a}, the concatenation language Lα is regular.

MIT Press Math7X9/2010/08/25:15:15 Page 257



258 Chapter 9

MIT Press Math7X9/2010/08/25:15:15 Page 258



10 Other Variants of PDL

A number of interesting variants are obtained by extending or restricting the

standard version of PDL in various ways. In this section we describe some of

these variants and review some of the known results concerning relative expressive

power, complexity, and proof theory. These investigations are aimed at revealing

the power of such programming features as recursion, testing, concurrency, and

nondeterminism when reasoning on a propositional level.

The extensions and restrictions we consider are varied. One can require that

programs be deterministic (Section 10.1), that tests not appear or be simple (Sec-

tion 10.2), or that programs be expressed by finite automata (Section 10.3). We

studied nonregular programs in Chapter 9; one can also augment the language of

regular programs by adding operators for converse, intersection, or complementa-

tion (Sections 10.4 and 10.5), or the ability to assert that a program cannot execute

forever (Section 10.6), or a form of concurrency and communication (Section 10.7).

Wherever appropriate, questions of expressiveness, complexity, and axiomatic

completeness are addressed anew.

10.1 Deterministic PDL and While Programs

Nondeterminism arises in PDL in two ways:

• atomic programs can be interpreted in a structure as (not necessarily single-

valued) binary relations on states; and

• the programming constructs α ∪ β and α∗ involve nondeterministic choice.

Many modern programming languages have facilities for concurrency and dis-

tributed computation, certain aspects of which can be modeled by nondeterminism.

Nevertheless, the majority of programs written in practice are still deterministic.

In this section we investigate the effect of eliminating either one or both of these

sources of nondeterminism from PDL.

A program α is said to be (semantically) deterministic in a Kripke frame K if its

traces are uniquely determined by their first states. If α is an atomic program a, this

is equivalent to the requirement that mK(a) be a partial function; that is, if both

(s, t) and (s, t′) ∈ mK(a), then t = t′. A deterministic Kripke frame K = (K, mK)

is one in which all atomic a are semantically deterministic.

The class of deterministic while programs , denoted DWP, is the class of

programs in which

MIT Press Math7X9/2010/08/25:15:15 Page 259



260 Chapter 10

• the operators ∪, ?, and ∗ may appear only in the context of the conditional test,

while loop, skip, or fail;

• tests in the conditional test and while loop are purely propositional; that is,

there is no occurrence of the < > or [ ] operators.

The class of nondeterministic while programs, denoted WP, is the same, except

unconstrained use of the nondeterministic choice construct ∪ is allowed. It is

easily shown that if α and β are semantically deterministic in K, then so are

if ϕ then α else β and while ϕ do α (Exercise 5.2).

By restricting either the syntax or the semantics or both, we obtain the following

logics:

• DPDL (deterministic PDL), which is syntactically identical to PDL, but inter-

preted over deterministic structures only;

• SPDL (strict PDL), in which only deterministic while programs are allowed; and

• SDPDL (strict deterministic PDL), in which both restrictions are in force.

Validity and satisfiability in DPDL and SDPDL are defined just as in PDL, but

with respect to deterministic structures only. If ϕ is valid in PDL, then ϕ is also

valid in DPDL, but not conversely: the formula

<a>ϕ → [a]ϕ (10.1.1)

is valid in DPDL but not in PDL. Also, SPDL and SDPDL are strictly less expressive

than PDL or DPDL, since the formula

<(a ∪ b)∗>ϕ (10.1.2)

is not expressible in SPDL, as shown in Halpern and Reif (1983).

Theorem 10.1: If the axiom scheme

<a>ϕ → [a]ϕ, a ∈ Π0 (10.1.3)

is added to Axiom System 5.5, then the resulting system is sound and complete for

DPDL.

Proof sketch. The extended system is certainly sound, since (10.1.3) is a straight-

forward consequence of semantic determinacy.

Completeness can be shown by modifying the construction of Section 7.1 with

some special provisions for determinancy. For example, in the construction leading

MIT Press Math7X9/2010/08/25:15:15 Page 260



Other Variants of PDL 261

up to Lemma 7.3, we defined a nonstandard Kripke frame N whose states were

maximal consistent sets of formulas such that

mN(a)
def
= {(s, t) | ∀ϕ ϕ ∈ t→ <a>ϕ ∈ s}
= {(s, t) | ∀ϕ [a]ϕ ∈ s→ ϕ ∈ t}.

The structure N produced in this way need not be deterministic, but it can be

“unwound” into a treelike deterministic structure which satisfies the given satisfiable

formula.

The proof sketched above also yields:

Theorem 10.2: Validity in DPDL is deterministic exponential-time complete.

Proof sketch. The upper bound is shown in Ben-Ari et al. (1982). For the lower

bound, a formula ϕ is valid in PDL iff ϕ′ is valid in DPDL, where ϕ′ is obtained from

ϕ by replacing all atomic programs a by ab∗ for some new atomic program b. The

possibility of reaching many new states via a from some state s in PDL is modeled

in DPDL by the possibility of executing b many times from the single state reached

via a from s. The result follows from the linearity of this transformation.

Now we turn to SPDL, in which atomic programs can be nondeterministic but

can be composed into larger programs only with deterministic constructs.

Theorem 10.3: Validity in SPDL is deterministic exponential-time complete.

Proof sketch. Since we have restricted the syntax only, the upper bound carries

over directly from PDL. For the lower bound, a formula ϕ of PDL is valid iff ϕ′ is
valid in SPDL, where ϕ′ involves new nondeterministic atomic programs acting as

“switches” for deciding when the tests that control the determinism of if-then-else

and while-do statements are true. For example, the nondeterministic program α∗
can be simulated in SPDL by the program b;while p do (α; b).

The final version of interest is SDPDL, in which both the syntactic restrictions of

SPDL and the semantic ones of DPDL are adopted. Note that the crucial [Next
∗
]

that appears in the simulation of the alternating Turing machine in Section 8.2 can

no longer be written as it is, because we do not have the use of the ∗ construct,

and it apparently cannot be simulated with nondeterministic atomic programs as

above either. Indeed, the exponential-time lower bound fails here, and we have:

MIT Press Math7X9/2010/08/25:15:15 Page 261



262 Chapter 10

Theorem 10.4: The validity problem for SDPDL is complete in polynomial

space.

Proof sketch. For the upper bound, the following two nontrivial properties of

formulas of SDPDL are instrumental:

(i) if ϕ is satisfiable, then it is satisfiable in a treelike structure with only polyno-

mially many nodes at each level. (In Theorem 10.5 a counterexample for DPDL and

PDL is given.)

(ii) if ϕ is satisfied in a treelike structure A, then A can be collapsed into a finite

structure by “bending” certain edges back to ancestors, resulting in a treelike

structure with back edges of depth at most exponential in |ϕ| that has no nested

or crossing backedges.

The polynomial-space procedure attempts to construct a treelike model for a

given formula by carrying out a depth-first search of potential structures, deciding

nondeterministically whether or not to split nodes and whether or not to bend

edges backwards. The size of the stack for such a procedure can be made to be

polynomial in the size of the formula, since we have a treelike object of exponential

depth but only polynomial width, hence exponential size. Savitch’s theorem is then

invoked to eliminate the nondeterminism while remaining in polynomial space.

For the lower bound, we proceed as in the proof of the lower bound for PDL in

Theorem 8.5. Given a polynomial space-bounded one-tape deterministic Turing

machine M accepting a set L(M), a formula ϕx of SDPDL is constructed for

each word x that simulates the computation of M on x. The formula ϕx will be

polynomial-time computable and satisfiable iff x ∈ K. Since we do not have the

program Next
∗, the entire formula constructed in the proof of Theorem 8.5 must

be restructured, and will now take on the form

<while ¬σ do (Next;ψ?)>1,

where σ describes an accepting configuration ofM and ψ verifies that configurations

and transitions behave correctly. These parts of the formula can be constructed

similarly to those used in the proof of Theorem 8.5.

The question of relative power of expression is of interest here. Is DPDL < PDL?

Is SDPDL < DPDL? The first of these questions is inappropriate, since the syntax

of both languages is the same but they are interpreted over different classes of

structures. Considering the second, we have:

MIT Press Math7X9/2010/08/25:15:15 Page 262



Other Variants of PDL 263

Theorem 10.5: SDPDL < DPDL and SPDL < PDL.

Proof The DPDL formula

[(a ∪ b)∗](<a>1 ∧ <b>1) (10.1.4)

is satisfied in the full infinite binary tree (with a modeled, say, by left transitions

and b by right ones), but in no tree structure with polynomially many nodes at

each level. This contradicts property (i) of SDPDL in the proof of Theorem 10.4.

The argument goes through even if (10.1.4) is thought of as a PDL formula and is

compared with SPDL.

In summary, we have the following diagram describing the relations of expres-

siveness between these logics. The solid arrows indicate added expressive power

and broken ones a difference in semantics. The validity problem is exponential-time

complete for all but SDPDL, for which it is PSPACE -complete. Straightforward

variants of Axiom System 5.5 are complete for all versions.

SDPDL

DPDLSPDL

PDL

�
�
���

�
�
���

�
�

�
�

�

�

10.2 Restricted Tests

Tests ϕ? in PDL are defined for arbitrary propositions ϕ. This is sometimes called

rich test PDL. Rich tests give substantially more power than one would normally

find in a conventional programming language. For example, if ϕ is the formula

[α]ψ, the test ϕ? in effect allows a program to pause during the computation and

ask the question: “Had we run program α now, would ψ have been true upon

termination?” without actually running α. For example, the formula [([α]p)?;α]p

is valid. In general, however, this kind of question would be undecidable.

A more realistic model would allow tests with Boolean combinations of atomic

formulas only. This is called poor-test PDL.

