
Lecture � Topological Sort and MST

A recurring theme in asymptotic analysis is that it is often possible to get
better asymptotic performance by maintaining extra information about the
structure� Updating this extra information may slow down each individual
step� this additional cost is sometimes called overhead� However� it is often
the case that a small amount of overhead yields dramatic improvements in the
asymptotic complexity of the algorithm�

To illustrate� let�s look at topological sort� Let G � �V�E� be a directed
acyclic graph �dag�� The edge set E of the dag G induces a partial order �a
re�exive� antisymmetric� transitive binary relation� on V � which we denote
by E
 and de�ne by� uE
v if there exists a directed E�path of length or
greater from u to v� The relation E
 is called the re�exive transitive closure
of E�

Proposition ��� Every partial order extends to a total order �a partial order
in which every pair of elements is comparable��

Proof� If R is a partial order that is not a total order� then there exist u� v
such that neither uRv nor vRu� Extend R by setting

R �� R � f�x� y� j xRu and vRyg �

The new R is a partial order extending the old R� and in addition now uRv�
Repeat until there are no more incomparable pairs� �

�

�� Lecture � Topological Sort and MST

In the case of a dag G � �V�E� with associated partial order E
� to say
that a total order � extends E
 is the same as saying that if uEv then u � v�
Such a total order is called a topological sort of the dag G� A naive O�n��
algorithm to �nd a topological sort can be obtained from the proof of the
above proposition�

Here is a faster algorithm� although still not optimal�

Algorithm ��� �Topological Sort II�

�� Start from any vertex and follow edges backwards until �nding a
vertex u with no incoming edges� Such a u must be encountered
eventually� since there are no cycles and the dag is �nite�

�� Make u the next vertex in the total order�

	� Delete u and all adjacent edges and go to step ��

Using the adjacency list representation� the running time of this algorithm is
O�n� steps per iteration for n iterations� or O�n���

The bottleneck here is step �� A minor modi�cation will allow us to perform
this step in constant time� Assume the adjacency list representation of the
graph associates with each vertex two separate lists� one for the incoming
edges and one for the outgoing edges� If the representation is not already of
this form� it can easily be put into this form in linear time� The algorithm
will maintain a queue of vertices with no incoming edges� This will reduce the
cost of �nding a vertex with no incoming edges to constant time at a slight
extra overhead for maintaining the queue�

Algorithm ��� �Topological Sort III�

�� Initialize the queue by traversing the graph and inserting each v
whose list of incoming edges is empty�

�� Pick a vertex u o� the queue and make u the next vertex in the
total order�

	� Delete u and all outgoing edges �u� v�� For each such v� if its list
of incoming edges becomes empty� put v on the queue� Go to step
��

Step � takes time O�n�� Step � takes constant time� thus O�n� time over all
iterations� Step 	 takes time O�m� over all iterations� since each edge can be
deleted at most once� The overall time is O�m� n��

Later we will see a di�erent approach involving depth �rst search�

