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1 Introduction to Random Walks

It will be useful to consider random walks on large graphs to study actions on other objects:
Eg:
1) We will model card shuffling as a random walk on the n! permutations of n objects.
2) We will look at a 2 dimensional lattice of particles (which will represent the states of

some system)
Two representative questions we might ask are:
1) Is a graph G connected? Of course, we can check this in polynomial time. If G is large,

however, we would also like to check this in small space. Deterministically, it is known how
to do this in O(log2 n) (or even a little better), although these algorithms are not polynomial
in time. We will use random walk techniques to give a probabilistic algorithm which takes
O(log n) space, and expected polynomial time.

2) (From card shuffling) Given a large set, we often would like to pick an element ap-
proximately uniformly at random. How quickly can we do this? The techniques we will use
in this problem will also be useful in approximately counting the size of the set, if this is not
known.

2 Basics

Suppose G is an undirected d-regular graph on n nodes. Then a random walk starts at some
node v, chooses a neighbor w of v uniformly at random, moves to w, and repeats. Then after
k steps, we have a probability distribution of which vertex one might be at. This corresponds
with a vector v(k) with one coordinate for each node (representing the probability we are at

that node) satisfying
∑

i∈V v
(k)
i = 1.

(More generally, we can consider starting our random walk with a probability distribution

v(0). Then starting at node i corresponds to the distribution v
(k)
i = 1, v

(k)
j = 0 for j 6= i)

Example

Consider K3, the triangle. We start at some vertex v1 with probability 1. After 1 step, we
have equal probability of walking towards each of the other vertices, so we are at v1 with
probability 0, and at v2, v3 with probability 1

2
each. And so forth (pictured below, with the

probability of being at a given vertex in steps 0 through 3 labelled)
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v_1

v 2v 3

1, 0, 1/2, 1/4, ...

0, 1/2, 1/4, 3/8, ...0, 1/2, 1/4, 3/8, ...

Recall that the adjacency matrix A of a graph G = (V, E) is an n × n matrix (where
n = |V |) with Aij = 1 if (i, j) ∈ E, 0 otherwise. The Laplacian L = I − A. We define
M = 1

d
A to be the transition matrix of G (so Mij is the probability that we move from i to

j in a step starting at i). So in the example above,

M =

 0 1
2

1
2

1
2

0 1
2

1
2

1
2

0


A stationary distribution of the random walk is a vector (probability distribution) σ

which is unchanged by one step: ie, σ such that Mσ = σ. Equivalently, σ is an eigenvector
for M with eigenvalue 1 (and since it’s a probability distribution,

∑
i∈V σi = 1, σi ≥ 0).

Then note the following:

Lemma 2.1 A, M have the same eigenvectors, with eigenvalues scaled by 1
d

Proof. We have that λ an eigenvalue of A iff there is some x with Ax = λx. But this occurs
iff Mx = 1

d
Ax = λ

d
x, ie, iff λ

d
is an eigenvalue of M (with the same eigenvalue x).

3 A Question

Recall from previous lectures that σ = 1
n

is a stationary distribution (since 1 an eigenvector
for A). Also, σ is unique iff G is connected. This lets us ask the following question:

Question: If we start from an arbitrary initial distribution v, and iterate the random

walk, will we converge to σ? (assuming G connected, so σ = 1
n

unique.)
Answer: As stated, no. For example, if G = X ∪ Y is bipartite, then we know whether

we’re in X or Y after k steps by the parity of k (so no convergence). (It turns out that this
is the only thing that can go wrong, but as many of the graphs we will be interested in turn
out to be bipartite, this is a serious drawback!)

The answer is yes, however, if we change our random walk to allow ourselves to “stall”
(stay at the same vertex v) at any v with probability 1

2
. This new idea of random walk
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has transition matrix M ′
ij = 1

2d
if i, j ∈ E, 0 if i 6= j not in E, and 1

2
if i = j. Thus,

M ′ = 1
2
I + 1

2d
A = 1

2
I + 1

2
M . Furthermore, Mx = λx iff (1

2
I + 1

2
M)x = (1

2
+ λ

2
)x, and

thus M, M ′ have the same eigenvectors, and λ an eigenvalue of M corresponds to 1
2
+ 1

2
λ an

eigenvalue of M ′.

4 Bounding Eigenvalues

Recall our notation from last lecture: we let λi = λi(L) be the ith eigenvalue of the Laplacian
(arranged in increasing order 0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λn). Then λi(A) = d− λi (arranged
in decreasing order), and hence λi(M) = 1

d
(d− λi) = 1− 1

d
λi and λi(M

′) = 1− λi

2d
. Denote

this last λ′i = λi(M
′).

How large can λn be?

Claim 4.1 The Laplacian matrix L of a d-regular graph G has λn ≤ 2d (and λn = 2d ⇐⇒
G is bipartite)

Proof.
Let x be the nth eigenvector, with corresponding eigenvalue λn.