To refine this distinction somewhat, we introduce a hierarchy of subsets of Φ

determined by the depth of nesting of tests. We then establish that each level of

the hierarchy is strictly more expressive than all lower levels.

MIT Press Math7X9/2010/08/25:15:15 Page 263



264 Chapter 10

Let Φ(0) be the subset of Φ in which programs contain no tests. This actually

means that programs are regular expressions over the set Π0 of atomic programs.

Now let Φ(i+1) be the subset of Φ in which programs can contain tests ϕ? only for

ϕ ∈ Φ(i). The logic restricted to formulas Φ(i) is called PDL(i). Clearly, Φ =
⋃
i Φ

(i),

and we can also write PDL =
⋃
i PDL

(i). The logic PDL(0) is sometimes called test-

free PDL.

The language fragment PDL(1) can test test-free formulas of PDL and these

themselves can contain test-free programs. Poor-test PDL, which can test only

Boolean combinations of atomic formulas, fits in between PDL(0) and PDL(1) (we

might call it PDL(0.5)).

Since the lower bound proof of Theorem 8.5 does not make use of tests at all,

the exponential time lower bound carries over even to PDL(0), the weakest version

considered here, and of course the upper bound of Section 8.1 holds too. Also,

omitting axiom (vi) from Axiom System 5.5 yields a complete axiom system for

PDL(0).

The question we now ask is whether even atomic tests add to the expressive

power of PDL. The answer is affirmative.

Theorem 10.6: PDL(0) < poor-test PDL.

Proof sketch. Axioms 5.5(iv), (v), and (vi) enable one to eliminate from formulas

all tests that do not appear under a ∗ operator. Consequently, a proof of the theorem
will have to make use of iterating a test. Let ϕ be the the poor-test PDL formula

ϕ
def
= <(p?a)∗(¬p)?a>p

for atomic a and p. Consider the structure Am illustrated in the following figure,

where arrows indicate a-transitions.

� � � � � � �� � � � � � � �· · · · · ·�

� �
p p p ¬p pp p ¬p ¬p

u0 u1 u2 um−1 um u2m−1 u2m

For 0 ≤ k < m, Am, uk � ϕ, but Am, uk+m � ϕ.
The rest of the proof is devoted to formalizing the following intuition. Without

the ability to test p inside a loop, it is impossible to tell in general whether the

current state belongs to the left- or right-hand portion of the structure, since it is

always possible to proceed and find oneself eventually in the other portion.

MIT Press Math7X9/2010/08/25:15:15 Page 264



Other Variants of PDL 265

To that end, it becomes necessary to see to it that a test-free a∗ or (ai)∗ program
cannot distinguish between these possibilities. The constants m and k are therefore

chosen carefully, taking into account the eventual periodicity of one-letter regular

sets. Specifically, it can be shown that for any test-free formula ψ there are m and

k such that Am, uk � ψ iff Am, uk+m � ψ, hence ϕ cannot be equivalent to any

formula of PDL(0).

Theorem 10.6 can be generalized to

Theorem 10.7: For every i ≥ 0, PDL(i) < PDL(i+1).

Proof sketch. The proof is very similar in nature to the previous one. In particular,

let ϕ0 be the ϕ of the previous proof with a0 replacing a, and let ϕj+1 be ϕ with

aj+1 replacing a and ϕj replacing the atomic formula p. Clearly, ϕi ∈ Φ(i+1)−Φ(i).

The idea is to build an elaborate multi-layered version of the structure Am
described above, in which states satisfying p or ¬p in Am now have transitions

leading down to appropriate distinct points in lower levels of the structure. The

lowest level is identical to Am. The intuition is that descending a level in the

structure corresponds to nesting a test in the formula. The argument that depth of

nesting i+ 1 is required to distinguish between appropriately chosen states uk and

uk+m is more involved but similar.

The proofs of these results make no essential use of nondeterminism and can be

easily seen to hold for the deterministic versions of PDL from Section 10.1 (similarly

refined according to test depth).

Corollary 10.8: For every i ≥ 0, we have

DPDL(i) < DPDL(i+1),

SPDL(i) < SPDL(i+1),

SDPDL(i) < SDPDL(i+1).

In fact, it seems that the ability to test is in a sense independent of the ability to

branch nondeterministically. The proof of Theorem 10.5 uses no tests and therefore

actually yields a stronger result:

Theorem 10.9: There is a formula of DPDL(0) (respectively, PDL(0)) that is not

expressible in SDPDL (respectively SPDL).

MIT Press Math7X9/2010/08/25:15:15 Page 265



266 Chapter 10

We thus have the following situation: for nondeterministic structures,

SPDL(0) < SPDL(1) < · · · < SPDL,

PDL(0) < PDL(1) < · · · < PDL,

and for deterministic structures,

SDPDL(0) < SDPDL(1) < · · · < SDPDL

DPDL(0) < DPDL(1) < · · · < DPDL.

