Algorithmic collusion Same product sold by 2 competitors prices E k 2 k -1 K=1 volume 1 of buyers interested in product all buy cheepe option or 1/2-1/2 is price equal

Monopoly pricing: goal seller: mox revenue p=1 => reverme = 1/2 eacle

Claim all Newsle prices are 4 2 kg by induction: p mox price offered only player does p

=> wins nothing at p boble do p with sporb a, b resp.

revenue for a at price p b. 2'P other price some

Made with Goodnotes

viewence change do this replacing p with p-1/2 ≥ 6 1 (p-k) il p> => new revenue better. Assume opponent is us-swap regret le ar ver Opponent (ophiminer) need Stechelberg strategy One proposal: use uniformly prendom price Question: would is best response? revenue of price prob revenue opponent >p 1-A P - 4 = P 12 P total expected revenue (1-P) 1. P + 6. 2P 2k+1 2 1 2+ L de calculus opt =

assuming keven

best bid allowed 1/2 => revenue 4+ 4k > in Nask given this best response Optimizer's revenue: $P = \frac{1}{2}$ $P < \frac{1}{2}$ $\frac{1}{k} \sum_{i=1}^{k} \frac{1}{k} = \frac{1}{k} \frac{\frac{k}{2}(\frac{k}{k}-1)}{2k}$ $p = \frac{1}{k}$ Claim is leader has revence > c const indep of k => follower is ialso > worstent Proof: leader wast use price > 5/2 at least prob 42

One option for learner $P = \frac{C}{z} - \frac{1}{k}$

revenue > $\frac{c^2}{4} - \frac{c}{k}$ due to wining when leader > $\frac{c}{2}$