COM S 6830 - Cryptography

Sept 8, 2009

Lecture 4: More On One-Way Functions

Instructor: Rafael Pass Scribe: Matthew Paff

1 Review:

1.1 Intuition:

A One-Way Function is a function that is easy to compute, but hard to invert. We've defined three kinds (worst-case, weak, and strong). They differ on how they define "hard":

Worst-Case: Always hard to invert, no matter what the key is

Weak: Hard to invert with good probability

Strong: Can only invert with negligable probability

1.2 Rigorous Definitions:

Definition 1. A function $\varepsilon: N \to \mathbb{R}$ is negligable if $\forall c, \exists n_0 \text{ st } \forall n > n_0, \varepsilon(n) < 1/n^c$.

Note that μ is not negligable if \exists a polynomial p st for infinitely many n, $\mu(n) \geq \frac{1}{p(n)}$.

Definition 2. f is a strong OWF if:

- 1. f is easy to compute: \exists a PPT C st \forall x, C(x) = f(x)
- 2. f is hard to invert: \forall nuPPT A, \exists a negligible function ε st \forall $n \in N$:

$$\Pr\left[x \leftarrow \{0,1\}^n : A(1^n, f(x)) \in f^{-1}(f(x))\right] \le \varepsilon(n)$$

Definition 3. f is a weak OWF if:

- 1. f is easy to compute: $\exists a PPT C st \forall x, C(x) = f(x)$
- 2. f is hard to invert: \exists a polynomial q st \forall nuPPT A, \forall $n \in N$:

$$\Pr\left[x \leftarrow \{0,1\}^n : A(1^n, f(x)) \in f^{-1}(f(x))\right] \le 1 - \frac{1}{q(n)}$$

The 1^n are input to A to allow A to compute in time polynomial in n. If that were not there, then A would have to compute in time polynomial in $\log(f(x))$, which could be considerably smaller than n. If $f(x) \in O(n)$, then for A to even return its answer, it would have to use exponential time in the size of its input (since $n = 2^{\log n}$).

2 Hardness Amplification:

The rest of the lecture will focus on the following theorem:

Theorem 1. The existence of a weak $OWF \iff$ the existence of a strong OWF.

The \Leftarrow direction is trivial, so we just need to prove the \Rightarrow direction. The proof of that direction follows immediately from the following theorem:

Theorem 2. Let $f: \{0,1\}^* \to \{0,1\}^*$ be a weak OWF. Let $f'(x_1,\ldots,x_m) = y_1,\ldots,y_m$ where $y_i = f(x_i)$. Then $\exists m \ (polynomial \ in \ n)$ st f' is a strong OWF.

Proof. Let f be a weak OWF, and q(n) as in the definition of a weak OWF for f. First, we need to determine what m should be. We need m sufficiently large st $\left(1 - \frac{1}{q(n)}\right)^m$ is negligable. m = 2nq(n) does the trick:

$$\left(1 - \frac{1}{q(n)}\right)^{2nq(n)} = \left(\left(1 - \frac{1}{q(n)}\right)^{q(n)}\right)^{2n} < e^{-2n} < 2^{-n}$$

Let f' be as defined above with m = 2nq(n). Assume f' is not strong, which implies \exists nuPPT A and polynomial p' st for infinitely many n':

$$\Pr\left[x \leftarrow \{0,1\}^{n'} : A \text{ inverts } f'\right] \ge \frac{1}{p'(n')}$$

By definition of f', this means that:

$$\Pr\left[x_i \leftarrow \{0,1\}^n : A(f'(x_1,\dots,x_m)) \in f'^{-1}(f'(x_1,\dots,x_m))\right] \ge \frac{1}{p'(mn)}$$

For convenience of notation, let p(n) = p'(mn). Then we have:

$$\Pr\left[x_i \leftarrow \{0,1\}^n : A(f'(x_1,\dots,x_m)) \in f'^{-1}(f'(x_1,\dots,x_m))\right] \ge \frac{1}{p(n)}$$

Now we need to construct a machine B to invert f using machine A. Let y be the input to B. Since A is only guaranteed to work with some probability on random input, we must make sure the input we give to A is random. Define a machine C on input y as follows:

$$i \leftarrow \{1, \dots, m\}$$

 $x_j \leftarrow \{0, 1\}^n \text{ and } y_j = f(x_j) \ \forall \ j \neq i$
 $y_i = y$
 $z_1, \dots, z_m \leftarrow A(y_1, \dots, y_m)$
If $f(z_i) = y$, output z_i . Otherwise, output \perp .