10.3 Representation by Automata

A PDL program represents a regular set of computation sequences. This same

regular set could possibly be represented exponentially more succinctly by a finite

automaton. The difference between these two representations corresponds roughly

to the difference between while programs and flowcharts.

Since finite automata are exponentially more succinct in general, the upper

bound of Section 8.1 could conceivably fail if finite automata were allowed as

programs. Moreover, we must also rework the deductive system of Section 5.5.

However, it turns out that the completeness and exponential-time decidability

results of PDL are not sensitive to the representation and still go through in the

presence of finite automata as programs, provided the deductive system of Section

5.5 and the techniques of Chapter 7 and Section 8.1 are suitably modified, as shown

in Pratt (1979b, 1981b) and Harel and Sherman (1985).

In recent years, the automata-theoretic approach to logics of programs has

yielded significant insight into propositional logics more powerful than PDL, as well

as substantial reductions in the complexity of their decision procedures. Especially

enlightening are the connections with automata on infinite strings and infinite trees.

By viewing a formula as an automaton and a treelike model as an input to that

automaton, the satisfiability problem for a given formula becomes the emptiness

problem for a given automaton. Logical questions are thereby transformed into

purely automata-theoretic questions.

This connection has prompted renewed inquiry into the complexity of automata

on infinite objects, with considerable success. See Courcoubetis and Yannakakis

(1988); Emerson (1985); Emerson and Jutla (1988); Emerson and Sistla (1984);

Manna and Pnueli (1987); Muller et al. (1988); Pecuchet (1986); Safra (1988);

Sistla et al. (1987); Streett (1982); Vardi (1985a,b, 1987); Vardi and Stockmeyer

(1985); Vardi and Wolper (1986c,b); Arnold (1997a,b); and Thomas (1997). Espe-

cially noteworthy in this area is the result of Safra (1988) involving the complexity

MIT Press Math7X9/2010/08/25:15:15 Page 266



Other Variants of PDL 267

of converting a nondeterministic automaton on infinite strings into an equivalent

deterministic one. This result has already had a significant impact on the com-

plexity of decision procedures for several logics of programs; see Courcoubetis and

Yannakakis (1988); Emerson and Jutla (1988, 1989); and Safra (1988).

We assume that nondeterministic finite automata are given in the form

M = (n, i, j, δ), (10.3.1)

where n = {0, . . . , n− 1} is the set of states, i, j ∈ n are the start and final states

respectively, and δ assigns a subset of Π0 ∪ {ϕ? | ϕ ∈ Φ} to each pair of states.

Intuitively, when visiting state � and seeing symbol a, the automaton may move to

state k if a ∈ δ(�, k).
The fact that the automata (10.3.1) have only one accept state is without loss

of generality. If M is an arbitrary nondeterministic finite automaton with accept

states F , then the set accepted by M is the union of the sets accepted by Mk for

k ∈ F , where Mk is identical to M except that it has unique accept state k. A

desired formula [M]ϕ can be written as a conjunction∧
k∈F

[Mk]ϕ

with at most quadratic growth.

We now obtain a new logic APDL (automata PDL) by defining Φ and Π

inductively using the clauses for Φ from Section 5.1 and letting Π = Π0 ∪{ϕ? | ϕ ∈
Φ} ∪ F , where F is the set of automata of the form (10.3.1).

Exponential time decidability and completeness can be proved by adapting and

generalizing the techniques used in Chapter 7 and Section 8.1 for PDL. We shall

not supply full details here, except to make a couple of comments that will help

give the reader the flavor of the adaptations needed.

There is an analogue AFL(ϕ) of the Fischer–Ladner closure FL(ϕ) of a formula

ϕ defined in Section 6.1. The inductive clauses for α ; β, α∪β, and α∗ are replaced

by:

• if [n, i, j, δ]ψ ∈ AFL(ϕ), then for every k ∈ n and α ∈ δ(i, k),

[α][n, k, j, δ]ψ ∈ AFL(ϕ);

• in addition, if i = j, then ψ ∈ AFL(ϕ).

MIT Press Math7X9/2010/08/25:15:15 Page 267



268 Chapter 10

Axioms 5.5(iv), (v), and (vii) are replaced by:

[n, i, j, δ]ϕ ↔
∧
k∈n

α∈δ(i,k)

[α][n, k, j, δ]ϕ, i 
= j (10.3.2)

[n, i, i, δ]ϕ ↔ ϕ ∧
∧
k∈n

α∈δ(i,k)

[α][n, k, i, δ]ϕ. (10.3.3)

The induction axiom 5.5(viii) becomes

(
∧
k∈n

[n, i, k, δ](ϕk →
∧
m∈n

α∈δ(k,m)

[α]ϕm)) → (ϕi → [n, i, j, δ]ϕj). (10.3.4)

These and other similar changes can be used to prove:

Theorem 10.10: Validity in APDL is decidable in exponential time.

Theorem 10.11: The axiom system described above is complete for APDL.

