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Tail Bounds

In probabilistic analysis, we often need to bound the probability that a
random variable deviates far from its mean. There are various formulas
for this purpose. These are called tail bounds. The weakest of these is the
Markov bound, which states that for any nonnegative random variable X
with mean p = X,

Pr(X >k) < p/k (I.1)

(Miscellaneous Exercise 83). A better bound is the Chebyshev bound, which
states that for a random variable X with mean p = X and standard

deviation o = \/E((X — p)?), for any 6 > 1,
Pr(|X —p|>d0) < 67 (1.2)

(Miscellaneous Exercise 84).

The Markov and Chebyshev bounds converge linearly and quadrati-
cally, respectively, and are often too weak to achieve desired estimates.
In particular, for the special case of Bernoulli trials (sum of independent,
identically distributed 0,1-valued random variables) or more generally Pois-
son trials (sum of independent 0,1-valued random variables, not necessarily
identically distributed), the convergence is exponential.
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Consider Poisson trials X;, 1 < ¢ < n, with sum X = )7, X; and
Pr(X; = 1) = p;. An exact expression for the upper tail is

PrX>k = > JIe][Q-p)
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In the special case of Bernoulli trials with success probability p, this sim-
plifies to the binomial distribution

Pr(X>k) = ) (7) p'(1—p)".

i>k

However, these expressions are algebraically unwieldy. A more convenient
formula is provided by the Chernoff bound.

The Chernoff bound comes in several forms. One form states that for
Poisson trials X; with sum X =5, X; and p = X, for any § > 0,

e’ K
Equivalently,
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In (I.4), the subexpression

5 \(1+9)/6
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is a special case of the function (1—1/2)%, which arises frequently in asymp-
totic analysis. It is worth remembering that this function is bounded above
by e~ ! for all positive x and tends to that value in the limit as = approaches
infinity. Similarly, the function (1 + 1/z)” is bounded above by e for all
positive x and tends to that limit as @ approaches infinity (Miscellaneous
Exercise 57(a)).

A third form equivalent to (I1.3) and (I.4) is: for all k > p,

Pr(X >k) < e #(u/k)". (1.6)

One can see clearly from (I.4) and (I.6) that the convergence is exponential
with distance from the mean.

These formulas bound the upper tail of the distribution. There are also
symmetric versions for the lower tail: for any J such that 0 < § < 1 and k
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such that 0 < k < p,

e 9 "
(1-8)/5\ O
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Pr(X <k) < e "(u/k)". (1.9)

In the case of the lower tail, we also have a fourth version given by
Pr(X<(1—8u) < e %n2 (1.10)

This bound is slightly weaker than (I1.7)—(1.9), but is nevertheless very useful
because of its simple form.

Proof of the Chernoff Bound

We now prove the Chernoff bound (I.3) for Poisson trials X;. It is easy to
show that the other forms (I1.4) and (I.6) are equivalent, and these are left
as exercises (Miscellaneous Exercise 87). The proofs of the corresponding
bounds (I.7)—(1.9) for the lower tail are similar and are also left as exercises
(Miscellaneous Exercise 88). The weaker bound (I.10) requires a separate
argument involving the Taylor expansion of In(1 — ¢), but is not difficult
(Miscellaneous Exercise 89).

Although the success probabilities of the X; may differ, it is important
that the trials be independent. At a crucial step of the proof, we use the
fact that the expected value of the product of independent trials is the
product of their expectations (Miscellaneous Exercise 82).

Let X; be Poisson trials with success probabilities p;, sum X =), Xj,
and mean p = EX = ) . p;. Fix a > 0. By the monotonicity of the expo-
nential function and the Markov bound (I.1), we have

Pr(X>1+d6u) = Pr (eaX > ea(1+5)u)
< E(em)emetrom, (L11)
Because the expected value of the product of independent trials is the

product of their expectations (Miscellaneous Exercise 82), and because the
e*Xi are independent if the X; are, we can write

E(e™X) = g(eziaX) = E(Heaxi) = HE(@“X"')
= Jlwet +@-p)) = JIO+pte -1, (112)
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It follows from (1 + 1/z)* < e that 1 +y < e¥ for all positive y. Applying
this with y = p;(e® — 1), we have 1+ p;(e® — 1) < ePi(¢" =1 thus (1.12) is
strictly bounded by

H epile"=1)  _  Fipi(e"-1) _  (e"—Dp
i
Combining this with the expression e~*(1+9# gives a strict bound
ele"=Du  p=a(l+d)n  _  (e*—1-a—ad)u (I.13)
on (I.11). Now we wish to choose a minimizing e —1—a—ad. The derivative

vanishes at a = In(1 4 §), and substituting this value for a in (I1.13) and
simplifying yields (I1.3).



