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1 Recap

Definition 1 (Extensive form games). Extensive form games are specified with a game tree. Each node
of the tree is associated with a player or a random choice. Leaf nodes are labeled with payoffs. The
game proceeds as follows. A pebble starts at the root node. When the pebble is at node v, the player
who owns node v gets to decide to which child of v to move the pebble. At a “random choice” node v,
the pebble is moved to a random child of v. The game ends when the pebble reaches a leaf node [ and
the players receive the payoffs associated with [.
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Figure 1: A sample game tree and information sets

We say that a game is full information if a player knows which node they are in at any give point.
Most games are not full information. For example, if the second and third move in a game are made
simultaneously, we think of the moves being made sequentially but we do not allow the move of either
player to depend on the move of the other player. To model this, we introduce the notion of information
sets. An information set is simply a set of nodes associated with a player 7. For every information set Z
associated with player 4, player 7 will never know which node of Z they are in, they will only know that
they are in one of the nodes of Z. Therefore, for every player ¢ and information set Z for i, we impose
the constraint that player ¢ must play the same strategy at every v € Z.

For example, in Figure 1, the blue set and green set are information sets. We can think of the first two
moves of the associated game as being made simultaneously since the blue set imposes the constraint
that player 2’s first move does not depend on player 1’s first move.

We assume perfect recall, which means that every player knows which moves they have played to this
point. So for example, the green set in Figure 1 is an invalid information set in a perfect recall game
since player 1 remembers whether they took the left or right path in their first move, and thus should
be allowed to make different decisions on f vs. g, h, j.
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2 Strategy formulation

There are several different ways to write a strategy for an extensive form game. One is to write it as a
combination of pure strategies. But notice that if we let & be the number of options at each node in the
tree and n be the number of decision nodes for player i, then the number of pure strategies for player 4
is only bounded above by k™, which is exponential in the size of the game tree. We therefore propose
the following, better, description of a randomized strategy.

Definition 2 (The z-formulation). For each node v, we give a probability distribution on choices. In
particular, we let % (j) denote the probability that player i chooses option j at node v. Furthermore,
to impose the aforementioned information set restriction, we introduce the constraints that for every Z
belonging to player i, for every v € Z, x?(j) is the same.

Notice that the size of a strategy in the z-formulation is at most n - k, where n is the number of nodes
and k is the number of choices at each node. The z-formulation gives us an efficient way to represent
strategies since n - k is polynomial in the size of the game tree.

However, in the z-formulation, the probability of reaching leaf [ is the product of some x variables and
this leads to a highly non-linear system.

We note that such formulations only lead to strategy formulations which are polynomial in the size of
the game tree, not necessarily polynomial in the size of the input. There exist some games where the
most natural input is a rule-set which implicitly defines an exponentially sized game tree. In these cases,
our strategy formulation is not polynomial in the input size. But we restrict our attention to cases where
the input is an explicit game tree.

3 An unintuitive strategy formulation

We now modify the above formulation to give an unintuitive, yet equivalent formulation for extensive
form game strategies.

Definition 3 (The z-formulation). We define new variables z(v) for every node v. For a node v and
player i, z;(v) is the probability that player ¢ makes the correct moves to make it to node v (assuming
that all other players made moves which allow player i to make the necessary decisions to arrive at v).
Formally, z;(v) is the product of probabilities on the path from the root of the tree to node v.

Let v be a node with children wy,...,w, where decision j on node v leads to w;. Notice that the
following constraints must apply to z;.
1. z;(v) > 0.

2. For all i, z;(root) = 1. The probability that player ¢ makes the correct moves to arrive at the root
is 1 since all players start at the root by default.

3. If v is not a node belonging to player 4, then for all j € [m], z;(v) = z;(w;). This follows immediately
from the fact that z;(v) is the product of probabilities on the path from the root of the tree to
node v and 7 does not own v.

4. If v is a node belonging to i, then
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Proof. By the definition of z, we have that for all j € [m], z;(w;) = z;(v) -z
over all j we get

(j). Summing up
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where the last equality follows from the fact that > jem] 2! (j) = 1 because player i must go to
one of the children of v from v. [ |

5. Say v and v are nodes for player 7 which are in the same information set. If the same move allows

player i to move from v to w; and from v’ to wj, then 2;(w;) = 2 (w}).

We now state the key insight that lets us work with the z-formulation instead of the z-formulation.
Theorem 1. z(j) and z;(v) are in one-to-one correspondence.

For every z-formulation there exists a unique z-formulation, and vice versa. This is not too hard to see
since there exist natural algorithms to transform z-formulations to z-formulations and vice versa.

4 Zero-sum games

We now show that the z-formulation of a 2-person zero-sum game allows us to solve for Nash equilibrium
in polynomial time.

The strategy z; (in the z-formulation) is a Nash equilibrium with expected payoff X if 1) it satisfies all
above constraints on z and 2) given z1, the best response I' for player 2 played against z; results in a
payoff of at least A. Since this is a zero-sum game, this formulation of Nash equilibria naturally leads to
a max-min problem to compute Nash equilibria, player 1 is maximizing payoff over z while player two
then minimizes over I". This is very close to the linear programming formulation we used to solve zero
sum games in a previous lecture (since all constraints on z are linear), but I" gives us some trouble.
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Figure 2: A game tree where the I' is highlighted green

Let us consider I', the best response for player 2 given that player 1 plays z;. Notice that many leaves
will be unreachable under I'. For example, in Figure 2 node m is unreachable under I'. Let a1 (v) denote



CS 6840, Fall 2024 Lecture 27: Equilibria in 0-sum extensive form games

the payoff that player 1 receives upon reaching leaf node v. We see that the payoff that player 1 receives
playing z; against player 2’s best response I is

Z z1(v)aq (v),

v reachable
which is polynomial-time computable.

However, we still have too many I" to quantify over, there are an exponential number of pure strategies
T" that player 2 could play. Fortunately, it was shown in the 1980s that linear programming techniques
(ellipsoid method) can be used to solve such problems.

Fact: If given a proposed z, we can find

arg min > awai(v),

v reachable
then we can find a Nash equilibrium for zero-sum extensive form games.

Can we find such a I" given z;(v)? We need a subroutine to compute a best response for player 2 given
player 1’s strategy. This turns out to be easy. We can use a similar approach to the one we saw in the
last lecture to solve perfect information games. In particular, we can find I' bottom-up by choosing I' at
each level to be the strategy (compatible with information set constraints for player 2) which maximizes
the expected payoff for player 2 given that we know what will be played at all lower levels.