10.4 Complementation and Intersection

In previous sections we exploited the fact that programs in PDL are regular

expressions, hence denote sets of computations recognizable by finite automata.

Consequently, those operations on programs that do not lead outside the class of

regular sets, such as the shuffle operator α ‖ β (of importance in reasoning about

concurrent programs) need not be added explicitly to PDL. Thus the intersection

of programs and the complement of a program are expressible in PDL by virtue of

these operations being regular operations.

However, this is so only when the operations are regarded as being applied to

the languages denoted by the programs, so that for example the intersection of α

and β contains all execution sequences of atomic programs and tests contained in

both. In this section we are interested in a more refined notion of such operations.

Specifically, we consider the complementation and intersection of the binary rela-

tions on states denoted by programs. Let −α and α ∩ β stand for new programs

with semantics

mK(−α) def
= (K ×K)−mK(α)

mK(α ∩ β) def
= mK(α) ∩mK(β).

MIT Press Math7X9/2010/08/25:15:15 Page 268



Other Variants of PDL 269

It is clear that α ∩ β can be defined as −(−α ∪ −β), so we might have consid-

ered adding complementation only. However, for this case we have the following

immediate result.

Theorem 10.12: The validity problem for PDL with the complementation op-

erator is undecidable.

Proof The result follows from the known undecidability of the equivalence problem

for the algebra of binary relations with complementation.

However, it is of interest to consider the logic IPDL, defined as PDL with α ∩ β
in Π for each α, β ∈ Π. The corresponding equivalence problem for binary relations

is not known to be undecidable and can be shown to be no higher than Π0
1 in the

arithmetic hierarchy. This should be contrasted with Theorem 10.14 below. First,

we establish the following.

Theorem 10.13: There is a satisfiable formula of IPDL that has no finite model.

Proof sketch. Take α to be

[a∗](<a>1 ∧ [a∗a ∩ 1?]0).

Satisfiability is seen to hold in an infinite a-path. The second conjunct, however,

states that non-empty portions of a-paths do not bend backwards; therefore no two

states on such an infinite path can be identical.

The following result is the strongest available. It concerns the version IDPDL of

IPDL in which structures are deterministic.

Theorem 10.14: The validity problem for IDPDL (hence also for DPDL with

complementation of programs) is Π1
1-complete.

Proof sketch. We reduce the recurring tiling problem of Proposition 2.22 to the

satisfiability of formulas in IDPDL. First we construct a formula that forces its

models to contain a (possibly cyclic) two-dimensional grid. This is done using atomic

programs North and East as follows:

[(North ∪East)∗](<(North;East) ∩ (East;North)>1.

The proof then continues along the lines of the proof of Theorem 9.6.

MIT Press Math7X9/2010/08/25:15:15 Page 269



270 Chapter 10

It is interesting to observe that the techniques used in proving Theorem 10.14

do not seem to apply to the nondeterministic cases. It is not known at present

whether IPDL is decidable, although it would be very surprising if were.

10.5 Converse

The converse operator − is a program operator that allows a program to be “run

backwards”:

mK(α
−) def

= {(s, t) | (t, s) ∈ mK(α)}.
PDL with converse is called CPDL.

The following identities, proved valid in Theorem 5.12, allow us to assume

without loss of generality that the converse operator is applied to atomic programs

only.

(α ; β)− ↔ β− ; α−

(α ∪ β)− ↔ α− ∪ β−

α∗− ↔ α−∗.
The converse operator strictly increases the expressive power of PDL, since the

formula <α−>1 is not expressible without it.

Theorem 10.15: PDL < CPDL.

Proof Consider the structure described in the following figure:

�
� �
�
a

t

s u

In this structure, s � <a−>1 but u � <a−>1. On the other hand, it can be shown by

induction on the structure of formulas that if s and u agree on all atomic formulas,

then no formula of PDL can distinguish between the two.

More interestingly, the presence of the converse operator implies that the

operator <α> is continuous in the sense that if A is any (possibly infinite) family

of formulas possessing a join
∨
A, then

∨
<α>A exists and is logically equivalent to

<α>
∨
A (Theorem 5.14). In the absence of the converse operator, one can construct

nonstandard models for which this fails (Exercise 5.12).

MIT Press Math7X9/2010/08/25:15:15 Page 270



Other Variants of PDL 271

The completeness and exponential time decidability results of Chapter 7 and

Section 8.1 can be extended to CPDL provided the following two axioms are added:

ϕ → [α]<α−>ϕ

ϕ → [α−
]<α>ϕ.

The filtration lemma (Lemma 6.4) still holds in the presence of −, as does the finite
model property.

10.6 Well-Foundedness and Total Correctness

If α is a deterministic program, the formula ϕ→ <α>ψ asserts the total correctness

of α with respect to pre- and postconditions ϕ and ψ, respectively. For nondeter-

ministic programs, however, this formula does not express the right notion of total

correctness. It asserts that ϕ implies that there exists a halting computation se-

quence of α yielding ψ, whereas we would really like to assert that ϕ implies that

all computation sequences of α terminate and yield ψ. Let us denote the latter

property by

TC (ϕ, α, ψ).

