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Instructor: Eva Tardos Scribe: Arnav Agrawal

In this lecture, we will look at a new way to analyze the price of anarchy for games.

1 Introduction

We have seen two ways to analyze the quality of equilibrium in games until now:

• (λ, µ)-smoothness: Obtain inequalities for the costs of players in terms of the socially optimal costs
and the equilibrium revenue. Selectively summing these inequalities can give us a bound on the
price of anarchy. This extends to learning, and is very prevalent in the community.

• Price of Stability: The equilibrium is optimizing the wrong function, how wrong is that function?
In the example we covered, we saw that the equilibrium was not optimizing the objective, but
locally optimizing instead. This gives us the actual price of anarchy result if we can show that the
optimum is unique.

In this lecture, we will look at a third style known as equilibrium analysis.

2 Problem Setup

We will use the Bandwidth Sharing Game as an example of how to use equilibrium analysis to find
the price of anarchy. This is used by companies like Zillow to determine how to divide advertising
opportunities on their webpages. The game is defined as follows:

• There is a fixed amount of resources - normalized to 1.

• Each player i has a value vi(xi) of advertising on some proportion xi ∈ [0, 1] of the resource. We
assume that vi obeys the following properties:

– Non-negative: vi(xi) ≥ 0 for all xi ∈ [0, 1]. This is a fair assumption, since a player would
not participate in the game if they got negative value from it.

– Continuous and differentiable: vi is continuous and differentiable. This allows us to use
calculus in our analysis of the game.

– Monotone increasing: This is a reasonable assumption, since a larger proportion of the
resource must provide a higher value.

– Concave: This is a reasonable assumption in the Zillow-like advertising game due to dimin-
ishing returns from more ads. However, this might not hold in a general bandwidth sharing
problem. For instance, if a player wants to use network bandwith to stream a video, their
value will be 0 until they get a high enough bandwidth - which would violate the concavity
assumption.
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• The game is played in the following way:

– Each player i submits a bid wi.

– The auctioneer (Zillow, for example) collects all bids (All-Pay) and distributes the resource
proportionally to the bids.

– Player i gets xi =
wi∑
j wj

of the resource.

– Player i’s utility is vi(xi)− wi.

For example, suppose there are two players with value functions v1(x) = 3x and v2(x) = 6x. If player 1
bids w1 = 1 and player 2 bids w2 = 2, then player 1 will get x1 = 1

3 of the resource and player 2 will
get x2 = 2

3 of the resource. The utility of player 1 is v1(x1)− w1 = v1
(
1
3

)
− 1 = 3 · 1

3 − 1 = 0, and the

utility of player 2 is v2(x2)− w2 = v2
(
2
3

)
− 2 = 6 · 2

3 − 2 = 2.

3 Equilibrium Analysis

When trying to determine the price of anarchy, we want to find the ratio of the worst-case Nash equi-
librium social cost to the optimal social cost. In the proof, we will:

1. Derive conditions, in terms of xi, that a Nash equilibrium must satisfy.

2. Demonstrate that restricting the value functions to be of the form vi(xi) = ai · xi will only make
the price of anarchy worse.

3. Use the simplified value function to reason about the worst-case Nash as well as the socially
optimum allocation.

3.1 Conditions for Nash

Note that a set of strategies (w1, w2, . . . , wn) is a Nash equilibrium if no player can unilaterally deviate
and improve their utility. That is, for all i:

ui(wi, w−i) ≥ ui(w
′
i, w−i) ∀w′

i

=⇒ wi = argmax
w

ui(w,w−i)

Using the definition of utility, we can expand this to:

wi = argmax
w

(vi (xi)− wi)

