CS 6840 Algorithmic Game Theory

October 9, 2024

Lecture 19: Congestion games and Potential games

Instructor: Eva Tardos

Scribe: Onur Ünlü

1 Atomic Routing

We first review the problem setting of atomic routing from the last lecture. The atomic routing game is played with $n \in \mathbb{N}$ users, each choosing paths P_i that connect source-destination pairs $s_i \to t_i$, and edgewise costs $c_e(x)$ that depend on the flow x over the edges, which we denote by $f(e) \stackrel{\triangle}{=} \#\{i : e \in P_i\}$. Each player *i* simply aims to minimize the cost/delay it faces by choosing a path P_i that connects s_i , and t_i . Therefore, we can write the cost of an arbitrary player *i* or equivalently the cost of the path that this player chooses by

$$\operatorname{cost}_{i}(f) = \operatorname{cost}_{P_{i}}(f) = \sum_{e \in P_{i}} c_{e}\left(f(e)\right), \tag{1}$$

where the flow f is induced by the paths chosen by players (P_1, \ldots, P_n) .

Now, we introduce a fact about the atomic routing game which seems magical at first but is really useful and makes a class of games with very useful properties.

Fact 1. In an atomic routing game, there exists a function Φ which satisfies

$$\Phi(P_1,\ldots,P_n) - \Phi(P_1,\ldots,Q_i,\ldots,P_n) = cost_i(P_1,\ldots,P_n) - cost_i(P_1,\ldots,Q_i,\ldots,P_n) \quad \forall i.$$
(2)

Although this fact was presented abruptly we will see that it implies very useful results regarding the atomic routing game, and it actually means that the atomic routing game is a *potential* game which we introduce now.

Definition 1. Given a game with a set of strategies S_i , and cost function $c_i : S := \times_j S_j \to \mathbb{R}$ defined for each player, we say that the game is a *potential* game if there is a *potential* function $\Phi : S \to \mathbb{R}$ that satisfies

$$\Phi(s) - \Phi(s', s_{-i}) = c_i(s) - c_i(s', s_{-i}) \quad \forall i, s' \in S_i.$$
(3)

Now we formally show that the atomic routing game is a potential game in the following theorem.

Theorem 1. The atomic routing game admits a potential function regardless of the nature of the cost function on the edges as long as it only depends on the flow on the edge.

Proof. We prove that the atomic routing game is a potential game by directly constructing a potential function Φ as follows

$$\Phi(f(P)) = \sum_{e} \sum_{k=1}^{f(e)} c_e(k),$$
(4)

where f(P) denotes the flow induced by the path profile $P = (P_1, \ldots, P_n)$ chosen by the players.

Now consider that the flow of player *i* is removed from the game, i.e., its chosen path P_i is removed and therefore replaced by \emptyset , we will now calculate

$$\Phi(f(P_1,\ldots,P_i,\ldots,P_n)) - \Phi(f(P_1,\ldots,\emptyset,\ldots,P_n)).$$
(5)

Notice that removing the flow of player i simply reduces the flow on the edges that are a part of the path P_i by one. Therefore, we get

$$\Phi(f(P_1, \dots, P_i, \dots, P_n)) - \Phi(f(P_1, \dots, \emptyset, \dots, P_n)) = \sum_{e \in P_i} \sum_{k=1}^{f(e)} c_e(k) - \sum_{e \in P_i} \sum_{k=1}^{f(e)-1} c_e(k)$$
(6)

$$= \sum_{e \in P_i} c_e\left(f(e)\right) \underset{(a)}{=} \operatorname{cost}_i\left(f(P)\right), \tag{7}$$

where (a) simply follows from the definition of the $cost_i$. By the same argument we can argue that

$$\Phi\left(f(P_1,\ldots,\emptyset,\ldots,P_n)\right) - \Phi\left(f(P_1,\ldots,Q_i,\ldots,P_n)\right) = -\operatorname{cost}_i\left(f(P_1,\ldots,Q_i,\ldots,P_n)\right).$$
(8)

Since this analysis holds for any player i, and any path profiles we get

$$\Phi(f(P)) - \Phi(f(P_1, \dots, Q_i, \dots, P_n)) = \operatorname{cost}_i (f(P)) - \operatorname{cost}_i (f(P_1, \dots, Q_i, \dots, P_n)) \quad \forall i, Q_i, \text{ and } P, (9)$$

which completes the proof.

The fact that the atomic routing game is a potential game has very useful implications. First of all, notice that any deviation for an arbitrary player i that reduces their individual cost actually reduces the potential function as well. We provide the results on repeated better response in the following corollary using this simple observation.

Corollary 1. Repeated better response followed by players where a single player is allowed to deviate at every time-step decreases the potential at each time-step, which implies:

- The dynamics do not cycle as the potential function can never increase,
- The strategy profile of the players will reach a Nash equilibrium, and end in finite time.