Unfortunately, this is not expressible in PDL.

The problem is intimately connected with the notion of well-foundedness . A

program α is said to be well-founded at a state u0 if there exists no infinite sequence

of states u0, u1, u2, . . . with (ui, ui+1) ∈ mK(α) for all i ≥ 0. This property is not

expressible in PDL either, as we will see.

Several very powerful logics have been proposed to deal with this situation.

The most powerful is perhaps the propositional μ-calculus, which is essentially

propositional modal logic augmented with a least fixpoint operator μ. Using this

operator, one can express any property that can be formulated as the least fixpoint

of a monotone transformation on sets of states defined by the PDL operators. For

example, the well-foundedness of a program α is expressed

μX.[α]X (10.6.1)

in this logic. We will discuss the propositional μ-calculus in more detail in Section

17.4.

Two somewhat weaker ways of capturing well-foundedness without resorting to

the full μ-calculus have been studied. One is to add to PDL an explicit predicate

MIT Press Math7X9/2010/08/25:15:15 Page 271



272 Chapter 10

wf for well-foundedness:

mK(wf α)
def
= {s0 | ¬∃s1, s2, . . . ∀i ≥ 0 (si, si+1) ∈ mK(α)}.

Another is to add an explicit predicate halt, which asserts that all computations

of its argument α terminate. The predicate halt can be defined inductively from

wf as follows:

halt a
def⇐⇒ 1, a an atomic program or test, (10.6.2)

haltα;β
def⇐⇒ haltα ∧ [α]haltβ, (10.6.3)

haltα ∪ β def⇐⇒ haltα ∧ haltβ, (10.6.4)

haltα∗ def⇐⇒ wf α ∧ [α∗]haltα. (10.6.5)

These constructs have been investigated in Harel and Pratt (1978), Harel and Sher-

man (1982), Niwinski (1984), and Streett (1981, 1982, 1985b) under the various

names loop, repeat, and Δ. The predicates loop and repeat are just the com-

plements of halt and wf , respectively:

loopα
def⇐⇒ ¬haltα

repeatα
def⇐⇒ ¬wf α.

Clause (10.6.5) is equivalent to the assertion

loopα∗ def⇐⇒ repeatα ∨ <α∗>loopα.
It asserts that a nonhalting computation of α∗ consists of either an infinite sequence

of halting computations of α or a finite sequence of halting computations of α

followed by a nonhalting computation of α.

Let RPDL and LPDL denote the logics obtained by augmenting PDL with the

wf and halt predicates, respectively.1 It follows from the preceding discussion that

PDL ≤ LPDL ≤ RPDL ≤ the propositional μ-calculus.

Moreover, all these inclusions are known to be strict.

The logic LPDL is powerful enough to express the total correctness of nondeter-

ministic programs. The total correctness of α with respect to precondition ϕ and

postcondition ψ is expressed

TC (ϕ, α, ψ)
def⇐⇒ ϕ → haltα ∧ [α]ψ.

1 The L in LPDL stands for “loop” and the R in RPDL stands for “repeat.” We retain these names
for historical reasons.

MIT Press Math7X9/2010/08/25:15:15 Page 272



Other Variants of PDL 273

Conversely, halt can be expressed in terms of TC :

haltα ⇐⇒ TC (1, α,1).

The filtration lemma fails for RPDL, LPDL, and the propositional μ-calculus (ex-

cept under certain strong syntactic restrictions which render formulas like (10.6.1)

ineffable; see Pratt (1981a)). This can be seen by considering the model K = (K,mK)

with

K
def
= {(i, j) ∈ N2 | 0 ≤ j ≤ i} ∪ {u}

and atomic program a with

mK(a)
def
= {((i, j), (i, j − 1)) | 1 ≤ j ≤ i} ∪ {(u, (i, i)) | i ∈ N}.

���������

������

����
�

�
�
�

				









��������� � � � � � � � �

� � � � � � � �

� � � � � � �

� � � � � �

� � � � �

� � � �

� � �

� �

�

· · ·

u

The state u satisfies halt a∗ and wf a, but its equivalence class in any finite filtrate

does not satisfy either of these formulas. It follows that

Theorem 10.16: PDL < LPDL.

Proof By the preceding argument and Lemma 6.4, neither halt a∗ nor wf a is

equivalent to any PDL formula.

Theorem 10.17: LPDL < RPDL.

