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Outline

• Online auctions, automated bidding agents, the meta-game model

• Learning agents and regret minimization 
Hedge/Multiplicative-Weights algorithm - recap

• Short detour: On the convergence of regret minimization dynamics

• Auctions with learning agents

• Open problems (time permitting)
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Online auctions
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Example: keyword auctions

Auctioneer sets the allocations 
of items to bidders and their 

payments (per click)

An online 
search query

Bidders place bids 
for ad positions
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Automated bidding

Basic facts:

•  A very large industry (significant part of revenues for Google, Meta…)

•  Auctions run at fast rates (thousands per second and more)

•  Most of the bids are being placed by various auto-bidding tools

How does auto-bidding work? (in a nutshell)

•  Users enter key parameters into the auto-bidding agent interface

•  Then the agents place bids, interact, and learn

•  Users observe the long-term outcomes
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The classic auction setting

ad auction

bid bid

Allocation and payment

My 
utility

My 
utility
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The classic auction setting

ad auction

bid bid

Allocation and payment

My 
utility

My 
utility
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Utility = ቊ
value – payment,  if I win the item

 zero,  if I do not win 



The auto-bidding setting

Bidding 
agent A

Repeated 
ad auction

bids

Alice’s  
parameters

Bidding 
agent B

bids

Long-term outcomes

Optimize 
for Alice

My 
utility

My 
utility

Optimize 
for Bob

Allocations and payments

Bob’s 
parameters
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The auto-bidding setting

Bidding 
agent A

Repeated 
ad auction

bids

Alice’s  
parameters

Bidding 
agent B

bids

Long-term outcomes

Optimize 
for Alice

My 
utility

My 
utility

Optimize 
for Bob

Allocations and payments

Bob’s 
parameters

Agent dynamics 
in the auction

The “meta-auction”
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Learning 
agent A

Repeated Game

Actions

Alice’s  
parameters

Learning 
agent B

Long-term outcomes

Optimize 
for Alice

My 
utility

My 
utility

Optimize 
for Bob

Game outcomes

Bob’s 
parameters

Actions

The “meta-game”  
How and Why to Manipulate your Own Agent: On the Incentives 

of Users of Learning Agents [Kolumbus & Nisan, NeurIPS 2022]: 

Agent dynamics
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Learning agents in repeated games
• Basic idea: best-reply to learned (empirical) distribution of other 

bidders: “fictitious play” (a.k.a. “follow the leader”)
• But might sometimes lead to bad performance

• Improved idea: “soft best-reply” – play actions that performed better 
in the past with higher probability

• Studied since the 1950s and today

• Example: The Multiplicative Weights (MW) algorithm:

• Initialize 𝑤𝑎 = 1 for every action (bid) 𝑎. Then for 𝑡 = 1,2 … , 𝑇 

• Play action 𝑎 with probability  𝑤𝑎
𝑡/ σ𝑗 𝑤𝑗

𝑡 (Note: 𝑡 is an index, not an exponent) 

• After every step 𝑡, for every 𝑎, update the weights: 𝑤𝑎
𝑡+1 = 𝑤𝑎

𝑡 1 + 𝜖 𝑢𝑎
𝑡

 
where 𝑢𝑎

𝑡  is the utility of action 𝑎 at time 𝑡
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Multiplicative weights: summary and variants

• Hedge update rule:

• Utility: 𝑤𝑎
𝑡+1 = 𝑤𝑎

𝑡 1 + 𝜖 𝑢𝑎
𝑡

     or     𝑤𝑎
𝑡+1 = 𝑤𝑎

𝑡 𝑒𝜂𝑢𝑎
𝑡

• Loss:    𝑤𝑎
𝑡+1 = 𝑤𝑎

𝑡 1 − 𝜖 𝑙𝑎
𝑡
    or     𝑤𝑎

𝑡+1 = 𝑤𝑎
𝑡 𝑒−𝜂𝑙𝑎

𝑡

• Linear multiplicative weights:

• Utility: 𝑤𝑎
𝑡+1 = 𝑤𝑎

𝑡 (1 + 𝜖𝑢𝑎
𝑡 )

• Loss:    𝑤𝑎
𝑡+1 = 𝑤𝑎

𝑡 (1 − 𝜖𝑙𝑎
𝑡 )

In games:

Experts → actions

The utility from an action 𝑎 depends on actions of the others: 𝑢𝑎
𝑡  = 𝑢𝑎

𝑡 (𝑠).
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Regret-Minimizing Agents

• Regret-minimizing agents:

• Low regret: agents play such that the long-term average empirical payoffs approach the 
payoff of the best fixed strategy in hindsight

• Examples: MW, FTPL, OGD…

• Real-world bids in ad auctions are largely consistent with regret minimization 
[Nekipelov, Syrgkanis, Tardos 2015], [Noti & Syrgkanis, 2021]

• The dynamics approach the set of Coarse Correlated Equilibria (CCE) 

• But the set of CCEs may be too large to analyze quantities of interest 
(like the utilities, revenue, etc.)  → Analyze convergence of the dynamics
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An example: 

MW agents playing matching pennies

• The dynamics do not converge

• The dynamics’ time average does 
converge to the Nash equilibrium

Why the NE? In this example it is also 
the unique CCE [Calvó-Armengol 2006]

Detour: Convergence of no-regret dynamics (1)
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Does the distribution of play always converge? 

