<u>Lemma</u> Let G be a regular degree d connected undirected graph with adjacency matrix A. The eigenvalues of A satisfy:

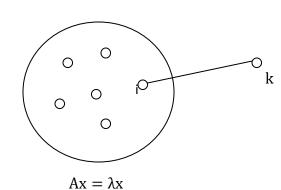
$$d = \lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \cdots \ge \lambda_n \ge -d$$

where, $\lambda_n = -d$ iff G is bipartite.

<u>Proof</u> Let u = (1,1,...,1). u is an eigenvector of A with eigenvalue d.

Let x be an eigenvector not proportional to u. Let x_{max} be maximum coordinate of x:

$$S = \{i | x_i = x_{max}\}$$



$$x_{k} < x_{max}$$

$$= \lambda *$$

$$x_{j} = x_{max}$$

$$x_{j} = x_{max}$$

$$x_{j} = x_{max}$$

$$\lambda x_j < dx_{max}$$

$$\lambda x_{max} = dx_{max}$$

Lemma Let G be a regular degree d undirected graph with adjacency matrix A and k components. Then $d=\lambda_1=\lambda_2=\lambda_k>\lambda_{k+1}\dots$

			$\int x1$		$\int \lambda x 1$	
B1	0	0	x2		λx2	
			х3		λx3	
0	B2	0	0	=	0	
0	0	ВЗ)	0		$\left[\begin{array}{c} 0 \end{array}\right]$	

$$B_1 \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Adding edges to a graph can only increase the largest eigenvalue.

<u>Lemma</u> Let G_1 and G_2 be graphs where $G_1 \subseteq G_2$. The maximum eigenvalues of G_2 is at least as large as maximum eigenvalue of G_1 .

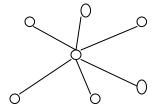
<u>Proof</u> Let A_1 and A_2 be adjacency matrix of G_1 and G_2 . Let $\lambda_1(A_1)$ and $\lambda_1(A_2)$ be largest eigenvalues. Let v be eigenvector associated with $\lambda_1(A_1)$. We can show v has all non-negative coordinates.

Since v has all non-negative coordinates,

$$\lambda_1(A_1) = v^T A_1 v \le v^T A_2 v$$
 (because A_2 has more 1's than A_1)

But
$$\lambda_1(A_2) = \max_{|x|=1} x^T A_2 x \ge v^T A_2 v \ge v^T A_1 v = \lambda_1(A_1)$$
.

Star



$$\begin{pmatrix} 0 & 1 & 1 & \dots & 1 \\ 1 & & & & \\ 1 & & & & 0 \end{pmatrix} \begin{pmatrix} \sqrt{n-1} \\ 1 \\ 1 \\ \dots \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{n-1}{\sqrt{n-1}} \\ \sqrt{n-1} \\ \frac{1}{\sqrt{n-1}} \\ \frac{1}{\sqrt{n-1}} \end{pmatrix} = \sqrt{n-1} \begin{pmatrix} \sqrt{n-1} \\ 1 \\ 1 \\ \dots \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 1 & \dots & 1 \\ 1 & & & \\$$

Eigenvalues of Star: $\sqrt{n-1}$, 0,0, ...,0, $-\sqrt{n-1}$

Theorem
$$\max \{d_{\min}, \sqrt{d_{\max}}\} \le \lambda_1 \le \min \{d_{\max}, \sqrt{2|E|}\}$$

<u>Proof</u> Let u = (1,1,...,1)

$$Au \geq d_{min}\,u \quad , \quad u^TAu \geq d_{min}\,u^Tu$$

$$\lambda_1 = \max_{x} \frac{x^T A x}{x^T x} \ge \frac{u^T A u}{u^T u} \ge d_{min}$$

Let G_s be star consisting of highest degree vertex of degree d_{max} . The maximum eigenvalue of A_s is $\sqrt{d_{max}}$. Since $G_s \subseteq G$, maximum eigenvalue is at least $\sqrt{d_{max}}$.

Now, let's prove the upper bound:

Let v_1 be the first eigenvector normalized so that maximum coordinate is 1.

$$u = (1,1,...,1), \quad \lambda v_1 = Av_1 \le Au \le d_{max} u$$

$$\lambda \leq d_{max}$$

Meanwhile, $\lambda_1 = \max_{|x|=1} x^T A x = |A|_2 \le |A|_F = \sqrt{\sum a_{ij}^2} = \sqrt{2|E|}.$