Proof sketch. For any i, let An and Bn be the structures of Figures 10.1 and 10.2,

respectively. The state ti of Bn is identified with the state s0 in its own copy of

An. For any n and i ≤ n, An, si � wf a∗b, but Bn, ti � ¬wf a∗b. However, for each
formula ϕ of LPDL, it is possible to find a large enough n such that for all i ≤ n,

Bn, ti � ϕ iff An, s0 � ϕ. This is proved by induction on the structure of ϕ. For the

MIT Press Math7X9/2010/08/25:15:15 Page 273



274 Chapter 10

� � � � �� � � � �s0 s1 s2

� �
s3 sn· · ·b b b b b

a a a a a

b

b

b

b
b

b

b

Figure 10.1
The structure An

� � � � �� � � � �
�

t0 t1 t2 t3 tn· · ·

An An An An An

a a a a a

b

Figure 10.2
The structure Bn

case of haltα, one uses the fact that in order to capture the infinite path of a’s and

b’s in Bn with a ¬haltα clause, say ¬halt (a∗b)∗ for example, there must exist

an infinite computation of α that after some finite bounded length consists solely

of a’s. Hence, this particular ¬haltα clause is already satisfied in An for sufficient

large n. The argument is similar to the proof of the pumping lemma for regular

languages; see Hopcroft and Ullman (1979) or Kozen (1997a).

It is possible to extend Theorem 10.17 to versions CRPDL and CLPDL in which

converse is allowed in addition to wf or halt. Also, the proof of Theorem 10.15 goes

through for LPDL and RPDL, so that <a−>1 is not expressible in either. Theorem

10.16 goes through for the converse versions too. We obtain the situation illustrated

in the following figure, in which the arrows indicate < and the absence of a path

between two logics means that each can express properties that the other cannot.

MIT Press Math7X9/2010/08/25:15:15 Page 274



Other Variants of PDL 275

PDL

LPDL

RPDL

CPDL

CLPDL

CRPDL

�
�
��

�
�
��

�
�
��

�
�
��

�
�

��

�
�

��

�
�

��

The filtration lemma fails for all halt and wf versions as in the proof of Theorem

10.16. However, satisfiable formulas of the μ-calculus (hence of RPDL and LPDL) do

have finite models. This finite model property is not shared by CLPDL or CRPDL.

Theorem 10.18: The CLPDL formula

¬halt a∗ ∧ [a∗]halt a∗−

is satisfiable but has no finite model.

Proof Let ϕ be the formula in the statement of the theorem. This formula is

satisfied in the infinite model

� � � � � � � �� � � � � � � � · · ·a a a a a a a a

To show it is satisfied in no finite model, suppose K, s � ϕ. By (10.6.2) and (10.6.5),

halt a∗ ⇐⇒ wf a ∧ [a∗]halt a
⇐⇒ wf a ∧ [a∗]1
⇐⇒ wf a,

thus K, s � ¬wf a. This says that there must be an infinite a-path starting at s.

However, no two states along that path can be identical without violating the clause

[a∗]halt a∗− of ϕ, thus K is infinite.

As it turns out, Theorem 10.18 does not prevent CRPDL from being decidable.

MIT Press Math7X9/2010/08/25:15:15 Page 275



276 Chapter 10

Theorem 10.19: The validity problems for CRPDL, CLPDL, RPDL, LPDL, and

the propositional μ-calculus are all decidable in deterministic exponential time.

Obviously, the simpler the logic, the simpler the arguments needed to show

exponential time decidability. Over the years all these logics have been gradually

shown to be decidable in exponential time by various authors using various tech-

niques. Here we point to the exponential time decidability of the propositional

μ-calculus with forward and backward modalities, proved in Vardi (1998b), from

which all these can be seen easily to follow. The proof in Vardi (1998b) is carried

out by exhibiting an exponential time decision procedure for two-way alternating

automata on infinite trees.

As mentioned above, RPDL possesses the finite (but not necessarily the small

and not the collapsed) model property.

Theorem 10.20: Every satisfiable formula of RPDL, LPDL, and the propositional

μ-calculus has a finite model.

Proof sketch. The proof uses the fact that every automaton on infinite trees that

accepts some tree accepts a tree obtained by unwinding a finite graph. For a

satisfiable formula ϕ in these logics, it is possible to transform the finite graph

obtained in this way from the automaton for ϕ into a finite model of ϕ.

CRPDL and CLPDL are extensions of PDL that, like PDL+aΔbΔ (Theorems 9.5

and 9.9), are decidable despite lacking a finite model property.

Complete axiomatizations for RPDL and LPDL can be obtained by embedding

them into the μ-calculus (see Section 17.4).

10.7 Concurrency and Communication

Another interesting extension of PDL concerns concurrent programs. Recall the

intersection operator ∩ introduced in Section 10.4. The binary relation on states

corresponding to the program α ∩ β is the intersection of the binary relations

corresponding to α and β. This can be viewed as a kind of concurrency operator

that admits transitions to those states that both α and β would have admitted.

In this section, we consider a different and perhaps more natural notion of

concurrency. The interpretation of a program will not be a binary relation on states,

which relates initial states to possible final states, but rather a relation between a

states and sets of states. Thus mK(α) will relate a start state u to a collection of sets

MIT Press Math7X9/2010/08/25:15:15 Page 276



Other Variants of PDL 277

of states U . The intuition is that starting in state u, the (concurrent) program α

can be run with its concurrent execution threads ending in the set of final states U .

