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In this lecture, we explore the price of anarchy in multi-item auctions, a natural extension of single-item
auctions like first-price or all-pay auctions. The basic structure of such a problem is as follows: we have
n items, each sold separately via a first-price auction. Each player i has a value vij for item j, and we
assume each player desires at least one of the items and would like at most one item.

For a set of items A, the player’s valuation is as follows, vi(A) = max
i∈A

vij . There is free disposal, meaning

that if a player receives an item they did not want, they can discard it without any cost. Although more
sophisticated multi-item auction settings exist, we will focus on this basic valuation framework. One
even simpler assumption that many of multi-item auctions have is that the valuation function of a set
of items is additive.

Imagine there are n houses and m buyers. The socially optimal solution would be to match each person
to at most one house and each house to one person. Formally, we are interested in finding a matching
that maximizes the sum of values across all assignments:

max
M∈Matching

∑
(i,j)∈M

vij

In Homework 1, we studied how to compute such an optimal matching. However, we are not focused
on algorithmic computation today, but rather on how to measure efficiency loss, specifically through the
lens of the **Price of Anarchy** (PoA).

Given an arbitrary strategy profile S, we offer each player i a strategy S∗
i such that they do not regret

deviating to it. If player i is matched to item j in the optimal matching, we define their strategy as:

S∗
i := (0, . . . , 0,

vij
2
, 0, . . . , 0)

This strategy is motivated by two key observations: - We want to leverage the optimal matching struc-
ture. - Bidding half of their valuation

vij
2 tends to perform well in first-price auctions.

Now, what can we say about ui(S
∗
i , S−i)?

Claim 1. For any player i, and their utility under the strategy S∗
i , denoted ui(S

∗
i , S−i), satisfies:

ui(S
∗
i , S−i) ≥

vij
2

− pj(S)

where pj(S) is the price of item j in strategy profile S.

Proof. As before there are two cases.

• If player i wins item j he would pay his bid on item j in S∗
i , which is vij/2, and then they get

their value minus the price, which is vij − vij/2 = vij/2, the right hand side is smaller than this
by pj(S), so it satisfy the inequality.

• If if player i does not win item j it means pj(S) ≥ vij/2 and therefore ui(S
∗
i , S−i) is greater than

a negative number.
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If i has no item in the optimal matching then

S∗
i := (0, 0, . . . , 0)

and clearly,
ui(S

∗
i , S−i) ≥ 0

Now, we do the same trick as always; we sum this inequality over all the players. Thus,

∑
i

ui(S
∗
i , S−i) ≥

1

2

∑
(i,j∈M∗)

vij −
∑

jmatched inM∗

pj(S)

≥ 1

2
OPTSW−Rev(S)

where M∗ is the maximum value matching, OPTSW is the optimal social welfare, and Rev(S) is the
revenue under strategy profile S. Now, consider a mixed Nash equilibrium σ. We have

E
S∼σ

(ui(S)) ≥ E
S∼σ

(ui(S
∗
i , S−i))

This holds more generally for correlated equilibria (CCE) as well. If we sum over all the players∑
i

E
S∼σ

(ui(S)) ≥
∑
i

E
S∼σ

(ui(S
∗
i , S−i))

≥ E
S∼σ

(
1

2
OPTSW−Rev(S))

Hence we derived

E
S∼σ

(SW (S)) ≥ 1

2
OPTSW

Can players learn how to bid?

To enable players to learn optimal bidding strategies, we need to discretize the bid space, similar to the
previous lectures. Specifically, for each player i, we discretize their bids into the following set:

{0, εvij , 2εvij , . . . , (1− ε)vij}

where ε represents a small discretization parameter. This discretization introduces a tradeoff — we give
up a small ε-error but simplify the strategy space significantly. For simplicity, we assume 1/ε is an even
integer, so that vij/2 is included on the list as well.

The total number of possible strategies for each player depends on the number of items, m, and the level
of discretization. If each player can choose from 1/ε bid values for each item, then the total number of
strategies is (1/ε)m.

This presents a problem: the strategy space grows exponentially with the number of items m, making
it computationally infeasible for players to explore all possible strategies. To mitigate this, we restrict
each player to bid on only one item, reducing their strategy space to m · (1/ε), where m is the number
of items, and 1/ε is the number of discretized bid options per item.

Remember for this learning setting with T rounds of bidding, the regret bound for a player is given by:
√
2T ln k
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where k is the number of available strategies. In this case, k = m · 1/ε. Although the regret bound is
not overly large even with (1/ε)m strategies (namely it would be

√
2Tm ln 1/ε). The main challenge

is that running a regret-minimizing algorithm is computationally expensive due to the large number of
potential strategies.

Challenges in practical application

Although first-price auctions typically achieve a similar price of anarchy even with incomplete information
about the other players (a more realistic scenario), we cannot use the same argument here for the multi-
item case. The no-regret strategy we proposed earlier use the optimal matching to decide what to not
regret. This is a different match in each iteration, rather than a fixed strategy throughout the time,
which is what the no-regret algorithms guarantee. So there is a buck for Bayesian setting that what I
should not regret depends on the values of the other bidders and we do not know how to do that because
we do not know who else is around.
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