Let G be a weighted undirected graph with edge weight w(u, v) > 0. The Laplacian of G is

$$L_G(u, v) = \begin{cases} -w(u, v) & \text{if } u \neq v \\ \sum_{u' \sim u} w(u, u') & \text{if } u = v \end{cases}$$

Laplacian and harmonic functions If $\phi \in \Re^V(G)$ and $L_G \phi = 0$, then

$$\phi(u) = \frac{\sum_{v \sim u} w(u, v)\phi(v)}{\sum_{v \sim u} w(u, v)} \tag{*}$$

Suppose G is connected, finite, (*) says for any u, $\phi(u)$ is weighted average of neighboring $\phi(v)$ values. This holds at $u \in \arg\max\phi(v)$. So all neighbors of u also have max value of ϕ . Same holds for their neighbors, etc. Thus, $\phi \equiv \text{const.}$

Cor $L_G \phi = L_G \psi \Leftrightarrow \phi, \psi$ differ by an additive constant.

If $L_G \phi \equiv 0$, except at a few vertices ("boundary vertices"), we call ϕ harmonic with boundary values.

Harmonic functions and random walks Given connected, finite, weighted G, the random walk in G is defined such that the transition probability

$$P(u,v) = \frac{w(u,v)}{L_G(u,u)}.$$

The denominator $L_G(u, u)$ will be referred to as the *degree* of u and denoted by deg(u). It matches the standard definition of degree when egde weights are all equal to 1.

Ex1 $h(v) = \mathbb{P}(RW \text{ starting from } v \text{ hits } s \text{ before } t)$

 $L_G h(v)/\deg(v)=$ difference between h(v) and average val of h(v) after taking one RW step from v. This equals zero if $v\neq s,t$. Also h(s)=1,h(t)=0, and also $L_G h(s)+L_G h(t)=0$

Ex2 $N(v) = \mathbb{E}[\# \text{ steps at } s \text{ before visit } t \text{ when start at } v]/\deg s$ $L_GN(v) = 0 \text{ if } v \neq s, t.$ $L_GN(s) = 1, L_GN(t) = -1.$

Conclusion $N = R_{\text{eff}}h$, where $R_{\text{eff}} := N(s)$

Proof. Let
$$r = \frac{1}{L_G h(s)} = -\frac{1}{L_G h(t)}$$
, then $L_G(rh - N) = 0$ everywhere. So $rh - N = \text{const}$

Since
$$h(t) = N(t) = 0$$
, we know $rh = N$ and $r = \frac{N(s)}{h(s)} = N(s) = R_{\text{eff}}$.

Lemma Random walk on G is transient iff for any vertex s, G has a function $0 \le \phi \le 1$ s.t.,

- a) $\phi(s) = 0$ and $\exists v \neq s, \phi(v) > 0$
- b) $L_G \phi = 0, \forall v \neq s$

Proof. If transient, $\phi(v) = \mathbb{P}(RW \text{ starting at } v \text{ never reaches } s)$ works. For the other direction, given ϕ , must prove transient.

Take absorbing RW $s = v_0, v_1, \dots = \text{standard RW}$ until first return to s (if any) and constant $v_{t+1} = \dots = s$ after that. Then

$$\forall t \geq 1, \mathbb{E}[\phi(v_{t+1})|v_t] = \phi(v_t)$$
 because

Case 1 $v_t \neq s, L_G \phi = 0$ at v

Case 2 $v_t = s, v_{t+1} = v_t = s$

For T large enough, we have $\mathbb{E}\phi(v_T) > 0$, say larger than ϵ , since in T steps, we can reach v from s. Then, by induction, we have $\mathbb{E}\phi(v_t) = \mathbb{E}\phi(v_T) > \epsilon$ for any t > T. This implies that $\mathbb{P}(v_t = s) < 1 - \epsilon$ for any t > T, so it's transient.

Harmonic functions and electricity Suppose that the graph G is a network of electrical resistors of resistance R(u, v). Let $C(u, v) = R(u, v)^{-1}$, a quantity called *conductance*. In an electrical network, if

- $\Delta(u)$ = amount of external current flowing out at u (or in, if negative) there is a current i(u,v) on each edge (signed, so i(u,v) = -i(v,u)) and a potential (voltage) at each u satisfying,
 - (1) FLow conservation

$$\forall u, \sum_{v \sim u} i(u, v) = \Delta(u)$$

(2) Ohm's Law

$$\phi(u) - \phi(v) = i(u, v)R(u, v)$$

$$i(u, v) = C(u, v)(\phi(u) - \phi(v))$$

$$\Rightarrow \forall u, \sum_{v \sim u} C(u, v) (\phi(u) - \phi(v)) = \Delta(u) \Rightarrow L_G \phi = \Delta$$

- $\therefore \phi$ uniquely determined, up to additive constants, by Δ
- $\therefore i$ uniquely determined by Δ
- h(v) = Potential at v when we hook up a 1-volt battery to G with + term at s, ground at t
- N(v) =Potential at v when 1 unit of current flows from s to t and t is at 0 potential

 $R_{\text{eff}} = \text{pot.}$ diff btw s, t when 1 unit of current flows from s to t through G

(Same as if G has a single resistor of resistance R_{eff} from s to t)

When RW starting at s is absorbed at t, how many times do we traverse $u \to v$? (in expectation)

Answer: Net number of traversals, counting $u \to v$ as +1 and $v \to u$ as -1, is i(u, v).

Electrical flows and energy minimization Suppose i is an electrical flow in G with external sources Δ , d is a circulation, i.e.

$$\forall u, \sum_{v \sim u} d(u, v) = 0$$

Total energy dissipation of i vs i + d,

$$\begin{split} & \sum_{(u,v)} (i(u,v) + d(u,v))^2 R(u,v)/2 \\ &= \sum_{(u,v)} i(u,v)^2 R(u,v)/2 + \sum_{\underbrace{(u,v)}} d(u,v) R(u,v) i(u,v) + \sum_{(u,v)} d(u,v)^2 R(u,v)/2 \\ & \underbrace{\sum_{(u,v)} (\phi(u) - \phi(v)) d(u,v) = 0} \end{split}$$

$$\geq \sum_{(u,v)} i(u,v)^2 R(u,v)$$

 \therefore Among all flows that satisfy flow conservation with external source Δ , the electrical flow minimizes energy dissipation. (Assume G finite, some results are true in infinite graphs that admit a finite energy flow.)