
COM S 6830 – Cryptography Sep 10, 2009

Lecture 5: Universal One-Way Function and

Computational Number Theory

Instructor: Rafael Pass Scribe: Edward Lui

1 Universal One-Way Function

Recall the definition of a (strong) one-way function and a weak one-way function:

Definition 1 A function f : {0, 1}∗ → {0, 1}∗ is a (strong) one-way function if the
following holds:

1. f is easy to compute: There exists a PPT algorithm that computes f .

2. f is hard to invert: For every NU PPT algorithm A, there exists a negligible func-
tion ε such that for all n ∈ N,

Pr(x
r← {0, 1}n : A(1n, f(x)) ∈ f−1(f(x))) ≤ ε(n).

Definition 2 A function f : {0, 1}∗ → {0, 1}∗ is a weak one-way function if the following
holds:

1. f is easy to compute: There exists a PPT algorithm that computes f .

2. f is slightly hard to invert: There exists a polynomial p such that for every NU
PPT algorithm A and sufficiently large n ∈ N,

Pr(x
r← {0, 1}n : A(1n, f(x)) ∈ f−1(f(x))) ≤ 1− 1

p(n)
.

Last lecture, we showed that strong one-way functions exist iff weak one-way functions
exist. How does one find a one-way function? The existence of one-way functions implies
that P 6= NP. Thus, if P = NP, then there are no one-way functions. By assuming that
one-way functions exist, we are also assuming that P 6= NP. (In fact, we are also assuming
that NP * BPP .) We currently do not know whether one-way functions exist, although
there are candidate functions that are widely believed to be one-way. We now present a
fixed “universal” function that is one-way iff one-way functions exist.

Theorem 1 There exists an explicit function funiv such that if there exists a one-way
function, then funiv is one-way.

5-1

Proof. We first prove the following claim:

Claim. If there exists a one-way function, then there exists a one-way function that
can be computed in time n2.

Proof of Claim. Given a one-way function f that can be computed in time nc, define
the function f ′ by f ′(a||b) = a||f(b), where |a| = mc and |b| = m for some m ∈ N. (We
use || to denote concatenation of strings.) One can easily verify that f ′ can be computed
in time n2, where n is the length of the input. Now, suppose that f ′ is not a one-way
function. Then, there exists an NU PPT algorithm A′ and a polynomial p′ such that for
infinitely many m,

Pr(x
r← {0, 1}mc+m : A′(1mc+m, f ′(x)) ∈ f ′−1(f ′(x))) ≥ 1

p′(mc +m)
.

Now, let A be the following algorithm:

On input (1n, y),

1. a
r← {0, 1}(nc).

2. a′||b′ ← A′(1nc+n, a||y), where |a′| = min{nc, A′(1nc+n, a||y)}.

3. Output b′.

Let p(n) = p′(nc + n); we note that p is a polynomial. Since A′ is a NU PPT algorithm,
we see that A is also a NU PPT algorithm. By our construction of A, we also have

Pr(x
r← {0, 1}n : A(1n, f(x)) ∈ f−1(f(x)))

≥ Pr(x
r← {0, 1}nc+n : A′(1nc+n, f ′(x)) ∈ f ′−1(f ′(x)))

≥ 1

p′(nc + n)

=
1

p(n)

for infinitely many n ∈ N. This contradicts the fact that f is a one-way function.
(Claim)

Recall that there are only countably many Turing machines (for any fixed alphabet).
Let M1,M2,M3, . . . be a list of all the Turing machines such that the length of the
description of Mn is bounded by some polynomial in n. Now, let

funiv(x) = M
(|x|2)
1 (x)||M (|x|2)

2 (x)|| · · · ||M (|x|2)
|x| (x)

5-2

where M
(|x|2)
i (x) denotes the output of Mi on input x right after |x|2 steps of computation.

One can verify that funiv can be computed in polynomial time. Now, suppose there
exists a one-way function f . Then, there exists a Turing machine in our list, say MK ,
that computes f . We note that for x ∈ {0, 1}∗ such that |x| ≥ K, funiv(x) contains
MK(x) = f(x). One can finish the proof using standard reduction techniques.

