1 Price of anarchy in discrete routing

Recall our setup for routing games. We have the delay on an edge e, $\ell_e(\mathbf{x})$, which is monotone increasing on x, and users select paths from s_i to t_i to route dem(i) flow on the selected paths. In today's lecture we will discuss a type of discrete routing games, i.e., \forall i user i has atomic and thus inseparable dem(i) = 1.

We have shown that for a non-atomic network routing game with only two edges, where one edge has constant delay 1 and the other edge has a delay function that is a degree d polynomial of the flow on that edge as in figure 1, the price of anarchy with demand equals to 1 can be as bad as $O(\frac{d}{\log d})$. In general, for polynomials of degree d delay functions with no restrictions on the demand of each user, the price of anarchy is bounded by $O(2^d d^{d+1})$, and is at least $\Omega(d^{d/2})$. Today we will analyze the discrete routing game with each delay function $\ell(x)$ to be a linear function on x, with non-negative coefficients, and show that the price of anarchy is approximately 2.61, which is ϕ^2 or $\phi+1$ where ϕ is the golden ratio $\frac{1+\sqrt{5}}{2}$.

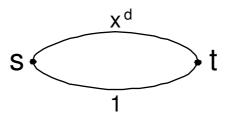


Figure 1: Example of polynomial delay of degree d

2 Discrete routing problem with unit demand and linear delay functions

We assume that all delay functions are linear and with non-negative coefficients, i.e.,

$$l_e(x) = a_e.x + b_e$$
 $a_e, b_e \ge 0 \ \forall e \in E$

In addition, we have $\forall i, dem(i) = 1$. As a result, this discrete routing game is a potential game, with the potential function to be $\phi = \sum_{e \in E} \sum_{i=1}^{x_e} l_e(i)$ where x_e is the number of paths on edge e. Hence, we know that there exists some deterministic Nash solution.

Consider in a Nash solution, x_e paths use edge e, and user i takes path P_i . In the optimal solution (where the total delay is minimized) x_e^* paths use edge e and user i takes path Q_i as illustrated in figure 2.

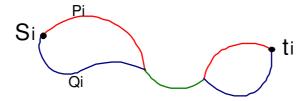


Figure 2: Paths P_i and Q_i may intersect

We can easily observe the fact that in the Nash solution, user i prefers path P_i to path Q_i for all i, so:

$$\ell_{P_i}(x) = \sum_{e \in P_i} \ell_e(x_e) \le \sum_{e \in Q_i \setminus P_i} \ell_e(x_e + 1) + \sum_{e \in Q_i \cap P_i} \ell_e(x_e)$$
$$\le \sum_{e \in Q_i} \ell_e(x_e + 1)$$

The first inequality is true because the flow on an edge $e \in Q_i \cap P_i$ will not change after user i switches from path P_i to Q_i . Now we are ready to prove today's main theorem.

Theorem 1 In a discrete network routing game where each user has a unit demand and the delay on each edge is a linear function of the flow with non-negative coefficients, the price of anarchy is at most ϕ^2 where $\phi = \frac{1+\sqrt{5}}{2}$

Proof: Let C(x) and $C(x^*)$ denote the total delay of the Nash solution and optimal solution.

$$C(x) = \sum_{i} \ell_{P_{i}}(x)$$

$$= \sum_{i} \sum_{e \in P_{i}} \ell_{e}(x_{e})$$

$$\leq \sum_{i} \sum_{e \in Q_{i}} \ell_{e}(x_{e} + 1)$$

$$= \sum_{e \in E} x_{e}^{*} \ell_{e}(x_{e} + 1)$$

$$= \sum_{e \in E} x_{e}^{*} (a_{e}(x_{e} + 1) + b_{e})$$

$$= \sum_{e \in E} [x_{e}^{*} a_{e} x_{e} + a_{e} x_{e}^{*} + b_{e} x_{e}^{*}]$$

$$= \sum_{e \in E} x_{e}^{*} a_{e} x_{e} + \sum_{e \in E} (a_{e} x_{e}^{*} + b_{e} x_{e}^{*})$$

$$(1)$$

Here $\sum_{e \in E} x_e^* a_e x_e$ is a mixed term, with the flow amounts from both the Nash and optimal solution on edge e. Also, $\sum_{e \in E} (a_e x_e^* + b_e x_e^*) \le \sum_{e \in E} x_e^* \ell_e(x_e^*) = C(x_e^*)$ which is the total delay of the optimal solution. Recall the Cauchy-Schwarz inequality:

$$(\sum_{i=1}^{n} \alpha_i \beta_i)^2 \le (\sum_{i=1}^{n} \alpha_i^2)(\sum_{i=1}^{n} \beta_i^2)$$

Let $\alpha_e = \sqrt{a_e}x_e$ and $\beta_e = \sqrt{a_e}x_e^*$, we have:

$$\sum_{e \in E} x_e^* a_e x_e \le \sqrt{\sum_e a_e (x_e)^2 * \sum_e a_e (x_e^*)^2}$$

In addition, $\sum_{e} a_e(x_e)^2 \le C(x) = \sum_{e} x_e(a_e x_e + b_e)$ and $\sum_{e} a_e(x_e^*)^2 \le C(x^*) = \sum_{e} x_e^*(a_e x_e^* + b_e)$. Hence (1) implies:

$$C(x) \leq \sum_{e \in E} x_e^* a_e x_e + \sum_{e \in E} (a_e x_e^* + b_e x_e^*)$$

$$\leq \sum_{e \in E} x_e^* a_e x_e + C(x^*)$$

$$\leq \sqrt{C(x)C(x^*)} + C(x^*)$$

Dividing both sides by $C(x^*)$, we have:

$$\frac{C(x)}{C(x^*)} \le \sqrt{\frac{C(x)}{C(x^*)}} + 1$$

Recall that the golden ratio ϕ is the positive root of the equation $x^2 - x - 1 = 0$. Thus it is clear that $\frac{C(x)}{C(x^*)} \le \phi + 1 = \phi^2$.