= argmax
w

vi

(
w

w +
∑

j ̸=i wj

)
− w

Since vi is continuous and differentiable, we can differentiate with respect to w and set the derivative to
0 to find w that maximizes the expression:

d

dw

(
vi

(
w

w +
∑

j ̸=i wj

)
− w

)
= 0 (1)
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Note that the argument of vi is a function of w and it can be written as:

w

w +
∑

j ̸=i wj
=

w +
∑

j ̸=i wj −
∑

j ̸=i wj

w +
∑

j ̸=i wj

= 1−
∑

j ̸=i wj

w +
∑

j ̸=i wj

=⇒ d

dw

(
w

w +
∑

j ̸=i wj

)
=

d

dw

(
1−

∑
j ̸=i wj

w +
∑

j ̸=i wj

)

=

∑
j ̸=i wj

(w +
∑

j ̸=i wj)2

Using the result above, and applying chain rule to our original expression (1), we get:

v′i

(
w

w +
∑

j ̸=i wj

)
·

∑
j ̸=i wj

(w +
∑

j ̸=i wj)2
− 1 = 0

Note that the term
(

w
w+

∑
j ̸=i wj

)
is the proportion of the resource that player i gets. That is, xi =

w
w+

∑
j ̸=i wj

. Additionally, setting p =
∑

j wj (i.e. the price of the auction), we can rewrite the above

equation as:

v′i (xi) ·
∑

j ̸=i wj

(w +
∑

j ̸=i wj)2
= 1

=⇒ v′i (xi) ·
∑

j ̸=i wj

(w +
∑

j ̸=i wj)
= (w +

∑
j ̸=i

wj) = p

=⇒ v′i (xi) · (1− xi) = p

Where the last step follows from the fact that we are adding the proportions of all players except
i, and the sum of all proportions is 1. Therefore, in a Nash equilibrium each player i must satisfy:
v′i (xi) · (1− xi) = p.

3.2 Simplifying value functions

Let xi be the proportion of the resource that player i gets in a Nash equilibrium. Set v̄i to be the linear
approximation of vi around xi:

x

vi(x)

xi (Nash)

vi(x)

v̄i(x)
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Algebraically, this looks like:

v̄i(x) = vi(xi) + v′i(xi) · (x− xi)

Using the graph, we can make the following observations:

1. We took the approximation around xi, so:

(a) The value of v̄i(x) is the same as vi(x) at x = xi.

(b) The slope of v̄i(x) is the same as the derivative of vi(x) at x = xi.

2. Since vi is concave, v̄i(x) is always at least as high as vi(x) for all x.

These observations inform the following claims:

Claim 1: The Nash equilibrium under v̄i is the same as the Nash equilibrium under vi.

Proof. From observation 1b and the condition we derived for Nash equilibrium, we know that the xi that
satisfies the Nash equilibrium condition for vi is the same as the xi that satisfies the Nash equilibrium
condition for v̄i. From observation 1a, we know that vi(xi) = v̄i(xi) for all i - so the social welfare of
the Nash equilibrium is the same under both vi and v̄i.

Claim 2: The social welfare under v̄i is at least as high as the social welfare under vi at the Nash
equilibrium.

Proof. From observation 2, we know that v̄i(x) is always at least as high as vi(x) for all x. Irrespective
of the proportions xi∗ at which the social optimum occurs, the term-wise sum of utilities under v̄i is at
least as high as the term-wise sum of utilities under vi. So, the social welfare under v̄i is at least as high
as the social welfare under vi at the Nash equilibrium.

So, shifting to a linear value function does not change the Nash equilibrium, but may increase the social
optimum. As a result, it can only make the Price of Anarchy worse.

The above analysis shows that we can restrict our attention to value functions of the form v̄i(xi) =
ai · xi + bi. Now, we will show that this can be further simplified to ¯̄vi(xi) = ai · xi. Visually, the shift
from v̄i to ¯̄vi looks like:

x

vi(x)

v̄i = ai · xi + bi

bi

¯̄vi = ai · xi

First, observe that bi is always non-negative. This is because the original function vi is non-negative,
and the linear approximation is always at least as high as the original function (from observation 2).
Then, for all x, we have v̄i(x) ≥ vi(x) ≥ 0. So, bi = v̄i(0) ≥ vi(0) ≥ 0.
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Now, also note that shifting from v̄i to ¯̄vi shifts both the social optimum and the Nash equilibrium by an
amount that is constant in all xi. So, the sets of xi that satisfy the Nash or social optimum conditions do
not change, but the value of both the Nash equilibrium and the social optimum decreases. In particular,
this decrease is given by:

∑
i v̄i(xi)−

∑
i
¯̄vi(xi) =

∑
i bi. Since each bi is non-negative, the sum

∑
i bi is

also non-negative.