Note that although the repeated better response will reach a Nash equilibrium and end in finite time, it does not imply that this finite time is computationally efficient. The existence of a potential function also implies that there exists a pure Nash equilibrium which we formalize in the following corollary.

Corollary 2. The flow f minimizing $\Phi(f)$ is a Nash equilibrium.

Again note that the flow f minimizing $\Phi(f)$ being a Nash equilibrium does not imply that it is computationally tractable to find the Nash equilibrium since finding min $\Phi(f)$ is NP-complete.

2 Non-Atomic Setting

Now we turn back to the non-atomic setting where the players are characterized as infinitesimally small parts of a flow. Similar to the atomic setting, we show that the game admits a potential function just as before which we formalize in the following claim

Claim 1. The non-atomic routing game admits a potential function defined as

$$\Phi(f) = \sum_{e} \int_{0}^{f(e)} c_e(x) dx =: \sum_{e} \sigma_e\left(f(e)\right),$$

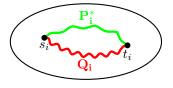
where the last equality follows by defining $\sigma_e(f(e)) := \int_0^{f(e)} c_e(x) dx$.

Notice that the potential function for the non-atomic setting is analogous to the atomic setting with the summation term replaced by the integral. We omit the proof that this is a valid potential function but note that the proof is analogous to the proof for the atomic setting as well: consider a infinitesimally small flow removed from a path to model an arbitrary player i being removed which corresponds to the derivative of the potential function, characterizing this derivative one can see that it is equal to the individual cost of a player i.

Similar to the atomic setting, the existence of the potential function implies the existence of a pure Nash equilibrium which we formalize in the following theorem.

Theorem 2. The flow $f^* = \arg \min_f \Phi(f)$ is a Nash equilibrium flow.

Proof. First note that we use P^* to denote the path profile of players that induce the flow f^* .



We will complete the proof by contradiction, therefore assume that there exists a path Q_i such that the cost of an arbitrary player *i* deviating to follow Q_i is less than the cost of following the path chosen by this player *i* in the path profile P^* denoted by P_i^* . In other words, assume that there exists Q_i such that

$$\operatorname{cost}_{P_i^*}(f^*) = \sum_{e \in P_i^*} c_e\left(f^*(e)\right) > \sum_{e \in Q_i} c_e\left(f^*(e)\right) = \operatorname{cost}_{Q_i}(f^*).$$
(10)

Now consider the effect of player *i* changing from P_i^* to Q_i on potential function, which will increase the flow on path Q_i by an infinitesimal amount, δ whereas it decreases the flow on path P_i^* by the same amount. The corresponding effect on the cost functions caused by this infinitesimal change can be captured by δ times the derivative of the potential function with respect to the flow over the edges as

$$\Phi(f^*) - \Phi(f(Q_i, P^*_{-i})) = \sum_{e \in P^*_i} \delta \cdot \sigma'_e(f^*(e)) - \sum_{e \in Q_i} \delta \cdot \sigma'_e(f^*(e))$$
(11)

$$= \delta \Big[\sum_{e \in P_i^*} c_e \left(f^*(e) \right) - \sum_{e \in Q_i} c_e \left(f^*(e) \right) \Big] \underset{(a)}{>} 0, \tag{12}$$

where (a) follows from the assumption that $\cot_{P_i^*}(f^*) > \cot_{Q_i}(f^*)$. This is a clear contradiction since the flow $f^* = \arg\min_f \Phi(f)$, therefore we get that there exists no path for any player to deviate to which results in a decrease in experienced cost at the minimizing flow f^* meaning that f^* is a Nash equilibrium.

Now that we have shown that the flow $f^* = \arg \min_f \Phi(f)$ is a Nash equilibrium, the remaining question is whether we can compute $\min_f \Phi(f)$. In contrast to the atomic setting we provide a positive answer to this question in the non-atomic setting: Notice that Φ consists of $\sigma_e(y)$, and further notice that $\sigma_e(y)$ is a convex function if the cost functions $c_e(x)$ are monotonically increasing since we have $\sigma'_e(y) = c_e(y)$. Therefore if we have that the cost functions $c_e(x)$ are monotonically increasing functions the following holds

- The minimum value of the potential function $\min_f \Phi(f)$ can be found via convex optimization techniques,
- Notice that the proof we had for Theorem 2 only required that the deviations from the flow f^* by an infinitesimal amount do not decrease the potential function, thus any local optima as well as the global optimum is actually a Nash equilibrium. Since the objective function is now convex when the cost functions $c_e(x)$ are monotonically increasing functions there are no local optima, therefore any Nash equilibrium corresponds to a global optimum.