Then define B on input y as follows:

Run C(y) up to $2nm^2p(n)$ times, outputing the first answer different than \bot . If C(y) outputs \bot each time, output \bot as well.

Now we need to show that B inverts f with probability greater than $1 - \frac{1}{q(n)}$, which will contradict the definition of f being a weak OWF, as desired.

For $x \in \{0,1\}^n$, define x to be good if:

$$\Pr\left[C(f(x)) \neq \bot\right] \ge \frac{1}{2m^2 p(n)}$$

And bad if that does not hold.

Lemma 3. If the number of good elements of $\{0,1\}^n$ is greater than or equal to $2^n \left(1 - \frac{1}{2q(n)}\right)$, then we get our contradiction.

Proof. Let $x \in \{0, 1\}^n$.

$$\Pr[B(x) = \bot] = \Pr[(B(x) = \bot) \cap (x \text{ is bad})] + \Pr[(B(x) = \bot) \cap (x \text{ is good})]$$

$$\leq \Pr[x \text{ is bad}] + \Pr[B(x) = \bot \mid x \text{ is good}]$$

$$\leq \frac{1}{2q(n)} + \left(1 - \frac{1}{2m^2p(n)}\right)^{n2m^2p(n)}$$

$$< \frac{1}{2q(n)} + e^{-n} < \frac{1}{2q(n)} + 2^{-n} < \frac{1}{q(n)}$$

which implies:

$$\Pr[B \text{ succeeds on input } f(x)] > 1 - \frac{1}{q(n)}$$

This contradicts the definition of weak OWF, as desired.

Now we just need to show that the hypothesis of Lemma 3 holds. Assume for contradiction that the number of bad elements is greater than $\frac{2^n}{2q(n)}$. Consider:

$$\Pr[A(f(x_1, ..., x_m)) \text{ succeeds}] = \Pr[(A \text{ succeeds}) \cap (\exists i \text{ st } x_i \text{ is bad})] + \Pr[(A \text{ succeeds}) \cap (\forall i, x_i \text{ is good})]$$

To get our contradiction, we need to show that this is less than $\frac{1}{p(n)}$. Consider each term separately:

$$\Pr\left[\left(A \text{ succeeds}\right) \cap \left(\exists i \text{ st } x_i \text{ is bad}\right)\right] \leq \sum_{i=1}^n \Pr\left[\left(A \text{ succeeds}\right) \cap \left(x_i \text{ is bad}\right)\right]$$
$$\leq \sum_{i=1}^n \Pr\left[A \text{ succeeds } \mid x_i \text{ is bad}\right]$$

And by the definition of bad, $\forall i$:

$$\Pr\left[A \text{ succeeds } \mid x_i \text{ is bad}\right] \leq m \cdot \Pr\left[C(f(x_i)) \neq \bot \mid x_i \text{ is bad}\right]$$
$$< m \cdot \frac{1}{2m^2 p(n)} = \frac{1}{2mp(n)}$$

Thus, the first term is bounded by:

$$\Pr\left[\left(A \text{ succeeds}\right) \cap \left(\exists i \text{ st } x_i \text{ is bad}\right)\right] \leq \sum_{i=1}^m \Pr\left[A \text{ succeeds } \mid x_i \text{ is bad}\right]$$
$$< m \cdot \frac{1}{2mp(n)} = \frac{1}{2p(n)}$$

Now let's consider the second term:

$$\Pr\left[(A \text{ succeeds}) \cap (\forall i, x_i \text{ is good}) \right] \leq \Pr\left[\forall i, x_i \text{ is good} \right]$$
$$\leq \left(1 - \frac{1}{2q(n)} \right)^{2q(n)n}$$
$$< e^{-n} < 2^{-n}$$

Thus, we get:

$$\Pr[A(f(x_1,...,x_m)) \text{ succeeds}] < \frac{1}{2p(n)} + 2^{-n} < \frac{1}{p(n)}$$

This contradicts the definition of p. Therefore, there are at least $2^n \left(1 - \frac{1}{2q(n)}\right)$ good elements. Hence, lemma 3 applies, and we still get a contradiction. Therefore, f' is a strong OWF, as desired.