See the lecture notes on the course website for an alternate funiv.

2 Computational Number Theory

It will be assumed that students have sufficient background knowledge in number theory.
Students who do not have this background knowledge may want to consult the lecture
notes on the course website. The lecture notes cover just enough number theory for a
student to understand the material in this course.

Theorem 2 (Agrawal, Kayal, Saxena) There exists a deterministic polynomial-time
algorithm that checks whether a number is prime.

See the paper “Primes is in P” for a proof of the above theorem. The following two
theorems describe the asymptotic distribution of the prime numbers.

Theorem 3 (Chebyshev) The number of primes between 1 and N is ω(N
log N

).

Theorem 4 (Prime Number Theorem) The number of primes between 1 and N ap-
proaches N

log N
as N →∞.

To generate a random n-bit prime (with sufficiently high probability), one can simply
choose a random N ∈ {0, 1}n and then run a primality test (e.g. Miller-Rabin) on N to
check whether N is prime (with sufficiently high probability). If the test says that N is
prime, we are done. Otherwise, we choose another random n-bit number and start over.
By the prime number theorem, the number of n-bit primes is approximately 2n

log 2n = c2n

n

for some constant c > 1. Thus, a fraction ≈ c
n

of the integers in {0, 1}n are prime. Thus,
the expected number of trials before we obtain a prime (in the above procedure) is linear
in n.

Now, let fmult be defined by fmult(x, y) = x · y, where |x| = |y|.

The Factoring Assumption: For every NU PPT algorithm A, there exists a negli-
gible function ε such that for every n ∈ N,

Pr(p, q
r← {n-bit primes};N = pq : A(N) ∈ {p, q}) ≤ ε(n).

The factoring assumption is widely believed to be true. Much time and effort have been

5-3

spent on trying to find an efficient algorithm for factoring the product of two large prime
numbers, but the best provable algorithm only runs in time 2O(n1/2 log1/2 n), and the best
heuristic algorithm runs in time 2O(n1/3 log2/3 n). Factoring a 500-bit number (that is the
product of two prime numbers) took 300 machines and 4 months.

Theorem 5 Assuming that the factoring assumption is true, fmult is a weak one-way
function.

Proof. Suppose fmult is not a weak one-way function. Then, for every polynomial q,
there exists a NU PPT algorithm A such that for infinitely many n ∈ N,

Pr(x, y ← {0, 1}n : A(12n, fmult(x, y)) ∈ f−1
mult(fmult(x, y))) ≥ 1− 1

q(2n)
.

If we choose q to be q(n) = 1
2
n2, then there exists a NU PPT algorithm A such that for

infinitely many n ∈ N,

Pr(x, y ← {0, 1}n : A(12n, fmult(x, y)) ∈ f−1
mult(fmult(x, y))) ≥ 1− 1

2n2
.

Now, let A′ be the following algorithm:

On input z ∈ {0, 1}2n,

1. x, y
r← {0, 1}n.

2. If x and y are both prime, let z′ = z. Otherwise, let z′ = x · y.

3. Output A(1n, z′).

Since one can check whether an integer is prime in polynomial time, and since A is a
NU PPT algorithm, A′ is also a NU PPT algorithm. We will show that A′ inverts the
product of two random n-bit primes with nonnegligible probability, for infinitely many n.

For x, y ∈ {0, 1}n, we say that (x, y) is bad if one of them is not prime; otherwise,
we say (x, y) is good. For infinitely many n, we have

Pr(x, y
r← {0, 1}n : (x, y) is bad) ≤ 1− 1

n2
,

and

Pr(A′ fails to invert input | (x, y) is good) ≤ 1

2n2
.

Thus, we have

Pr(A′ fails to invert input) ≤ 1− 1

n2
+

1

2n2
= 1− 1

2n2
,

5-4

so

Pr(A′ succeeds at inverting input) ≥ 1

2n2
.

Thus, A′ inverts the product of two random n-bit primes with nonnegligible probability
(for infinitely many n). This contradicts the factoring assumption.

5-5

