
CS 6840, Fall 2024 Lecture 26: Improved Learning: No Swap Regret

CS 6840 Algorithmic Game Theory Oct 28, 2024

Lecture 26: Improved Learning: No Swap Regret
Instructor: Eva Tardos Scribe: Andre Oganesian

1 Swap Regret

Regret quantifies how much worse an algorithm performs compared to the best fixed strategy in hindsight.
Traditional regret measures focus on comparing the cumulative utility of the algorithm to that of the
best single strategy. However, this approach does not account for the potential benefits of adapting our
strategy over time based on past performance.

To address this limitation, we introduce the notion of swap regret, which allows for more flexible com-
parisons. Instead of only considering switching to a single fixed strategy with hindsight, swap regret
evaluates the benefit of swapping each of our played strategies to possibly different strategies.

Our goal is to avoid swap regret, ensuring that we cannot significantly improve our cumulative utility
by swapping our strategies after observing the entire sequence of plays. Specifically, we aim to satisfy
the following condition: for all pairs of strategies s, s′ ∈ S,

T∑
t=1

ut(st) ≥
∑

t:st ̸=s

ut(st) +
∑

t:st=s

ut(s′)−Reg,

where:

• T is the total number of time steps.

• st is the strategy played at time t.

• ut(s) is the utility obtained by playing strategy s at time t.

• Reg is the regret term.

This inequality implies that our cumulative utility
∑T

t=1 u
t(st) is at least as great as the utility we would

have obtained by replacing every occurrence of strategy s with strategy s′, up to the regret term Reg.
In other words, the regret quantifies how much better we could have done by swapping strategy s for s′

whenever we played s.

1.1 Alternative Formulation

A more general way to express swap regret, albeit with a slightly larger regret term, is to consider all
possible mappings π : S → S. We then aim to satisfy:

T∑
t=1

ut(st) ≥
T∑

t=1

ut(π(st))−Reg.

1

CS 6840, Fall 2024 Lecture 26: Improved Learning: No Swap Regret

In this formulation, for every strategy s ∈ S, we consider swapping it to another strategy π(s). The
mapping π need not be a permutation, meaning it can map multiple strategies to the same strategy.
However, in this second version, using π(st), the regret term Reg may be larger than in the previous
inequality.

If we restrict π to be a constant function, i.e., π(s) = s′ for all s ∈ S, then swap regret reduces to the
standard regret (sometimes also called external regret) with respect to strategy s′.

2 Reducing External Regret to Swap Regret

Our objective is to design an algorithm that achieves low swap regret by leveraging external no-regret
algorithms. Specifically, we aim to find a reduction that transforms any external no-regret algorithm
into one that minimizes swap regret.

The key idea is to create a copy of the external no-regret algorithm for each strategy s ∈ S. For each
strategy, we have a separate algorithm As, which is responsible for managing the potential swapping
from strategy s to other strategies.

2.1 Algorithm Description

The algorithm operates as follows:

1. Initialize Algorithms: For each strategy s ∈ S, run an instance of a classical no-regret algorithm
As.

2. Obtain Recommendations: At each time step t, each algorithm As outputs a probability
distribution over strategies, denoted by qts = (qts,1, q

t
s,2, . . . , q

t
s,k), where k = |S|.

3. Compute Overall Distribution: We solve for the probability distribution pt = (pt1, p
t
2, . . . , p

t
k)

that satisfies:

pti =

k∑
s=1

ptsq
t
s,i, for all i = 1, . . . , k.

In matrix notation, this equation becomes:

pt = Qtpt,

where Qt is the k × k matrix whose s-th row is qts.

4. Sampling Strategy: We sample a strategy st according to the distribution pt and play it.

5. Feedback to Algorithms: After observing the utility ut(st), we provide feedback to each algo-
rithm As. We feed algorithm As the scaled utilities:

ũt
s(s

′) = ptsu
t(s′), for all s′ ∈ S.

6. Update Algorithms: Each algorithm As updates its internal state based on the received utilities
ũt
s(s

′).

2

CS 6840, Fall 2024 Lecture 26: Improved Learning: No Swap Regret

2.2 Explanation of the Algorithm

The intuition behind the algorithm is that each As is responsible for evaluating whether swapping
strategy s to another strategy s′ would have been beneficial. By running these algorithms in parallel
and combining their outputs, we aim to minimize swap regret.

The equation pt = Qtpt ensures consistency between the individual recommendations and the overall
distribution. Importantly, a solution to pt = Qtpt always exists because Qt is a stochastic matrix (each
row sums to 1), so that p is simply an eigenvector of Q with an eigenvalue of 1. This also means that pt

is the stationary distribution of the Markov chain defined by Qt.

3 Analysis of the Algorithm

3.1 No-Regret Condition for Each As

Each algorithm As receives the utilities ũt
s(s

′) = ptsu
t(s′) and provides a distribution qts. The expected

utility for As at time t is:

Ũ t
s = pts

k∑
i=1

qts,iu
t(si).

