Lecture 2 Topological Sort and MST

A recurring theme in asymptotic analysis is that it is often possible to get
better asymptotic performance by maintaining extra information about the
structure. Updating this extra information may slow down each individual
step; this additional cost is sometimes called overhead. However, it is often
the case that a small amount of overhead yields dramatic improvements in the
asymptotic complexity of the algorithm.

To illustrate, let’s look at topological sort. Let G = (V, E) be a directed
acyclic graph (dag). The edge set E of the dag G induces a partial order (a
reflexive, antisymmetric, transitive binary relation) on V', which we denote
by E* and define by: uE™v if there exists a directed E-path of length 0 or
greater from u to v. The relation E* is called the reflezive transitive closure

of E.

Proposition 2.1 FEvery partial order extends to a total order (a partial order
in which every pair of elements is comparable).

Proof. If R is a partial order that is not a total order, then there exist u, v
such that neither uRv nor v Ru. Extend R by setting

R = RU{(z,y)|xRu and vRy} .

The new R is a partial order extending the old R, and in addition now uRwv.
Repeat until there are no more incomparable pairs. O



10 LECTURE 2 TOPOLOGICAL SORT AND MST

In the case of a dag G = (V, E) with associated partial order E*, to say
that a total order < extends E™ is the same as saying that if uEv then u < v.
Such a total order is called a topological sort of the dag G. A naive O(n?)
algorithm to find a topological sort can be obtained from the proof of the
above proposition.

Here is a faster algorithm, although still not optimal.

Algorithm 2.2 (Topological Sort IT)

1. Start from any vertex and follow edges backwards until finding a
vertex u with no incoming edges. Such a u must be encountered
eventually, since there are no cycles and the dag is finite.

2. Make u the next vertex in the total order.

3. Delete u and all adjacent edges and go to step 1.

Using the adjacency list representation, the running time of this algorithm is
O(n) steps per iteration for n iterations, or O(n?).

The bottleneck here is step 1. A minor modification will allow us to perform
this step in constant time. Assume the adjacency list representation of the
graph associates with each vertex two separate lists, one for the incoming
edges and one for the outgoing edges. If the representation is not already of
this form, it can easily be put into this form in linear time. The algorithm
will maintain a queue of vertices with no incoming edges. This will reduce the
cost of finding a vertex with no incoming edges to constant time at a slight
extra overhead for maintaining the queue.

Algorithm 2.3 (Topological Sort III)

1. Initialize the queue by traversing the graph and inserting each v
whose list of incoming edges is empty.

2. Pick a vertex u off the queue and make u the next vertex in the
total order.

3. Delete u and all outgoing edges (u,v). For each such v, if its list
of incoming edges becomes empty, put v on the queue. Go to step
2.

Step 1 takes time O(n). Step 2 takes constant time, thus O(n) time over all
iterations. Step 3 takes time O(m) over all iterations, since each edge can be
deleted at most once. The overall time is O(m + n).

Later we will see a different approach involving depth first search.