Lx = λnx

What happens to the ith coordinate when x → Lx?

xi →
∑

(i,j)∈E

(xi − xj)

Suppose xi has the maximum absolute value. We can assume without loss of generality
that xi > 0. Then ∀i, j, xi − xj ≤ 2xi, so:

λnxi = (Lx)i =
∑

(i,j)∈E

(xi − xj) ≤ 2dxi

(Note that the only way to have this be an equality is if all coordinates xi have the same
magnitude and edges only connect pairs of nodes with opposite sign. This means we have a
bipartite graph.)

Since λ′i = 1− λi/2d, the claim implies that in M ′ we have:

1 = λ′1 > λ′2 ≥ λ′3 ≥ . . . ≥ λ′n ≥ 0

(Note that λ′n ≥ 0 holds because λ′i = 1−λi/2d, which holds because we set the probability
of “stalling” in the random walk to be 1/2. Had we chosen a smaller probability, λ′n could
be negative).
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5 Convergence of Random Walks

5.1 Proof of eventual convergence

Now we are going to prove that regardless of the initial probability distribution, a random
walk on a graph (with stalling) always converges to the stationary distribution σ. The
stationary distribution σ is defined as before to be the eigenvector of M (and M ′) with
eigenvalue 1. (Note that an eigenvector with eigenvalue 1 in M also has eigenvalue 1 in M ′).

Theorem 5.1 A random walk on a d-regular graph G (with self-loops as in M ′) converges
to σ from any initial distribution v.

Proof. The eigenvectors of M ′ form a basis ω1, . . . , ωn, so we can write v in terms of this
basis: v =

∑
i αiωi. Hence,

M ′v =
∑

i

αiM
′ωi =

∑
i

αλ′iωi

Iterating for k steps,

v → (M ′)kv =
∑

αi(λ
′
i)

kωi

For i 6= 1, we have λ′i < 1 and hence (λ′i)
k → 0 as k → ∞. These converge to 0

exponentially quickly, and the rate is determined by λ′2 (the second largest eigenvalue).
λ′1 = 1, so limk→∞(M ′)kv = α1ω1 = σ.

5.2 Rate of convergence

How quickly does v converge to the stationary distribution?

We will use the following fact for x ∈ Rd:

‖x‖1 ≤
√

d‖x‖2 ≤
√

d‖x‖1

Let q = α1ω1 (= first term of above sum).
Then, ∥∥∥q − (M ′)kv

∥∥∥
1
≤
√

n
∥∥∥q − (M ′)kv

∥∥∥
2

=
√

n
∥∥∥ n∑

i=2

αi(λ
′
i)

kωi

∥∥∥
2

=
√

n
( n∑

i=2

α2
i (λ

′
i)

2k
)1/2
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≤
√

n
( n∑

i=2

α2
i (λ

′
2)

2k
)1/2

=
√

n(λ′2)
k
( n∑

i=2

α2
i

)1/2

≤
√

n(λ′2)
k

The last inequality follows since (
∑n

i=2 α2
i )

1/2 ≤ ‖v‖2 ≤ ‖v‖1 = 1.

5.3 Maximum Relative Error

The maximum relative error per node is

max
i∈v

∣∣∣qi −
[
(M ′)kv

]
i

∣∣∣∣∣∣qi

∣∣∣
q is the first eigenvector, so qi = 1/n. Hence the maximum relative error is:

= n max
i∈v

∣∣∣qi −
[
(M ′)kv

]
i

∣∣∣
= n

∥∥∥q − (M ′)kv
∥∥∥
∞

≤ n
∥∥∥q − (M ′)kv

∥∥∥
1

≤ n
√

n(λ′2)
k

= n1.5(1− λ2

2d
)k

How many steps (k) must we take to be within max relative error δ?

We need n1.5(1− λ2

2d
)k ≤ δ, so take

k =
2d

λ2

(
(3/2) ln n + ln(1/δ)

)
≤ 3d

λ2

(
ln n + ln(1/δ)

)
To bound k in terms of the graph expansion α, we use the fact that λ2 ≥ α2

2d
(which was

proved at great expense in a previous lecture). Thus we can take

k =
3d
α2

2d

(
ln n + ln(1/δ)

)
=

6d2

α2

(
ln n + ln(1/δ)

)
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6 Connection to Markov Chains

We now present some of the more general phrasing and results used by mathematicians when
talking about random walks.

A Markov Chain C has a state set V (assume |V | = n, finite) and transition matrix M ,
where Mij = Probability of going from state i to j.

Let GC be the “state graph” of C. The nodes of GC are V . GC contains a directed edge
(i, j) if Mij > 0. (Note that the matrix equivalent to iterating C is v → vT M).

We present two definitions.

Definition 6.1 Markov Chain C is “irreducible” if the state graph GC is strongly connected.

Definition 6.2 Markov Chain C is “aperiodic” if the gcd(all cycle lengths in GC) = 1.

Here is a basic result about Markov Chains, which we will give without proof.

Theorem 6.3 Let C be a finite, irreducible, aperiodic Markov Chain. Then:
(1) ∃ unique stationary distribution σ (i.e. σT M = σT )
(2) σi > 0, ∀i ∈ V
(3) The expected time to return to state i starting from state i is 1/σi.

(4) If N(i, t)=number of visits to i in first t steps, then N(i,t)
t
→ σi almost surely.
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