The no-regret condition for As states that over T time steps, for any strategy s′ ∈ S,

T∑
t=1

Ũ t
s ≥

T∑
t=1

ptsu
t(s′)−Regs,

where Regs is the regret of algorithm As. This inequality ensures that As does not regret not consistently
swapping to any particular strategy s′.

3.2 Aggregating the Utilities

Summing the expected utilities over all algorithms As, we have:

k∑
s=1

T∑
t=1

Ũ t
s =

T∑
t=1

k∑
s=1

pts

k∑
i=1

qts,iu
t(si).

Using the fact that pti =
∑k

s=1 p
t
sq

t
s,i, this simplifies to:

k∑
s=1

T∑
t=1

Ũ t
s =

T∑
t=1

k∑
i=1

ut(si)p
t
i.

This expression represents the total expected utility of our algorithm over T time steps.

3

CS 6840, Fall 2024 Lecture 26: Improved Learning: No Swap Regret

3.3 Bounding the Swap Regret

We have already defined the swap regret each individual algorithm As. Now, for each algorithm As, we
apply the no-regret condition with s′ = π(s). Specifically, for each s ∈ S,

T∑
t=1

Ũ t
s ≥

T∑
t=1

ptsu
t(π(s))−Regs.

Summing this inequality over all s ∈ S, we obtain:

k∑
s=1

T∑
t=1

Ũ t
s ≥

k∑
s=1

T∑
t=1

ptsu
t(π(s))−

k∑
s=1

Regs.

Using the aggregated utilities from the previous subsection, we substitute:

k∑
s=1

T∑
t=1

Ũ t
s =

T∑
t=1

k∑
i=1

ut(si)p
t
i.

Therefore, the inequality becomes:

T∑
t=1

k∑
i=1

ut(si)p
t
i ≥

T∑
t=1

k∑
s=1

ptsu
t(π(s))−

k∑
s=1

Regs.

where the RHS of the inequality is exactly the expected utility of swapping to π(s) at each step, minus
the total regret of the individual algorithms.

Thus, this demonstrates that our algorithm’s cumulative utility is at least as much as what we would
have obtained by applying the mapping π to swap strategies, up to the total regret of the individual
algorithms.

3.4 Regret Bound

Since each As is a classical no-regret algorithm with regret Regs = O(
√
T ln k), the total regret is:

Regtotal =

k∑
s=1

Regs = O(k
√
T ln k).

Thus, the swap regret of our algorithm is bounded by O(k
√
T ln k), which grows sublinearly with T .

4

CS 6840, Fall 2024 Lecture 26: Improved Learning: No Swap Regret

3.5 Improving the Regret Bound

Recall that each algorithm As is a classical no-regret algorithm over the k strategies. Looking back to
our analysis of the Hedge algorithm, the regret for As over the T time steps is bounded by

T∑
t=1

Ũ t
s ≥ (1− ε)

T∑
t=1

ũt
s(s

′)− ln k

ε

where ε > 0 is a parameter of the algorithm, and Ũ t
s is the expected utility received by As at time t

Using this bound for each As and mapping π : S → S we have:

T∑
t=1

Ũ t
s ≥ (1− ε)

T∑
t=1

ũt
s(π(s))−

ln k

ε

where summing over all s we get, using our previously calculated expressions,

T∑
t=1

k∑
s=1

ut(si)p
t
i ≥ (1− ε)

T∑
t=1

k∑
s=1

ptsu
t(π(s))− k ln k

ε

Since our goal is to bound the difference between the cumulative utility of our algorithm and that of the
best swap strategy in hindsight, the swap comparators utility is given by

Uswap =

T∑
t=1

k∑
s=1

ptsu
t(π(s))

Plugging this in and rearranging we get

Regtotal = Uswap −
T∑

t=1

k∑
s=1

ut(si)p
t
i ≤ εUswap +

k ln k

ε

We can then choose the clear bound Uswap ≤ T to get

Regtotal ≤ εT +
k ln k

ε

Solving this involves basic calculus, by differentiating to get the optimal epsilon as ε∗ =
√

k ln k
T which

gives us the final bound
Regtotal ≤ 2

√
kT ln k

Thus, our algorithm also achieves a swap regret with a sublinear dependence on k, of the orderO(
√
kT ln k).

4 Extension to Partial Information

In the previous analysis, we assumed a full-information setting where each algorithm As knows the
utilities ut(s′) for all strategies s′ ∈ S. To adapt our algorithm to the partial-information setting, we
modify the feedback provided to the algorithms As.

5

CS 6840, Fall 2024 Lecture 26: Improved Learning: No Swap Regret

4.1 Modified Feedback

Specifically, at each time step t, the estimated utility for strategy s′ is defined as:

ût(s′) =

0, if s′ ̸= st,
ut(s′)

pt(s′)
, if s′ = st.

Each algorithm As receives a scaled version of this estimated utility, where the utility provided to As is:

ũt
s(s

′) = pt(s) · ût(s′).

Notice that when s = s′, the scaling factor pt(s) cancels out.

Thus, each algorithm As still operates as if in the full-information setting, while simply receiving these
scaled utilities.

6