Let Nash(f) and Opt(f) be the social welfare at the Nash equilibrium and the social optimum under the
value function f respectively. Then, we have Nash(¯̄vi) = Nash(v̄i)−

∑
i bi and Opt(¯̄vi) = Opt(v̄i)−

∑
i bi.

So, the price of anarchy under ¯̄vi is given by:

Nash(¯̄vi)

Opt(¯̄vi)
=

Nash(v̄i)−
∑

i bi
Opt(v̄i)−

∑
i bi

≤ Nash(v̄i)

Opt(v̄i)

This follows from the fact that for any two non-negative numbers a and b, a−c
b−c ≤ a

b for c ≥ 0. For

verification, set a = 7, b = 8, and c = 6. Then, we obtain 1
2 ≤ 7

8 . So, the price of anarchy under ¯̄vi is
worse than the price of anarchy under v̄i.

We can conclude, from the above analysis, that the price of anarchy under linear value functions of the
form ¯̄vi(xi) = ai · xi is at least as bad as the price of anarchy under the original value functions.

3.3 Worst-case Nash and Optimum

We can now work with a simplified value function of the form vi(xi) = ai ·xi. For notational convenience,
order the players such that a1 ≥ a2 ≥ . . . ≥ an. Then, plotted on the same graph, the value functions
look like:

x

vi(x)
v1(x) v2(x)

. . .

vn(x)

The social welfare is given by:

SW (x1, x2, . . . , xn) =

n∑
i=1

(vi(xi)− wi) +

n∑
i=1

wi

=

n∑
i=1

ai · xi −
n∑

i=1

wi +

n∑
i=1

wi

=

n∑
i=1

ai · xi

Since player 1 has the highest ai value, the optimal allocation in this case would be to give the entire
resource to player 1. The social welfare in this case is given by a1 · 1 = a1.
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Now, let’s consider a Nash equilibrium. The social welfare is given by:

SW (x1, x2, . . . , xn) =

n∑
i=1

ai · xi

Let N+ = {i | xi > 0} \ {1}. That is, N+ is the set of players not including player 1 that get a non-zero
proportion of the resource in the Nash equilibrium. Then, we can rewrite the above expression as:

SW (x1, x2, . . . , xn) = a1 · x1 +
∑
i∈N+

ai · xi

Then, every player i in N+ satisfies 2 conditions - ai · (1− xi) = p and xi > 0. Both of these conditions
are true if and only if ai > p for any i ∈ N+. Then, the social welfare at the Nash equilibrium is given
by:

SW (x1, x2, . . . , xn) = a1 · x1 +
∑
i∈N+

ai · xi

≥ a1 · x1 + min
i∈N+

ai ·

(∑
i∈N+

xi

)
= a1 · x1 + min

i∈N+
ai · (1− x1)

≥ a1 · x1 + p · (1− x1)

= a1 · x1 + (a1 · (1− x1)) · (1− x1)

= a1 ·
(
x1 + (1− x1)

2
)

Minimizing the above expression with respect to x1, we get 1 + 2 · (1 − x1) · −1 = 0 =⇒ x1 = 1
2 .

Substituting this value back in, we get:

SW (x1, x2, . . . , xn) ≥ a1 ·

(
1

2
+

(
1− 1

2

)2
)

= a1 ·
(
1

2
+

1

4

)
=

3

4
· a1

So, the minimum social welfare at a Nash equilibrium is at least 3
4 · a1. Using this, and that the social

optimum is a1, we can conclude that the price of anarchy is at most 4
3 .
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