Theorem [Kolumbus & Nisan, NeurIPS 2022].  For every finite game in which the set 
of CCEs is not a singleton there exist regret-minimizing algorithms for the players 
whose empirical time-average joint dynamics do not converge to any point.

General no-regret dynamics → Convergence only with a unique CCE!
• Some potential games [Neyman 1997]

• Fully-mixed 2x2 games [Calvó-Armengol 2006]

• Dominance-solvable games

• Socially-concave games [Even-Dar, Mansour, Nadav 2009]

Analyze concrete classes of games and algorithms

Detour: Convergence of no-regret dynamics (2)
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Recap:

• A “meta-game” between 
users of bidding agents

• Regret-Minimizing agents:
• Approach the set of CCE distributions 

• Need to analyze convergence of average outcomes

• Generally, convergence is not guaranteed 

• Next: 
Auction setting, results for regret-minimizing agents
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Basic Auction Formats

Second-price auction rule: 
The highest bidder wins; pays to the platform an amount equal to the second highest bid  

First-price auction rule: 
The highest bidder wins; pays to the platform an amount equal to his own bid

The repeated auction setting:
• A single identical “item” is sold in every auction

• Each bidder has a fixed “value” 𝑣 for winning the item

• Auction determines the winner and his payment 𝑝

• The utility for a bidder is (𝑣 − 𝑝) if he wins, and zero otherwise

• Utilities are additive over auctions

Learning agents: A bidding agent calculates utility with the value reported by its user
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Basic Auction Formats

• Second-price auctions 
• Dominant strategy incentive compatible

• First-price auctions
• Not incentive compatible

• Equilibrium bids yield the second-price outcome

• But coarse equilibria can lead to different outcomes [Feldman, Lucier, Nisan, 2016]

Q 1: What are the outcomes when 
learning agents play these auctions?

Answers? 
Need to analyze the dynamics to 
see what is the meta-game that 

the users actually play.

Expect the high-value 
agent to win and pay the 

second price. Right?

Will the agents reach the 
second-price outcome? 

(Or not?)

Q 2: What value should the users 
report to their own agents?
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Second-Price Auction

Average bid 
∼ 0.27

Theorem 1 In the limit empirical distribution of MW agents in a second-price 
auction with values 𝑣 >  𝑤, the high agent bids uniformly in (𝑤, 𝑣]. The low 
agent bids with full support on [0, 𝑤] with monotone density. Thus, the high 
agent always wins and pays strictly less than the second price.

Player 1 value = 1

Player 2 value = 1/2
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Proof Idea
• For the low agent (with value 𝑤): 

• For bids 𝑖 < 𝑗 ≤ 𝑤, 𝑗 dominates 𝑖. Hence:

• Bid distribution is monotone increasing

• Probability of bidding exactly 𝑤 remains strictly positive

• For the high agent (with value 𝑣, where 𝑣 > 𝑤):
• Bids ≤ 𝑤 yield on expectation strictly lower utility than bids > 𝑤

• → Bids ≤ 𝑤 appear only finitely many times (w.h.p.)

• → After a finite number of auctions, the low agent always loses

• → From this point on, the low agent’s bid dist. stops changing

• → Low-agent bids < 𝑤 remain with strictly positive probability 
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Second-Price Auction

Average bid 
∼ 0.27

Theorem 1 In the limit empirical distribution of MW agents in a second-price 
auction with values 𝑣 >  𝑤, the high agent bids uniformly in (𝑤, 𝑣]. The low 
agent bids with full support on [0, 𝑤] with monotone density. Thus, the high 
agent always wins and pays strictly less than the second price.

Corollary: From the perspective of the users: The second-price auction with 
multiplicative-weights agents is not incentive compatible.

Player 1 value = 1

Player 2 value = 1/2



The second-price auction with MW 
agents is not incentive compatible

Example: 

• Alice has a (true) value of 0.4

• Bob has a (true) value of 0.5

• Assume that Bob bids the truth to his agent

• If Alice reports her true value 0.4 by Thm-1 she always looses (has zero utility)

• If Alice manipulates her own agent by misreporting her value as 1, she always wins 
and has on average a positive utility of 0.4 − 0.27 = 0.13

• Truthful declarations are not a dominant strategy and not even an equilibrium
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Value manipulation in second price auctions

• Alice (player 1): true value = 0.4

• Bob (player 2): true value = 0.5

• Bob declares the truth

• Alice declares 𝑥 to her agent

What is the meta-auction equilibrium 
between the users of these agents? 𝑥
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Meta-game equilibrium 

Multiple equilibria:

• One user declares a high value (max allowed)

• Other user declares anything < (2-) times the other’s true value

→ There exist inefficient equilibria, and

→ Revenue between zero and the first price 
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