The basic concurrency operator will be denoted here by ∧, although in the original

work on concurrent Dynamic Logic (Peleg (1987b,c,a)) the notation ∩ is used.

The syntax of concurrent PDL is the same as PDL, with the addition of the

clause:

• if α, β ∈ Π, then α ∧ β ∈ Π.

The program α ∧ β means intuitively, “Execute α and β in parallel.”

The semantics of concurrent PDL is defined on Kripke frames K = (K,mK) as

with PDL, except that for programs α,

mK(α) ⊆ K × 2K .

Thus the meaning of α is a collection of reachability pairs of the form (u, U), where

u ∈ K and U ⊆ K. In this brief description of concurrent PDL, we require that

structures assign to atomic programs sequential, non-parallel, meaning; that is, for

each a ∈ Π0, we require that if (u, U) ∈ mK(a), then #U = 1. The true parallelism

will stem from applying the concurrency operator to build larger sets U in the

reachability pairs of compound programs. We shall not provide the details here;

the reader is referred to Peleg (1987b,c).

The relevant results for this logic are the following:

Theorem 10.21: PDL < concurrent PDL.

Theorem 10.22: The validity problem for concurrent PDL is decidable in deter-

ministic exponential time.

Axiom System 5.5, augmented with the following axiom, can be be shown to be

complete for concurrent PDL:

<α ∧ β>ϕ ↔ <α>ϕ ∧ <β>ϕ.

10.8 Bibliographical Notes

Completeness and exponential time decidability for DPDL, Theorem 10.1 and the

upper bound of Theorem 10.2, are proved in Ben-Ari et al. (1982) and Valiev (1980).

MIT Press Math7X9/2010/08/25:15:15 Page 277



278 Chapter 10

The lower bound of Theorem 10.2 is from Parikh (1981). Theorems 10.4 and 10.5

on SDPDL are from Halpern and Reif (1981, 1983).

That tests add to the power of PDL (Theorem 10.6) is proved in Berman and

Paterson (1981), and Theorem 10.7 appears in Berman (1978) and Peterson (1978).

It can be shown (Peterson (1978); Berman (1978); Berman and Paterson (1981))

that rich-test PDL is strictly more expressive than poor-test PDL. These results

also hold for SDPDL (see Section 10.1).

The results on programs as automata (Theorems 10.10 and 10.11) appear in

Pratt (1981b) but the proofs sketched are from Harel and Sherman (1985). The

material of Section 10.4 on the intersection of programs is from Harel et al. (1982).

That the axioms in Section 10.5 yield completeness for CPDL is proved in Parikh

(1978a).

The complexity of PDL with converse and various forms of well-foundedness

constructs is studied in Vardi (1985b). Many authors have studied logics with a

least-fixpoint operator, both on the propositional and first-order levels (Scott and

de Bakker (1969); Hitchcock and Park (1972); Park (1976); Pratt (1981a); Kozen

(1982, 1983, 1988); Kozen and Parikh (1983); Niwinski (1984); Streett (1985b);

Vardi and Stockmeyer (1985)). The version of the propositional μ-calculus presented

here was introduced in Kozen (1982, 1983).

That the propositional μ-calculus is strictly more expressive than PDL with wf

was show in Niwinski (1984) and Streett (1985b). That this logic is strictly more

expressive than PDL with halt was shown in Harel and Sherman (1982). That this

logic is strictly more expressive than PDL was shown in Streett (1981).

The wf construct (actually its complement, repeat) is investigated in Streett

(1981, 1982), in which Theorems 10.16 (which is actually due to Pratt) and

10.18–10.20 are proved. The halt construct (actually its complement, loop) was

introduced in Harel and Pratt (1978) and Theorem 10.17 is from Harel and Sherman

(1982). Finite model properties for the logics LPDL, RPDL, CLPDL, CRPDL, and the

propositional μ-calculus were established in Streett (1981, 1982) and Kozen (1988).

Decidability results were obtained in Streett (1981, 1982); Kozen and Parikh (1983);

Vardi and Stockmeyer (1985); and Vardi (1985b). Deterministic exponential-time

completeness was established in Emerson and Jutla (1988) and Safra (1988). For the

strongest variant, CRPDL, exponential-time decidability follows from Vardi (1998b).

Concurrent PDL is defined in Peleg (1987b), in which the results of Section 10.7

are proved. Additional versions of this logic, which employ various mechanisms

for communication among the concurrent parts of a program, are considered in

Peleg (1987c,a). These papers contain many results concerning expressive power,

decidability and undecidability for concurrent PDL with communication.

MIT Press Math7X9/2010/08/25:15:15 Page 278



Other Variants of PDL 279

Other work on PDL not described here includes work on nonstandard models,

studied in Berman (1979, 1982) and Parikh (1981); PDL with Boolean assignments,

studied in Abrahamson (1980); and restricted forms of the consequence problem,

studied in Parikh (1981).

MIT Press Math7X9/2010/08/25:15:15 Page 279




